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Abstract 10 

 11 

Bed-parallel, mineralized fractures are common in source rocks and generally consist in mm 12 

to cm thick veins developed parallel to bedding known as beef or bedding-parallel veins. 13 

Considering they can form a dense network of mechanical discontinuities, the prediction of 14 

beef distribution is a major issue impacting shale reservoir production. Beef distribution is 15 

predominantly controlled by the lithological characteristics of source rocks and we here 16 

decipher the relation between mineralogical and chemical proxies controlled by orbital 17 

parameters and distribution of the beef along a Late Jurassic section of the well-known Vaca 18 

Muerta Formation source rock in the Neuquén Basin. Using multiple proxies collected along 19 

the beef-rich Huncal section, we show that Milankovitch cycles rule the mineralogical 20 

evolution and beef distribution in these organic-rich mudrocks. Cycles inferred from the 21 

statistical treatment of sedimentary (magnetic susceptibility, elemental and mineralogical 22 

ratios), biogenic (total organic carbon) and diagenetic (beef distribution and thickness) signals 23 

revealed indeed the influence of an astroclimatic fingerprint in sediments and on processes 24 

controlling mineralized fracture generation and distribution. The astroclimatic memory 25 
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recorded in many source rocks worldwide is therefore envisaged as a suitable proxy for the 26 

prediction of mineralized fracture distribution.  27 

 28 

Keywords: beef; bedding-parallel veins; Milankovitch cycles; astroclimatic forcing; 29 

diagenesis; source rocks. 30 

 31 

Corresponding author: Edouard Ravier; Edouard.ravier@univ-lemans.fr 32 

 33 

1. Introduction 34 

 35 

During burial and diagenesis, sediments can reach a state of overpressure at depth when the 36 

pore fluid pressure becomes greater than that of an equivalent free column of water 37 

(hydrostatic pressure). The burial of organic-rich mudrock (e.g., source rock) is commonly 38 

associated with the development of fluid overpressures due to mechanical and chemical 39 

compaction of clay and thermal maturation of kerogen (Grauls, 1997; Swarbrick et al., 2002; 40 

Cobbold and Rodrigues, 2007). The release of water and genesis of oil and gas within low-41 

permeability source rocks is responsible for a drastic increase of their pore-fluid pressure. In 42 

response to this distributed overpressure, hydrofractures can develop parallel to bedding 43 

(Cosgrove, 1995; Rodrigues et al., 2009; Gale et al., 2014; Zhang et al., 2016). The 44 

occurrence of bedding parallel fibrous veins in source rocks has commonly been interpreted 45 

as the mineralisation of such hydrofractures (Cobbold et al., 2013). These veins, also referred 46 

to as beef or Bedding-Parallel Veins (BPV), are mostly composed of fibrous calcite although 47 

gypsum or quartz veins have been described in the literature (Cobbold et al., 2013 and 48 

references therein). Inclusions of either liquid (oil) or solid (bitumen) hydrocarbons in the 49 

veins illustrate the relative synchronicity between kerogene cracking, hydrofracturing and 50 
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precipitation of supersaturated aqueous solutions (Rodrigues et al., 2009; Zanella et al., 51 

2015b). The occurrence of BPV in organic-rich sediment of low maturity has also led to 52 

suggest that beef may be produced during sediment degassing and/or rapid deposition of the 53 

overlying sediments or by the combination of pressure solution and the driving force of 54 

crystallization (Meng et al., 2017, 2018). The common occurrence of BPVs in foreland basins 55 

worldwide suggests that their formation is often a consequence of both fluid overpressures 56 

and compressional tectonic stress (Zanella et al., 2020). 57 

Some organic-rich sediments display intervals with very high beef concentration. The 58 

Jurassic-Cretaceous black shales of the Vaca Muerta Formation (Argentina) or the Charmouth 59 

Mudstone Formation with the so-called “Shales-with-beef Member” (England) are among the 60 

best examples of section gathering tens of closely-spaced horizontal and fibrous calcite veins 61 

(Rodrigues et al., 2009; Zanella et al., 2015a,b; Meng et al., 2017). Beef can reach up to 10% 62 

of the rock volume for some intervals of the Vaca Muerta Fm in the Huncal area, with 63 

thickness ranging from a few millimeters to 16 centimeters for individualBPVs (Rodrigues et 64 

al., 2009). Weger et al (2019) provided a high-resolution logging of beef distribution in a 800 65 

meters thick section of Vaca Muerta Formation (Puerta Curaco area) and showed that more 66 

than 50 meters of the section contains an excess of 2% beef measured by percentage of rock 67 

volumes. Similarly, Lejay et al (2017) estimated a proportion of 2 to 3% of beef throughout 68 

the Vaca Muerta Fm using core data from the eastern part of the Neuquén basin. 69 

Knowing that mineralized fractures behave as major mechanical discontinuities in source 70 

rocks and influence both hydraulic fracture stimulation and production (Gale et al., 2014), the 71 

prediction of beef distribution is therefore a major issue as many studies aim to better 72 

constrain the mechanical properties of source rocks. The location, distribution and thickness 73 

of BPV are thought to be organized and controlled by several parameters related to the total 74 

organic carbon in sediments, the maturation of organic matter, the nature and content of 75 
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carbonate and any types of rheological heterogeneities in the host rock that could alter its 76 

geomechanics and provide space or a nucleus for carbonate precipitation (Gale et al., 2014; 77 

Lejay et al., 2017; Meng et al., 2017, 2018). These parameters are mainly inherited from 78 

palaeoenvironmental conditions during mudstone deposition because the grain-size, 79 

mineralogy and organic content of sediments are most often related to the combination of 80 

climatic and eustatic variations, especially for organic-rich sediments from a marine origin. 81 

Some correlations (sometimes very weak) between beef distribution and ash beds or 82 

diagenetic concretions described in some parts of the Neuquén Basin implies that rheological 83 

heterogeneities and mechanical contrast in mudstone can also be related to the local imprint of 84 

aerial explosive volcanism or to the superimposed diagenetic signature for examples (Lejay et 85 

al., 2017; Weger et al, 2019).  86 

The Earth experiences periodic changes in the eccentricity, inclination and orientation of the 87 

Ecliptic plane as well as periodic motions of its rotational axis (see also Hinnov, 2018 for a 88 

review). The orbital parameters resulting from these motions are: (i) the eccentricity, which is 89 

the change of the shape of the Ecliptic plane from the perfect circle to an ellipse. The 90 

eccentricity cycles have main periods of ~100 kyr, 405 kyr and 2.4 Myr (Laskar et al., 2011); 91 

