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ABSTRACT
Until recently, LP relaxations have only played a very limited role in
the design of approximation algorithms for the Steiner tree problem.
In particular, no (efficiently solvable) Steiner tree relaxation was
known to have an integrality gap bounded away from 2, before
Byrka et al. [3] showed an upper bound of≈ 1.55 of a hypergraphic
LP relaxation and presented a ln(4) + ε ≈ 1.39 approximation
based on this relaxation. Interestingly, even though their approach
is LP based, they do not compare the solution produced against the
LP value.

We take a fresh look at hypergraphic LP relaxations for the Steiner
tree problem—one that heavily exploits methods and results from
the theory of matroids and submodular functions—which leads to
stronger integrality gaps, faster algorithms, and a variety of structural
insights of independent interest. More precisely, along the lines
of the algorithm of Byrka et al. [3], we present a deterministic
ln(4) + ε approximation that compares against the LP value and
therefore proves a matching ln(4) upper bound on the integrality
gap of hypergraphic relaxations.

Similarly to [3], we iteratively fix one component and update
the LP solution. However, whereas in [3] the LP is solved at every
iteration after contracting a component, we show how feasibility
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can be maintained by a greedy procedure on a well-chosen matroid.
Apart from avoiding the expensive step of solving a hypergraphic
LP at each iteration, our algorithm can be analyzed using a simple
potential function. This potential function gives an easy means to
determine stronger approximation guarantees and integrality gaps
when considering restricted graph topologies. In particular, this
readily leads to a 73

60
≈ 1.217 upper bound on the integrality gap of

hypergraphic relaxations for quasi-bipartite graphs.
Additionally, for the case of quasi-bipartite graphs, we present a

simple algorithm to transform an optimal solution to the bidirected
cut relaxation to an optimal solution of the hypergraphic relaxation,
leading to a fast 73

60
approximation for quasi-bipartite graphs. Fur-

thermore, we show how the separation problem of the hypergraphic
relaxation can be solved by computing maximum flows, which pro-
vides a way to obtain a fast independence oracle for the matroids
that we use in our approach.

Categories and Subject Descriptors
F.2.2 [Computations on discrete structures]: Non-numerical Al-
gorithms and Problems

General Terms
Algorithms, Theory

Keywords
Matroids, approximation algorithms, linear programming relax-
ations, integrality gaps

1. INTRODUCTION
The Steiner tree problem is one of the most fundamental and

important problems in Computer Science and Operations Research.
Whereas a 2-approximation is easily obtained by computing a min-
imum spanning tree over the terminals, obtaining algorithms with
an approximation guarantee bounded away from 2 has proven to be
a non-trivial task. The problem is known to be inapproximable to
within 96

95
, unless P = NP [1, 8]. There has been a long sequence

of combinatorial approximation algorithms [9, 24, 12, 19, 21],
based on different greedy approaches, culminating in the famous

1+ ln(3)
2

+ ε < 1.55 approximation of Robins and Zelikovsky [21].
STOC’12, May 19–22, 2012, New York, New York, USA.
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No further progress was achieved until Byrka, Grandoni, Rothvoß
and Sanità [3] presented the first LP-based approach leading to a
ln(4)+ ε ≈ 1.39 approximation. Until this work, for no (efficiently
solvable) LP relaxation of the Steiner tree problem was it known
whether the integrality gap was bounded away from 2. Intriguingly,
even though their ln(4) + ε approximation algorithm is based on
a particular LP relaxation, its approximation guarantee is not with
respect to the LP solution and does not imply a ln(4) integrality
gap for the relaxation. In [3], the authors show a weaker ≈ 1.55
integrality gap using a technique not directly linked to their algo-
rithm. Chakrabarty et al. [7] provide a simpler alternative proof of
the same bound.

The linear relaxation used by Byrka et al., the directed component-
based relaxation, was introduced by Polzin and Vahdati-Daneshmand
[18], based in turn on an equivalent undirected component-based LP
introduced by Warme [23]. It is the undirected version that we will
use in this paper. Another notable relaxation is the partition-based
LP introduced by Könemann et al. [13]. In [6], Chakrabarty et
al. showed that this relaxation is equivalent to the others mentioned
above, and introduced the term “hypergraphic” for this family of
relaxations. They also proved that basic solutions are sparse, having
support size less than the number of terminals.