(ii) the obliquity, which is the angle between the perpendicular to the Ecliptic plane and the 92 

Earth’s rotational axis. The obliquity cycles have a main period calculated at 38.0 ± 1.7 kyr in 93 

the Tithonian (Waltham, 2015) and (iii) the climatic precession, which corresponds to the drift 94 

of the Earth-Sun distance at a given date of the year. The climatic precession cycles have an 95 

average period calculated at 20.2 ± 0.5 kyr in the Tithonian (Waltham, 2015). These orbital 96 

parameters modify cyclically the difference in insolation between summer and winter at a 97 

given latitude. The change in the seasonal difference in insolation then affects the oceanic and 98 

atmospheric circulations, the amount of water evaporated above the ocean and precipitated 99 

above the landmasses, the vegetation and ice covers, the sea level, the weathering intensity, 100 
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the detrital and nutrient supply to marine environments, the primary productivity, the redox 101 

conditions and, finally, the preservation of organic matter (Strasser, 2006). All these orbital 102 

imprints then may impact the petrophysical and mechanical properties of the sediment 103 

deposited and influence the evolution of the sediment during the burial diagenesis. 104 

Considering that both climate and sea-level oscillations are partly controlled by Milankovitch 105 

cyclicity, we aim to decipher if the distribution and thickness of mineralized hydrofractures 106 

(e.g., beef) in organic-rich sediments are indirectly forced by cyclic astroclimatic changes. 107 

This hypothesis, if confirmed, could help predict the distribution of BPVs in organic-rich 108 

mudrock using the well-calibrated record of astronomical cycles. 109 

In the Vaca Muerta Fm. of the Neuquén Basin, sedimentological, mineralogical and chemical 110 

studies pointed the role of the orbital forcing in humid/arid and sea-level cycles which 111 

generated marl-limestone alternations (Scasso et al., 2005; Kietzmann et al., 2011, 2015). In 112 

particular, annually humid conditions favoured detrital input to the basin and led to the 113 

deposits of siltstone and claystone while limestone beds originate from the export of 114 

carbonate mud to the basin under semi-arid conditions (Scasso et al., 2005; Rodriguez Blanco 115 

et al., 2020). Humid conditions and increased nutrient input favoured, together with increased 116 

sea level, the primary productivity in the basin and the preservation of organic matter (Scasso 117 

et al., 2005; Kietzmann et al., 2015). The sedimentary record of orbital cycles has thereby 118 

already been recognized in the Late Jurassic and Early Cretaceous deposits of the Neuquén 119 

Basin from bed pattern, geochemistry, and magnetic susceptibility (Scasso et al., 2005; 120 

Kietzmann et al., 2015; Kohan-Martinez et al., 2018; Kietzmann et al., 2018; Aguirre-Urreta 121 

et al., 2019). The Neuquén basin appears especially suitable to investigate the relationship 122 

between astroclimatic forcing and distribution/thickness of mineralized palaeo-hydrofractures. 123 

To document this potential forcing, we revisited the Huncal section of the Upper Jurassic - 124 

Lower Cretaceous Vaca Muerta Fm in the Neuquén Basin containing a high beef 125 
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concentration (Rodrigues et al., 2009; Larmier, 2020). This outcrop displays a continuous 126 

sedimentary record composed of overmatured organic-rich black shales interbedded with 127 

abundant bedding-parallel calcite veins (. A coupled analysis of sedimentary proxies and of 128 

the palaeo-hydrofracturing signal has therefore been conducted using high-resolution 129 

measurements of Magnetic Susceptibility (MS), Total Organic Carbon (TOC), mineralogical 130 

(bulk and clay size fraction) and chemical composition together with beef distribution and 131 

thickness. Spectral analyses have been applied to all proxies in order to test and compare their 132 

potential cyclicity in relation with astronomical cycles and beef distribution/thickness and to 133 

conclude about the impact of orbitally-driven climate changes on diagenesis and fracture 134 

distribution in relation with the primary paleoenvironmental signal.  135 

 136 

2. Geological context 137 

 138 

2.1. The Neuquén Basin 139 

 140 

The Neuquén Basin has a broadly triangular shape and is located in the Western part of 141 

Argentina, in the foreland and foothills of the Andes (Fig. 1A) (Howell et al., 2005). The 142 

Neuquén Basin was a retro-arc basin developed during the Mesozoic at the Pacific margin of 143 

South America (Legarreta and Uliana, 1991). The basin is filled by an Upper Triassic to 144 

Upper Cenozoic sedimentary succession that includes continental and marine siliciclastic 145 

sediments, carbonates and evaporites deposited during the different stages of the basin 146 

evolution. From the Upper Triassic to the Lower Jurassic deposits, narrow and isolated 147 

depocentres composed of continental and volcanic deposits accumulated during the 148 

extensional regime phase (Vergani et al., 1995; Franzese and Spalletti, 2001; Ramos et al., 149 

2019). From the Lower Jurassic to the Upper Cretaceous deposits, regional thermal 150 
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subsidence related to the subduction along the western margin of the basin is responsible for a 151 

wide marine embayement (up to 4000 m deep) recorded as marine deposits that shallow up 152 

eastwards and a fringe of continental deposits on the outer margin of the basin (Vergani et al., 153 

1995). From the Upper Cretaceous to the Upper Cenozoic deposits, a thick succession of 154 

synorogenic continental sediments filled the basin during compressive deformation regime 155 

(Legarreta and Uliana, 1991). This Andean deformation phase resulted in the development of 156 

fold and thrust belts that exhumed Mesozoic succession throughout the basin (Fig. 1A).  157 

 158 

2.2. The Vaca Muerta Formation 159 

 160 

Outstanding Upper Jurassic to Lower Cretaceous outcrops are exposed in the basin, especially 161 

in the western central part of the basin where the Tithonian-early Valanginian interval is 162 

recorded through a sedimentary pile locally reaching 1500 m thick (Leanza et al., 2011). This 163 

Upper Jurassic to Lower Cretaceous sequence is composed of transgressive-regressive 164 

sequences that developed in response to variations in subsidence rate, eustatic fluctuations and 165 

regional uplift (Legarreta and Gulisano, 1989; Kietzmann et al., 2014; Krim et al., 2017). 166 

These marine sequences are included in the Mendoza Group (also referred to as Mendoza 167 

Mesosequence) (Fig. 1C). Legarreta and Gulisano (1989) divided the Mendoza Group into 168 

three shallowing upward sedimentary sequences: the lower Mendoza Subgroup 169 

(Kimmeridgian–Lower Valanginian), the middle Mendoza Subgroup (Upper Valanginian-170 

Lower Hauterivian) and the upper Mendoza Subgroup (Upper Hauterivian–Lower 171 

Barremian). The lower Mendoza Subgroup, object of the present study, records the 172 

continental deposits of the Tordillo Formation (Kimmeridgian-lower part of the Lowermost 173 

Tithonian) and the thick deep marine deposits of the Vaca Muerta Fm (upper part of the 174 

Lower Tithonian - Upper Berriasian to Lower Valanginian) (Figs. 1B, C). In most areas of the 175 
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Neuquén Basin, the Vaca Muerta Fm corresponds to dark and organic-rich mudrocks, marls 176 

and limestones deposited along a homoclinal ramp flooded by a marine transgression 177 

originating from the Pacific Ocean (Kietzmann et al., 2014). The Vaca Muerta black shales 178 

are basinal ramp facies considered as a world-class source rock (with TOC values ranging 179 

from 2 to 12%) of high unconventional hydrocarbon potential . The Vaca Muerta Fm is 180 

diachronous as the top becomes younger toward the central part of the basin (Leanza et al., 181 

2003). In the western part of the Vaca Muerta Fm, a Lower Berriasian turbiditic sandstone 182 

interval referred to as the Huncal Member is a useful stratigraphic marker (Leanza et al., 183 

2003) (Figs. 1 B, C; 2A). 184 

  185 

 186 

 187 

 188 
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Figure 1. (A) Geological map of the eastern central part of the Neuquén Basin with location of the Huncal 189 

section. (B) Section of the Vaca Muerta Fm in the Huncal area (modified after Leanza et al., 2003) with a focus 190 

on the position of the sedimentary interval described in this study. (C) Lithostratigraphic framework of the Vaca 191 

Muerta Fm in the Huncal area (modified after Leanza et al., 2011). (D) Chart of the Tithonian ammonoid 192 

biostratigraphy for the Andean region based on multiple studies conducted in the Neuquén Basin. 193 
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 194 

2.3. The Huncal section 195 

 196 

The section investigated in this study, belonging to the Vaca Muerta Fm, is located near the 197 

locality of Huncal, along the Huncal river, a few kilometers southeast of Cerro Mulinchinco 198 

(38°06.242’ S; O 70°35.847’ W) (Fig. 1A). A synthetic log of the Huncal area has been 199 

realised by Leanza et al. (2011), where a complete 1150 m thick section of the Vaca Muerta 200 

Fm is reported (Fig. 1B). Leanza’s work conducted in this area refers to a beef-rich interval 201 

approximately 250 m beneath the Huncal Mb, especially in the area of Cerro Mulinchinco 202 

(Leanza et al., 2003, 2011). We studied a 102 m thick and continuous section that shows a 203 

very high beef concentration we highly suspect to be the equivalent of the “shales with beef” 204 

interval described in Leanza et al. (2011). The beef-rich section we investigated is beneath the 205 

Huncal Mb (Figs. 1B, C; 2A). Ammonites are commonly found along the section and best 206 

preserved in bedding-parallel calcite veins (Rodrigues et al., 2009). Although mostly 207 

degraded, one ammonite specimen identified in the uppermost part of the section corresponds 208 

to Catutosphinctes Callomoni (H. Leanza pers. comm.) (Figs. 1B, 2C; 3). According to Zeiss 209 

and Leanza (2010), this species is characteristic of the Windauseniceras internispinosum 210 

Andean ammonite Zone, indicating a Middle to early Upper Tithonian age (Fig. 1D). 211 

Recently, astronomical calibration of the Tithonian-Berriasian conducted in the Neuquén 212 

Basin has estimated to 1.21 myr the duration of the W. internispinosum Zone (Kietzmann et 213 

al., 2018). 214 

 215 

2.4 Bedding-parallel calcite veins (beef) in the Huncal area 216 

 217 

BPV or beef have been largely studied in the Vaca Muerta Fm due to their widespread 218 

occurrence in the Neuquén Basin (Rodrigues et al., 2009; Gale et al., 2014; Zanella et al., 219 
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2015b; Eberli et al., 2017; Lejay et al., 2017; Ukar et al., 2017; Weger et al., 2019). Typical 220 

veins are composed of fibrous calcite perpendicular to bedding that are either continuous, 221 

discontinuous or lens-shaped. They commonly display several generations of calcite 222 

crystallisation related to several phases of hydrofractures opening along a single mechanic 223 

interface. The inner generations are generally grey, as a result of numerous inclusions of wall 224 

rock and hydrocarbons. The outer generations are white, because of a lack of these inclusions. 225 

A median line or zone appears between the inner zones. This line also contains abundant 226 

inclusions of wall rock (Rodrigues et al., 2009). From burial curves, maturity calculations, 227 

growth strata, and ages of igneous intrusions, Rodrigues et al. (2009) estimated that the inner 228 

generation of the beef formed when the formation reached the oil window during the Aptian-229 

Albian. Conversely, the outer generation formed when the formation reached the gas window 230 

during the Cenomanian-Campanian. Their formation is attributed to organic matter abundance 231 

in black shales and fluid overpressure development during chemical compaction and 232 

transformation of solid kerogen into oil or gas (Rodrigues, 2009). Larmier (2020) 233 

demonstrated the link between TOC and beef characteristics along the studied section by 234 

showing highest density of beef in sedimentary intervals displaying higher TOC values. 235 

Nevertheless, this relationship between TOC and beef occurence is not always recorded in the 236 

basin (Weger et al., 2019). 237 

 238 

3. Materials and Methods 239 

 240 

3.1. Sampling and methodology for beef position and thickness 241 

 242 

We conducted a high-resolution sedimentary logging and sampling along a 100 m thick 243 

section in the Huncal area. Using a Jacob’s staff, a 1:10 sedimentary logging has been carried 244 
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together with an even sampling step of 10 cm (1000 samples in total). Beef layers and 245 

dolostone beds were discarded from the measurement of the sampling distances to only 246 

sample shales and eliminate any bias in the physical and chemical signals acquired. In 247 

parallel, maximum thickness and lateral continuity of every beef have been measured. The 248 

outcrop generally offered tens of meters long viewing of single beef, a rough estimation of the 249 

degree of continuity was therefore performed by observing their lateral continuity at outcrop 250 

scale. Continuous beef at outcrop scale were therefore labelled as “continuous” while beef 251 

with poor lateral continuity or lens-shaped were labelled as “discontinuous”. Diffuse beef less 252 

than a millimeter-thick, referred to as “microbeef” in some studies (Lejay et al., 2017; 253 