The limited understanding of LP relaxations of the Steiner tree
problem is arguably a major barrier in the design of stronger ap-
proximation algorithms. The goal of this work is to fill this gap
by providing a fresh view on the component-based LP relaxation—
one that heavily exploits methods and results from the theory of
matroids and submodular functions. More precisely, based on the
approach of Byrka et al. [3], we present a deterministic ln(4) + ε
algorithm that starts with a solution to the component-based LP
relaxation, iteratively contracts a component and updates the LP
solution. The algorithm of Byrka et al. solves the component-based
LP (through a very large extended formulation) in each iteration
after contracting, in order to again obtain a feasible solution. By
contrast, we show how the LP can be modified by a simple greedy
algorithm over a well-chosen matroid to achieve the same goal. This
leads to a considerably faster way to update the LP, but more im-
portantly, we show how the approximation quality of our approach
can be analyzed with respect to the initial LP solution. This im-
plies a bound of the integrality gap of the component-based LP
relaxation of ln(4). By comparison, the best known lower bound is
8/7 ≈ 1.142 (e.g., by the example of [13]). Furthermore, we show
how the separation problem of the component-based relaxation can
be reduced to computing maximum flows. Whereas this result is
likely to be of independent interest, it also provides a way to opti-
mize quickly over the matroids that we use in our approach, with a
single minimum-cost flow computation.

Additionally, we further investigate the special case of quasi-
bipartite graphs, which has played a central role in the design of
approximation algorithms for the Steiner tree problem, as well as
to find APX-hard problem classes. Rajagopalan and Vazirani [20]
showed that the integrality gap of the bidirected cut relaxation for
such graphs can be bounded by 3/2. This was later improved to 4/3
[5] and to 1.28 [7]. We obtain a 73

60
bound for the integrality gap,

again matching the approximation factor of [3]. Such a bound was
previously known only for the case when all edge costs are equal [7].
Chakrabarty et al. [6] showed that on quasi-bipartite graphs, the
bidirected cut and hypergraphic relaxations are actually equivalent.
However their proof is based on a duality argument, and they leave
as an open problem the question of converting a solution from the
bidirected cut relaxation to the hypergraphic relaxation efficiently
(more quickly than simply optimizing the hypergraphic LP). We
present a simple algorithm to perform this transformation; since the

bidirected cut relaxation can be solved much more efficiently via a
compact extended formulation, this gives a much faster method of
solving the hypergraphic LP in the quasi-bipartite case. Combining
this result with the suggested approximation algorithm, we obtain
a significantly faster 73

60
approximation than the one of Byrka et

al. [3], since we do not need to (repeatedly) optimize the component-
based relaxation by using either the ellipsoid method or a very large
extended formulation.

Organization. The remainder of the paper is organized as fol-
lows. Section 2.1 discusses the hypergraphic LP and some related
preliminaries. Sections 2.2 and 2.3 give a high level overview of
the analysis and the algorithm. We then take a step deeper into the
techniques used in the analysis in Section 3. Section 4 discusses
improved results for the special case of quasi-bipartite graphs, as
well as the constructive equivalence between the hypergraphic and
bidirected cut relaxations.

A number of key technical components can be found in the appen-
dices. Appendix A addresses the question of separation and shows
that the underlying matroid is a gammoid. A number of the proofs of
results in Section 2 can be found in Appendix B. Appendix C gives
the proof of a key technical tool involving a decomposition of inter-
secting submodular functions. Finally, Appendix D demonstrates
that solving the hypergraphic LP exactly is NP-hard.

2. DISCUSSION OF RESULTS AND TECH-
NIQUES

2.1 The component-based LP
Let G = (V,E) be an undirected graph with terminals R ⊆ V

and edge costs c : E → R+. A component C is simply a subgraph
of G with the property that it is a tree spanning V (C), all leaves of
C are terminals, and all internal vertices are non-terminals. Write
cost(C) :=

∑
e∈E(C) c(e) for the cost of a component C. We will

frequently need the terminal set of a component C ∈ K, and so
by abuse of notation, when we refer to C as a vertex set, we mean
the set V (C) ∩R of terminals in C. In particular, |C| refers to the
number of terminals in C.