Larmier, 2020) were very difficult to fully characterize and were therefore not measured. 254 

To quantify the beef signal along the section, we extracted three signals from the beef 255 

database: (1) beef occurrence, (2) beef median line position and (3) beef thickness. (1) Beef 256 

occurrence corresponds to the beef presence or absence for every single millimeter of the 257 

section. A value of 1 is attributed to the presence of beef while a value of 0 corresponds to 258 

mm-thick intervals devoid of beefs. (2) The beef median line position corresponds to the 259 

position of the median line (Fig. 4B) of every single beef described along the section. (3) The 260 

beef thickness signal required an additional operation to be independent from the occurrence 261 

or median line signals described above. The beef thickness values are resampled every 10 cm 262 

along a curve constituted by a point-to-point linear interpolation between thickness values 263 

recorded for every beef position. As the very few thick beefs occurring in beef-poor intervals 264 

bring a substantial bias in the interpolation curve (see section 4.7), we built an additional 265 

curve where they have been removed. 266 

 267 

3.2. Magnetic Susceptibility 268 

 269 
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Magnetic susceptibility (MS) was measured on the 1000 bulk shale samples collected every 270 

10 cm along the section to analyse the evolution of the detrital export along the section. 271 

Usually, iron bearing minerals have higher magnetic susceptibility values than non-iron 272 

bearing minerals. As the iron is exported to the basin from the continental erosion and 273 

weathering, MS measurements will help deciphering the impact of the Milankovitch cycles on 274 

the detrital export. MS values were acquired using a laboratory Agico Kappabridge KLY-3S 275 

samples (Geosciences Rennes, Université Rennes 1). Volumic MS was measured three times 276 

and corrected from measurements of volumic MS performed on empty containers. Sample 277 

values, corrected from blanks, were normalized to the measurement volume and the sample 278 

mass and given in m3/kg.  279 

 280 

3.3. Total Organic Carbon 281 

 282 

We used 198 samples collected for MS measurements for to TOC measurements (in % 283 

weight) following an even sampling step of 50 cm. Both organic carbon content and thermal 284 

maturation of the organic matter were measured using a Rock-Eval instrument (Rock-Eval 6 285 

Turbo device; Vinci Technologies). TOC results from this sampling series along the Huncal 286 

section have already been published in Larmier (2020).  287 

 288 

3.4. X-ray diffraction 289 

 290 

X-ray diffraction (XRD) analyses were conducted on 30 shale samples every 3 meters along 291 

the section to obtain the whole mineralogical composition. The first 33 meters, corresponding 292 

to a beef-rich stratigraphic interval (Fig. 3), has been selected for higher resolution XRD 293 

analyses with samples measured every 30 cm (100 samples in total). 294 
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Each sample was cleaned, crushed and finely powdered using a metal ring grinder. 295 

Diffractograms were obtained using a Bruker D4 Endeavor diffractometer with CuKα 296 

radiations, LynxEye detector and a Ni filter, under 40 kV voltage and 25 mA intensity 297 

(Biogéosciences Laboratory, Université Bourgogne Franche-Comté). The goniometer scanned 298 

the sample from 2.5° to 30° for each run showing diffraction peaks for every crystalized 299 

mineral phase. 300 

Minerals phases were identified by the position of their main diffraction peaks while semi-301 

quantitative estimates were produced in relation to their area (Moore and Reynolds, 1997). 302 

Areas were determined on diffractograms with MacDiff 4.2.5 software (Petschick, 2000). 303 

Beyond the evaluation of the absolute proportions, the objective is to identify their relative 304 

fluctuations along the section. Peak area ratios were then considered for time series analyses. 305 

Clay mineral identification and semi-quantification were also performed on the decarbonated 306 

clay-sized fraction (<2µm) using a 0.2 M HCl solution. Three runs were performed for each 307 

sample to discriminate clay phases using oriented glass slide preparation: 1) air-drying; 2) 308 

ethylene-glycol solvation; 3) heating at 490 °C. Clay minerals were identified using their 309 

main diffraction (d001) peak and by comparing the three diffractograms obtained while 310 

quantification was obtained on ethylene-glycol solvation runs (Moore and Reynolds, 1997). 311 

Calcite percentages obtained from XRD measurements were calibrated by calcimetry 312 

measurements (Bernard calcimeter, Biogéosciences Laboratory, Université Bourgogne 313 

Franche-Comté). 314 

 315 

3.5. X-ray fluorescence 316 

 317 

X-ray fluorescence (XRF) analyses were conducted on 100 samples taken every 30 cm along 318 

the first 33 meters of the section. Each sample was turned into powder and analysed using a 319 
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hand XRF S1 Titan Bruker (Biogéosciences Laboratory, Université Bourgogne Franche-320 

Comté) to identify and quantify major element composition. Analyses of the elementary 321 

composition of the shales have been focus on several ratios of chemical elements relevant for 322 

approaching the changes in the terrigenous flux (Ti, Fe, Si, Al, K) and indirectly in the grain-323 

size as Si is normally enriched in the silt size fraction and Al and K are commonly enriched in 324 

the clay size fraction. We therefore selected the following ratios: Si/Al, Ti/Al, Ti/K and Fe/Al 325 

as sedimentological and environmental proxies.  326 

 327 

3.6. Spectral analyses 328 

 329 

Frequency content analyses were performed using the multi-taper method (MTM; Thomson, 330 

1982, 1990) applying three 2π-tapers (2π-MTM spectra). The confidence levels of the spectral 331 

peaks were extrapolated assuming a chi-square distribution of the red-noise fit of the spectral 332 

background calculated according to the method of Mann and Lees (1996) implemented in 333 

Meyers (2014). The spectra are given with a Rayleigh frequency (frequency resolution of the 334 

spectrum) of 0.0099 cycles.m-1. Filters were then calculated using Taner filters (see 335 

supplementary material in Hinnov et al., 2002 for technical details of the filter). The 336 

sedimentation rate was then calculated per each repetition of the filter of the precession cycle 337 

by dividing the thickness of a cycle by the average duration of the precession cycles (20.2 ± 338 