Now let K be the set of all components of G; we assume that all
components contain at least two terminals, else they can be safely
removed. We use the notation (Z)+ := max{Z, 0}. Then the
component-based LP relaxation is as follows [23]:

min
∑
C∈K

xC cost(C)

∑
C∈K

xC(|S ∩ C| − 1)+ ≤ |S| − 1 ∀S ⊆ R,S 
= ∅
∑
C∈K

xC(|C| − 1) = |R| − 1

xC ≥ 0 ∀C ∈ K.
(LP)

Let us make clear that this is indeed a relaxation for Steiner tree:
consider any Steiner tree T and decompose it into a collection
C1, . . . , Cq of components. Then letting xCi := 1 for all i =
1, . . . , q (and 0 otherwise) defines a feasible solution to (LP). To
see this, observe that the left hand side

∑
C∈K xC(|S ∩ C| − 1)+

of the first constraint counts the number of “connections” that the
components induce for a subset S of terminals. Since T is cycle-free,
this number is bounded by |S| − 1. The second constraint simply
imposes that the total number of “connections” equals |R| − 1,
which is satisfied since T is a tree.
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Borchers and Du [2] showed that the optimal k-restricted Steiner
tree, meaning only components with at most k terminals can be
used, has cost at most 1 + 1/
log2 k� times the cost of an optimal
Steiner tree. Furthermore, when restricting the variables in (LP) to
components with at most k terminals, the resulting linear program
can be solved efficiently, e.g., by solving a polynomial-size extended
formulation [3]. It follows that for any fixed ε > 0, a (1 + ε)-
approximate solution to (LP) can be obtained efficiently. We also
point out in Appendix D that optimizing (LP) exactly is strongly
NP-hard (this does not seem to have been previously observed).

The framework of our algorithm is similar to Byrka et al. [4],
and in particular, it is iterative in nature. They begin by computing
a near-optimal fractional solution x to (LP). They then sample a
component C at random, proportional to its entry xC , and contract
this component. The solution x is no longer feasible to (LP) on this
new contracted instance, so they re-solve the LP and iterate this
procedure until all terminals are connected.

In their analysis, they show that a single random contraction
reduces the cost of the optimum Steiner tree by a certain factor
in each iteration. The crucial ingredient is a lower bound on the
expected cost of edges that could be removed from an optimum
solution after a contraction, while still obtaining a Steiner tree. To
obtain a bound on the integrality gap, we need a stronger result that
says even a fractional solution becomes significantly cheaper after
a random contraction. Even for a fixed set of terminals Q, it was
unclear how to modify a fractional solution in order to preserve
feasibility after contraction—a question that had a simple answer in
the integral case. Our first goal will be to obtain an understanding
of the structure of these modifications.

While it can be avoided, it significantly simplifies the discussion
to consider “blown up” versions of solutions to (LP). Consider any
x ∈ QK

+, and let N ∈ N be such that xC · N ∈ N for all C ∈ K.
The minimal blowup graph corresponding to x is the unweighted
multigraph X defined as follows. First take the disjoint union of
xC ·N disjoint copies of C for each component C; then identify, for
each v ∈ R, all the copies of v. The edge costs of X are inherited
from G in the obvious way. See Figure 1 for an example of an LP
solution and its associated minimal blowup graph. Observe then
that cost(X ) = N · cost(x). Note that X (along with N , but this
will remain fixed throughout) encodes all the information in x. In
particular, given X we can determine all of its components: these
are simply the maximal connected subgraphs that are trees whose
leaves are precisely the terminals spanned. Thus we can define Γ(X )
as the set of components of a blowup graph X . Each component
C ∈ Γ(X ) is a subgraph of X , but again, we will abuse notation
when the context is clear and sometimes use C to refer to just the
terminals of C. Thus, e.g., for some S ⊆ R, S ∩ C refers to the
terminals in C that are also in S.