0.5 kyr; Waltham, 2015). We assume that the sedimentation rates are constant within a 339 

precession cycle. The TOC series was used as the reference for the precession filter as this 340 

series was regularly sampled and shows high amplitude of the filter of the precession 341 

throughout the interval studied. 342 

 343 

4. Results 344 
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 345 

4.1. The Huncal section deposits 346 

 347 

The section is predominantly composed of black shale deposits interrupted by several 348 

dolostone interbeds (Figs. 2A, 3). Shale contain abundant ammonites, best preserved in beef 349 

and microfossils including radiolarian and coccolithophores. Accumulations of silt-sized 350 

quartz grains forming microscopic beds parallel to layering are commonly observed in shale 351 

(Fig. 2C). We reported 11 orange-colored competent dolostone beds with sharp contacts 352 

ranging from 0.2 m to 1 m thick, which accounts for 5% of the section thickness. Their 353 

microfacies is often characterized by an equigranular mosaic of anhedral to subhedral 354 

dolomite crystals, probably formed by the postdepositonal diagenesis. This early diagenesis  355 

356 
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 357 

Figure 2. (A) Typical aspect of the Huncal section where multiple bedding parallel calcite veins (beef) set in the 358 

organic-rich mudrock of the Vaca Muerta Fm. Dolostone beds locally interrupt the mudrock lithology. Note the 359 

Huncal member position in the upper part of the Vaca Muerta Formation in the background. (B) Ammonite 360 

(Catutosphinctes Callomoni) found in a dolostone bed (89 meters). (C) Microscopic view of thinly laminated 361 

mudrocks displaying micro-beds composed of silt-sized quartz grains. (D) Thinly laminated dolostone beds that 362 

sometimes show faint current ripples. (E) Slump deposits in the Vaca Muerta Fm.363 
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 364 

 365 

Figure 3. Sedimentary log of the Huncal section with distribution, thickness and continuity of the beef. TOC 366 

values (measured every 50 cm) and MS values (measured every 10 cm) are reported along the section. Shaded 367 

intervals labelled 1 to 4 correspond to beef-rich intervals mentioned in the text. 368 

 369 
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provides a good preservation of mudstone primary fabric including thinly laminated beds and 370 

occasional faint current ripples (Fig. 2D). Thin laminations and current sedimentary structures 371 

in a basinal sedimentary succession suggest that dolostones were deposited by very fine-372 

grained sedimentary density flow (Fig. 2B). These beds could either represent the distal part 373 

of dilute gravitational flows, perhaps induced by storm surges, turbidites or long-lived muddy 374 

hyperpycnal flow originating from the reworking of inner ramp sediments (Spaletti et al., 375 

2000; Blanco et al., 2020) or triggered by extreme river discharges (Otharan et al., 2020). The 376 

occurrence of slump deposits at the base of the section (1.2 m) (Fig. 2E) strengthens a gravity-377 

induced origin for these thinly laminated dolostone beds.  378 

 379 

4.2. Beef distribution and thickness 380 

 381 

Along the section, 135 beef layers have been measured with thickness ranging from 1 to 62 382 

mm (mean thickness: 18 mm) and lateral extent ranging from few meters to tens of meters 383 

(Fig. 4A). The cumulated beef thickness accounts for around 4 % of the total thickness of the 384 

102 m thick interval. We measured 16 beef layers comprised between 0 and 2 mm thick, 32 385 

beef between 2 and 10 mm, 34 between 11 and 20 mm, 33 between 21 and 30 mm, 12 386 

between 31 and 40 mm, 7 between 41 and 50 mm and only two being superior to 50 mm thick 387 

(Fig. 3). The beef distribution is not homogeneous but clustered in four main stratigraphic 388 

intervals ranging from 5 meters up to 26 meters thick (labelled 1 to 4 on Fig. 3). A denser beef 389 

proportion is observed in the first 50 meters where the thickest beef layers have also been 390 

measured. The first beef-rich interval (5 to 27 meters) gathers 45% of all beef measured along 391 

the section (n=61 beef) (Fig. 3). We also observe that intervals with low beef concentration 392 

show a few thick beef layers (30.73 m 34.87 m, 62.28 m, 63.74 m, 65.22 m and 85.1 m) (Fig. 393 
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3). All beef layers show a median line and one to several generations of fibrous calcite 394 

crystallisation (Figs. 4B, C).  395 

396 
Figure 4. (A) Beef-rich intervals in the lower part of the Huncal section (5 to 10 m). White arrows point beef. 397 

Note 1.5 m Jacob’s staff as scale. (B) Close-up on beef structure where a median line separates two sets of 398 

antitaxial fibrous calcite. (C) Thin section showing beef internal structure characterised by distinctive zones 399 

related to several generation of fibrous calcite precipitation. The first generation is greyer due to hydrocarbon 400 

and wall rock inclusion. 401 

 402 

4.3. Total Organic Carbon 403 

 404 

TOC values along the section range from 0.1 to 6.1% along the section with an average of 405 

1.5% for the 250 samples measured (Fig. 3). The highest TOC values are measured in the first 406 

43 meters where TOC values are mostly above mean TOC. Beef-rich intervals 1 to 3 407 
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generally coincide with higher TOC values (Fig. 3). In the first 33 meters of the section, the 408 

occurrences of the thickest beef layers coincide with TOC values above average (Fig. 5).  409 

 410 

4.4. Magnetic Susceptibility 411 

 412 

MS values range from 0.346.10-7 to 1.583.10-7 m3/kg with an average of 0.734.10-7 m3/kg. 413 

Mean MS values generally increase in beef-rich intervals and seem to be correlated with the 414 

occurrence of thickest beef (Fig. 3, 5). 415 

 416 

4.5. Mineralogy of the black shale deposits 417 

 418 

X-ray diffraction analyses realized on 125 black shale samples show a mean mineralogical 419 

composition characterized by 61% of quartz, 14% of albite, 12 % of clay, 10% of calcite, 2 % 420 

of pyrite and less than 1% of gypsum. Calcite percentages obtained from XRD measurements 421 

were calibrated by calcimetry measurements. Detailed mineralogical analyses performed in 422 

the first 33 meters of the section show similar trend between the Quartz/Clay ratio, used here 423 

as a detrital proxy, and the calcite content. The Quartz/Clay ratio displays higher values from 424 

6 to 18 meters (from 1.2 to 1.4; Fig. 5F) while calcite content is the highest between 7 and 20  425 

meters (11 to 14%; Fig. 5E). These two proxies coincide with higher TOC values (2.4% on 426 

average) and denser beef distribution (Fig. 5). Pyrite content (ranging from 0 to 22%; 1.3% on 427 

average) also displays higher values between 8 and 23 meters with two local maxima around 428 