We will need slightly more generality in our definition of a blowup
graph. For any t ∈ N, let Gt be the multigraph obtained by first
taking t disjoint copies of G, and then for each v ∈ R, identifying
all copies of v. For a solution y with corresponding minimal blowup
graphY , we call a multigraphY ′ a (not necessarily minimal) blowup
graph corresponding to y if (i) Y ′ ⊆ Gt for some t ∈ N, (ii) Y ′ ⊇
Y , and (iii) for any distinct terminals u, v ∈ R, there is no u-v-path
in Y ′ that is not already present in Y . Any edges in Y ′ that were
not in Y we call pendant edges. We will say that a blowup graph Y
is feasible if it corresponds to a feasible solution to (LP); otherwise
we call it infeasible. Note that pendant edges have no effect on
feasibility; they will always be removed in what we will later call a
“cleanup” step.

2.2 Edge removal after contraction
Let X be the blowup graph corresponding to some solution x. We

are interested in the situation after contracting some component of
G. In order to avoid some annoying technicalities, for now instead
of contracting Q we will think of increasing the value of xQ by
1. In other words, in terms of the blowup graph, we take N fresh
copies of component Q and add it to X . We denote the new blowup
graph obtained by X �Q. Formally, X �Q is obtained by taking
the disjoint union of X and N copies of Q, and then identifying all
copies of v for each v ∈ R.

It is clear that X � Q is not feasible. We are interested in de-
scribing the set of edges F ⊆ E(X ) that can be removed so that
(X �Q)− F is feasible.

This is the primary reason that it is simpler to work with the
blowup graph X rather than x; this modification operation is much
simpler than an equivalent operation defined on x. For example,
removing a single edge from X can have the effect of splitting up
some component C into subcomponents C1 and C2; the correspond-
ing effect on x is to reduce xC by 1/N and increase xC1 and xC2

by the same amount.
Unfortunately, the set of all possible edge removals is not so well

behaved. In order to expose the structure we need, we must consider
minimal removals. Let

BQ =

{
B ⊆ E(X )

∣∣∣∣ (X �Q)−B is feasible, and
B is minimal with this property

}
.

Figure 2 shows an example; after a set B ∈ BQ is removed, an edge
of the blowup graph becomes pendant, and so can also be removed
without affecting feasibility.

One of the most crucial elements of our analysis is the following:

THEOREM 2.1. For every component Q, BQ forms the set of
bases of a matroid MQ.

In particular, it follows that any minimal removal set has the same
number of edges; this number turns out to be N(|Q| − 1). We are
able to give a precise description of the matroid MQ by giving its
rank function; more details of this will be given in Section 3. We can
also show that the matroid is a gammoid (a special type of matroid
related to flows [22]); see Appendix A. As an aside, we note that
MQ depends only on the terminals of Q, and not its structure; we
could actually define a matroid MS for any subset S of terminals,
but this will not be important for our purposes.

We will now study which edge sets can be removed after the
random contraction of a component. Even though we will finally
present a deterministic algorithm, this analysis will be helpful in
guaranteeing the existence of removal sets with certain properties
by an averaging argument.

As before, let X be the blowup graph corresponding to a feasible
LP solution x. Upon contracting component Q, we may remove
some edges in order to again obtain a feasible solution. In particular,
by Theorem 2.1, we can remove any basis of MQ. For added
flexibility, we allow choosing a basis BQ ∈ BQ randomly, according
to any distribution we like. In this case, each edge e will be removed
with some probability qe. The probability vectors that are attainable
are simply the convex combinations of incidence vectors of the
bases; in other words, precisely the vectors in B(MQ), the base
polytope of MQ.

Now consider, as in [4], randomly contracting a single component,
with component Q ∈ Γ(X ) contracted with probability 1/|Γ(X )|.
Note that since each original component Q̃ ∈ K has NxQ̃ copies
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(a) fractional solution x

r

(b) blowup graph X

Figure 1: In (a): fractional solution x (components drawn in different gray scales and labelled with their capacity xC ). In (b):
blowup graph X for N = 2.

r

×2
(a) blowup graph X �Q

r pendant

×2
(b) blowup graphX�Q−B after removal

Figure 2: In (a): X � Q, edges in B ⊆ E(X ) in bold, copies of Q are dotted, terminals in Q are filled gray. In (b): feasible blowup
graph X �Q−B (which is not minimal due to the pendant edge that may also be removed).