10 and 20 meters. Clay mineral assemblages show on averages 59% of R3 type illite/smectite 429 

mixed-layers (IS R3), 27% of illite, 10% of chlorite and 4% of complex chlorite-vermiculite-430 

smectite mixed-layers. The high proportion of IS R3 (composed of 90% of illite sheets) and 431 
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illite indicate that sediments have experienced significant burial diagenesis with a maximal 432 

burial temperature of 190°C (Šucha et al.,1993). 433 

 434 

 435 

Figure 5. Evolution of the beef occurrence and thickness, the TOC (every 50 cm), the mineralogical content 436 

(Pyrite, Calcite, and Quartz/Clay) and some key ratio of chemical elements (every 30 cm). The sedimentation 437 

rate for the first 33 meters of the Huncal section is deduced from the thickness of the precession cycles (cf. 438 

section 5.1). Raw and smoothed data are shown for each plot. 439 

 440 

Jo
urn

al 
Pre-

pro
of



23 

 441 

 442 

 443 

4.6. Geochemistry of the black shale deposits 444 

 445 

The Si/Al, Ti/Al, Ti/K and Fe/Al ratios display very similar evolution with values above mean 446 

reached within the 8 to 19 meters and 29 to 33 meters intervals and below mean in the 0 to 8 447 

and 19 to 29 meters intervals (Fig. 5). This evolution positively correlates with other proxies 448 

analysed in the first third of the studied section (i.e., beef occurrence and thickness, TOC, MS, 449 

Calcite, Quartz/Clay and sedimentation rate). 450 

 451 

4.7. Spectral analyses 452 

 453 

The 2π-MTM spectra of the MS, TOC, Beef Occurrence (BO) and Median Beef Position 454 

(MBP) series all show three groups of spectral peaks at the following frequencies (Figs. 6, 7 455 

and 8):  456 

(i) 0.0297 to 0.0396 ± 0.0099 cycles.m-1 (corresponding periods: 34 to 25 m),  457 

(ii) 0.0792 to 0.1275 ± 0.0099 cycles.m-1 (corresponding periods: 12 to 8.5 m),  458 

(iii) 0.1683 to 0.1881 ± 0.0099 cycles.m-1 (corresponding periods: 5.9-5.3 m).  459 

The average frequency of these three groups are 0.0346, 0.0938 and 0.1802 cycles.m-1, 460 

respectively corresponding to periods at 28.9 m, 10.7 m and 5.5 m. Other spectral peaks are 461 

observed in the BO and the MBP series respectively at frequencies 0.2772 cycles.m-1 (period: 462 

3.6 m) and 0.2673 cycles.m-1 (period: 3.7 m) (Figs. 6C, 6D and 8). 463 

The 2π-MTM spectrum of the Beef Thickness (BT) series shows a group of spectral peaks 464 

with decreasing powers from frequencies 0.0100 to 0.300 cycles.m-1 (corresponding periods: 465 
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from 10.0 m to 3.4 m) (Fig. 6E). At ~30 m, ~60 m and ~90 m, few but thick beef layers are 466 

recorded around intervals devoid of beef (see red circles in Fig. 8C), locally creating 467 

sequences of high amplitudes. This feature makes the beef thickness series unstationary and 468 

biases the spectrum (Weedon, 2003). Interestingly, this pattern occurs recurrently every ~30 469 

m, which corresponds to the longest period observed in the other spectrograms. To overcome 470 

this bias, we removed the very thick beefs directly surrounding the intervals devoid of beefs. 471 

The beefs discarded from the further analysis are shown as red circles in Figure 8C. 472 

The 2π-MTM spectrum of the BT series without the thick beefs around the intervals devoid of 473 

beefs shows spectral peaks at frequencies 0.0398, 0.0895, 0.1789 cycles.m-1, respectively 474 

corresponding to 25 m, 11 m and 5.6 m (Fig. 6.F). These periods agree with the periods found 475 

in the spectra of the MS, TOC, BO and MBP. 476 

477 
  478 

Jo
urn

al 
Pre-

pro
of



25 

Figure 6. 2π-MTM spectra of the series measured throughout the entire studied series. Periods of the spectral 479 

peaks in meters are labelled bold and are in meters. The corresponding frequencies are labelled in between 480 

brackets and are in cycles/m. 481 

 482 

 483 

 484 

Figure 7. Taner filters of the Total Organic Carbon (TOC) and the Magnetic Susceptibility (MS) series. 485 

 486 

 487 

 488 

 489 

 490 
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 491 

 492 
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Figure 8. Taner filters of the beef-related series.  493 

 494 

5. Discussion 495 

 496 

5.1 Significance of the sedimentary cycles 497 

 498 

The series of MS, TOC, BO, MBP and BT (without thick beef around intervals devoid of 499 

beefs) all display peaks at 25-34 m, 8.5-12 m and at 5.3-5.9 m (Figs. 6, 7 and 8). The 500 

difference in the period of the signals is due to the discretisation of the spectra, which is 501 

inherent to spectral analyses performed on finite series (Weedon, 2003). This effect is 502 

particularly obvious for the longest period, where the ~30 m peak has a period ranging from 503 

25 to 34 m depending on the proxy analysed. These peaks have frequencies ranging from 504 

0.029 cycles.m-1 (34 m) to 0.039 cycles.m-1 (25 m). The difference of 0.01 cycles.m-1 between 505 

these two frequencies corresponds to the frequency resolution of the spectra shown here.  506 

On average, three periods are commonly observed between these five above-mentioned 507 

proxies, at 28.1 m, 10.8 m and 5.6 m. The ratio between these periods is 1.9:2.6:5.0, in perfect 508 

agreement with the ratios between the periods of 100 kyr (eccentricity), 38.1 kyr (obliquity) 509 

and 20.2 kyr (average precession) (Waltham, 2015). The observed periods of ~28 m, 11 m 510 

and 5.6 m are thus respectively associated to the eccentricity, the obliquity and the precession, 511 

which appears to influence both the lithological characteristics (TOC, MS) and mineralization 512 

produced during diagenesis (beef distribution and thickness) of the Vaca Muerta deposits. 513 

The spectrum of the BT does not show these periods when including the thick beefs around 514 

intervals devoid of beefs (Fig. 6E). However, as demonstrated in section 4.2, this series is 515 

biased as it only shows high powers localised at intervals where few but thick beefs occur. It 516 

is noteworthy that these thick beef intervals occur every ~30 m, which corresponds to the 517 

100-kyr eccentricity in the spectra of TOC, MS, BO and MBP. This shows that eccentricity 518 
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cycles impacted mudstone properties, so that it favoured the generation of thick, isolated beef 519 

layers in organic-depleted intervals. After removing these beefs at 30.73 m 34.87 m, 62.28 m, 520 

63.74 m, 65.22 m and 85.1 m (see red circles in Fig. 8C), the spectrum of the BT series 521 

displays the same peaks at 25 m, 11 m and 5.6 m observed in the other proxies and related to 522 

the imprint of the eccentricity, obliquity and precession, respectively. Notice that the different 523 

beef signals display other peaks at 3-4 m which are not observed in the MS or TOC signals. 524 

As they are not observed in other environmental proxies, these short periods observed in the 525 

beef-related series are likely due to specific burial and diagenetic processes rather than the 526 

imprint of an environmental change.  527 

 528 

5.2. Astroclimatic fingerprint and beef distribution model 529 

 530 

Detailed mineralogical and chemical analyses performed along the Huncal section show that 531 

increasing beef density and thickness correlate with higher MS, TOC, calcite content, silt-to-532 

clay ratios and sedimentation rate (Fig. 5). This correlation suggests a link between the 533 

primary sedimentary signal, diagenesis and hydrofracturing distribution in the mudrocks of 534 

the Vaca Muerta Fm. Similar relationships have been proposed by other studies focusing on 535 

the mechanisms of beef formation (Rodrigues et al., 2009; Zanella et al., 2015; Meng et al., 536 

2017; Larmier, 2020) although astroclimatic precursors have hitherto remained unexplored.  537 

Based on spectral analyses, we demonstrate the influence of the orbital parameters as a 538 

precursor for variations in both sedimentary signals (MS, TOC) and diagenetic features 539 

(beef). Beef distribution can therefore be deciphered by considering the evolution of the 540 

sedimentary record in view of climatic and/or eustatic fluctuations inferred from orbital 541 

parameters. 542 
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Krim et al. (2017, 2019) suggested that grain-size and clay mineralogy variations observed in 543 

the southern part of the Neuquén Basin during deposition of Vaca Muerta Fm can be 544 

considered as a climatic imprint rather than a response to eustatic variations. Warm temperate 545 

conditions associated with seasonal rainfall and increase runoff are proposed to explain the 546 

increase of siliciclastic supply recorded in the Vaca Muerta mudrocks (Scasso et al., 2005; 547 

Krim et al., 2019). Clay mineralogy is commonly used as a proxy for climatic reconstructions 548 

(humidity/aridity) in the Late Jurassic (Hallam 1993; Pellenard & Deconinck 2006; Pellenard 549 

et al., 2014; Turner & Huggett 2019) and was used in this way at a regional scale for the Vaca 550 

Muerta Fm (Krim et al., 2019). Unfortunately, temperatures reached by the Huncal section 551 

during the burial diagenesis (~ 190°C; Mean Tmax = 590°C) strongly affected mineralogy of 552 

clays, mainly composed of illite, IS R3 and chlorite, preventing the use of clay minerals as 553 

proxy of climate and comparison with the paleoenvironmental signal deduced from the south 554 

of the Neuquén Basin (i.e., Huincul Arch area; Krim et al., 2019). 555 

However, periods of increased sedimentary flux and siliciclastic supply, in relation with 556 

enhanced runoff conditions during wetter climate are here supported by high ratios of 557 

Quartz/Clay, Si/Al, Ti/Al, Ti/K and Fe/Al in the lower Huncal section that coincide with a 558 

high sedimentation rate deduced from the thickness of the precession cycles (~ 300 m.myr-1) 559 

(Figs. 5 and 9A). Enhanced runoff and detrital export also correlate with an augmentation of 560 

the TOC and iron content in the mudrocks (Fig. 5). Increased sedimentation rate and seawater 561 

fertilization during wetter conditions can explain the positive feedback observed for the TOC 562 

content in response to better organic matter preservation and increased primary productivity 563 

(Arthur et al., 1987; Scasso et al., 2005; Armstrong et al., 2016). Classically in the Mesozoic, 564 

organic-rich deposits become widespread at time of acceleration of the hydrolysing cycle 565 

during more humid period (Dera et al., 2009; Föllmi, 2012; Martinez and Dera, 2015). 566 

Otharan et al. (2020) also relate the high organic matter content in the Vaca Muerta mudrocks 567 
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to the basinward increase of detrital flux during humid periods through deposition of long-568 

lived muddy hyperpicnal flows triggered by extreme rivers discharges. Organic matter 569 

incorporation during basinward transport and fast deposition could have enhanced organic 570 

matter preservation and accumulation. In other locations of the basin, variations in TOC 571 

content in the Vaca Muerta Fm have been related to palaeoproductivity during marine 572 

transgression (highest TOC values) or dilution processes during marine regression (lowest 573 

TOC values), combined with fluctuations of the redox conditions due to episodic restriction of 574 

water-mass circulation (Kietzmann et al., 2016; Krim et al., 2017, 2019). The climatic-driven 575 

model proposed here is not mutually exclusive with the role of eustatism evoked by 576 

Kietzmann et al. (2016) in the coeval fluctuations in primary productivity, calcite export to 577 

the sea bottom and the detrital input. Organic-rich mudrocks with an enhanced detrital 578 

fraction are commonly encountered in transgressive phases in the Neuquén Basin (Kietzmann 579 

et al., 2016) implying that orbitally-driven sea level fluctuations may have influenced the 580 

lithological characteristics of the mudrocks and therefore the rheology and beef distribution of 581 

the Vaca Muerta Fm. The very homogenous clayey lithology of the Vaca Muerta Fm 582 

encountered in the Huncal area and the reduced window of observations and sampling (100 583 

m-thick section) prevent the role of eustatism in controlling sedimentary cycles to be further 584 

discussed. 585 

At the Jurassic-Cretaceous boundary, a growing aridity evidenced by large evaporate deposits 586 

coupled with clay mineralogical, palynological or numerical modelling data is worldwide 587 

recorded (Hallam, 1982; Valdes et al., 1995; Price et al., 1997; Schnyder et al., 2006; 588 

Sellwood and Valdes, 2008; Krim et al., 2017; Cameille et al., 2018; Turner & Huggett 2019). 589 

Sedimentary intervals recording reduced sedimentation rate (< 250 m.myr-1) and lower values 590 

of Quartz/Clay, Si/Al, Ti/Al, Ti/K and Fe/Al ratios may indicate periods of decrease in runoff 591 

related to more arid climatic conditions (Fig. 9B). Reduced siliciclastic supply is also 592 
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combined to a decrease in mean TOC (from 2.4% to 1.7%). Fluctuations in runoff and 593 

sedimentary flux recorded in the Huncal area could also be related to latitudinal migration of 594 

the climatic belts as proposed by Sagasti (2005) and Krim et al. (2017) for the lower 595 

Cretaceous of the Neuquén Basin. Fluctuations in terrigenous supply to the basin occurred 596 

also likely in response to alternating climate regimes from arid to temperate depending on the 597 

configuration of the Earth’s orbit (Sagasti, 2005). Similar conditions have also been suggested 598 

to occur during Late Jurassic times (Valdes et al., 1995, Armstrong et al., 2016).  599 

600 
Figure 9. Astroclimatic model for the Late Jurassic Vaca Muerta Fm in the Huncal area and its control on 601 

lithology and diagenesis. (A) Semi-arid conditions: higher runoff, siliclastic supply, TOC and sedimentation 602 
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rate. Organic-rich black shale facies favors the development of beef-rich intervals during diagenesis by 603 

abundant hydrocarbon generation and subsequent hydrofracturing during the Cretaceous (Rodrigues et al., 604 

2009). (B) More arid conditions: Reduced runoff, siliclastic supply, TOC and sedimentation rate. The reduction 605 

of organic content in black shales coincides with beef-poor intervals because of a decrease in hydrocarbon and 606 

hydrofracture generation during diagenesis. Transitions between arid and semi-arid conditions are most 607 

certainly related to latitudinal fluctuations of climatic belts in response to changes of the orbital parameters. 608 

 609 

Calcite content is surprisingly positively correlated with TOC values, sedimentation rate and 610 

increased siliciclastic supply. The opposite trend was observed in the Chos Malal area, north 611 

of the Huncal area, with a negative correlation between TOC and calcite content (Kietzmann 612 

et al., 2015; Rodriguez Banco et al., 2020). In this area, clear alternations between black 613 

shales and limestone outcrop. The limestone beds there are interpreted as carbonate mud 614 

produced in the platform and exported to the basin via density cascading currents (Rodriguez 615 

Blanco et al., 2020). In the Huncal section, very few calciturbidite beds are intercalated within 616 

a thick dark bituminous shale series. The increasing calcite content could correspond to the 617 

enhanced preservation of calcareous bio-grains content in mudstones, in the conditions of a 618 

TOC content predominantly influenced by palaeoproductivity. Alternatively, carbonate 619 

authigenesis might explain the unpredictable correlation between TOC values, calcite content 620 

and sedimentation rates. Authigenic calcium carbonate precipitation represents a non-621 

negligible component of the global carbon cycle that is thought to be enhanced where the 622 

organic matter delivery to the sea floor is likely to be high (Sun and Turchyn, 20140). Miliken 623 

et al. (2019) show evidence of radiolarian calcitization and demonstrate a correlation between 624 

high TOC values and the precipitation of calcite during diagenesis of the Vaca Muerta 625 

mudrocks north of the Huncal area. The localised presence of diffuse beef measuring less than 626 

a millimetre, referred to as “microbeef” in Lejay et al. (2017) could have also been 627 

incorporated into mudrock samples analysed in this study, possibly explaining the positive 628 
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correlation between TOC and calcite content. Although diagenesis might influence the calcite 629 

content measured in shales from the Huncal section, Milliken et al. (2019) suggest that 630 

characteristics of the diagenesis are primary controlled by the depositional setting, thus 631 

explaining the relation between calcite content, TOC, sedimentation rates and Earth’s orbital 632 

parameters we establish in this study. We therefore propose that periodic fluctuations in 633 

humidity/aridity have influenced sedimentary and biogenic processes that control any 634 

lithological and rheological variations recorded in the black shales of the Huncal area (Fig. 9). 635 

Paleoclimatic fluctuations have left an indelible fingerprint on the sedimentary record today 636 

highlighted by the distribution of diagenetic features (e.g. beef) as demonstrated along the 637 

Huncal section. This astroclimatic fingerprint on beef distribution could partially be 638 

obliterated in some other sections of the Vaca Muerta Fm displaying beef-rich intervals, 639 

especially where some relations between ash beds, fossils or calcitic concretions and beef 640 

distribution have been evidenced (Rodrigues et al., 2009; Lejay et al., 2017; Weger et al., 641 

2019). Knowing that ash beds and concretions are very sparse in the studied section and that 642 

lithology is rather homogeneous along the deciphered interval, most mechanical contrasts and 643 

discontinuities used for hydrofracturing propagation derive from minor but recurrent changes 644 

in sedimentary characteristics (detrital fraction, TOC) inherited from astroclimatic forcing we 645 

demonstrated above. Based on these results, we suggest that the Milankovitch fingerprint on 646 

beef distribution has certainly a best potential for preservation in basinal sections 647 

characterized by high sedimentation rate, homogeneous lithology and low concentration of 648 

mechanical contrasts inherited from aerial explosive volcanism and/or diagenesis. 649 

 650 

 651 

6. Conclusion 652 

 653 
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We demonstrate that the Milankovitch cyclicity rule the processes controlling the composition 654 

of organic-rich sediments in the basinal part of the Neuquén Basin. The relations and cycles 655 

inferred from the statistical treatment of sedimentary (MS, elemental and mineralogical 656 

ratios), biogenic (TOC) and diagenetic (beef distribution and thickness) signals revealed the 657 

influence of the astroclimatic fingerprint recorded in sediments on processes controlling 658 

mineralized fracture generation and distribution. During burial (probably once catagenesis 659 

started), carbonate- and organic-rich sediments emplaced during enhanced wetter conditions 660 

favoured the development of a dense bedding-parallel network of mineralised fractures along 661 

weaker rheological plans. By slightly modifying the lithological and rheological 662 

characteristics of the black shales deposited in the basin, reduced runoff and drier conditions 663 

might have been the precursor explaining the occurrence of beef-poor intervals in the Huncal 664 

section. Knowing the importance of mechanical discontinuities during hydraulic-fracture 665 

stimulation, the astroclimatic memory recorded in the distribution of mineralized fracture 666 

could help predicting the density of discontinuities in source rocks using a suitable mix of 667 

mineralogical and geochemical proxies coupled to cyclostratigraphic signal analyses 668 

following Milankovitch theory. 669 

 670 
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Highlights 

 

• Times-series analyses on sedimentary proxies and diagenetic calcite veins (beef) 

• Milankovitch cycles controlled detrital input and preservation of organic matter 

• Imprint of the Milankovitch cycles on the reccurence and thickness of beef 

• Initial climate forcing induces differential diagenesis and control beef distribution in 

source rocks 
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