in Γ(X ), this is the same as contracting a component in K with
probability proportional to xQ̃. Again, we allow ourselves to choose
an arbitrary distribution over BQ for removals on contracting Q, and
ask what probability vectors p describing edge removal probabilities
are attainable. But any such probability vector is given by some
convex combination 1

|Γ(X )|
∑

Q∈Γ(X ) q
Q, where qQ ∈ B(MQ). In

other words, the attainable probability vectors form precisely the
polytope Brem given by the Minkowski sum

Brem =
1

|Γ(X )|
∑

Q∈Γ(X )

B(MQ).

This implies that Brem is a polymatroid [14]; from our knowledge
of the rank functions of the MQ’s, we can also describe the rank
function of Brem, as will be described in detail in Section 3.

In the following, we use scaled cost to refer to costs reduced
by a factor of N , compensating for the blowup factor. The goal
is to show that the expected scaled cost of removed edges is large,
compared to the expected cost of the component that is contracted.
Perfection would be if we could always remove edges of total scaled
cost as large as the cost of the contracted component, but of course
this is not possible (as it would imply an integrality gap of 1). Thus
we lower our goals slightly. It is possible to show that there is a
point p ∈ Brem with pe ≥ N

2|Γ(X )| for all e ∈ E(X ). This gives an

expected decrease of cost(X )/(2|Γ(X )|) in the LP solution after

scaling down, and the expected cost of the contracted component
is cost(X )/|Γ(X )|; so this implies only an uninteresting bound of
2 on the integrality gap. Instead, we must choose the distribution
more carefully.

More precisely, we will choose a well-structured subset K ⊆
E(X ) and only consider removal probabilities p ∈ Brem whose
support is contained in K. The set K will be chosen to be a min-
imal subset of E(X ) whose removal from E(X ) disconnects all
terminals in the blowup graph. We call such a set a splitting set1.
Interestingly, the family of all splitting sets form the bases of a co-
graphic matroid, since K is a splitting set precisely when E(X )\K
is a spanning tree in the graph obtained from X by contracting to-
gether all its terminals. As we will see more formally in the proof
of Theorem 2.2, when choosing K to be a splitting set, the set
BK

Q = {B ∈ BQ | B ⊆ K} is nonempty for every Q, and so

form the bases of the matroid MK
Q obtained by restricting MQ to K.

This implies that the polytope BK
rem = {p ∈ Brem | supp(p) ⊆ K}

of removal probabilities we consider is nonempty, and thus forms
the base polytope of the polymatroid obtained by restricting the
polymatroid corresponding to Brem to K.

Once we have chosen some splitting set K, we will call edges
in K core edges, and all other edges cleanup edges. To see the
reason for this name, recall that the matroid MQ describes only

1The complements of splitting sets are sometimes called losses.
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W (e) = {a, b, c}
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c

Pu

Figure 3: Illustration of the definition of W (e). Depicted is
some component C with core edges K (solid) and cleanup edges
(dashed).

the minimal edge removals upon contracting Q. However, there
may be other removals that are possible; for B ∈ BQ, there may
be pendant edges in (X �Q)−B which can be removed without
having any effect on feasibility. Our choice of K ensures that for
any edge e ∈ E(X ) \ K, e can be deleted (“cleaned up”) once
enough edges of K ∩ E(C) have been removed, where C is the
component containing e. But just as importantly, we can prove

THEOREM 2.2. If K is any splitting set, then there is a distribu-
tion over BK

Q for each Q ∈ Γ(X ) such that if Q is chosen uniformly
at random from Γ(X ), and then B is chosen from BK

Q according to
the chosen distribution, then

P{e ∈ B} ≥ N/|Γ(X )| for each e ∈ K.

This is discussed further in Section 3.

2.3 The algorithm
For the accounting in our analysis, we will need to keep track of

precisely which edges in E(C)∩K must be removed before an edge
e ∈ E(C) \K can be deleted (cleaned up). Define W (e) ⊆ K, the
witness set of edge e, as the unique minimal set of edges in K such
that after removing W (e), e becomes a pendant edge and can be
cleaned up. The fact that there exists such a unique set is shown in
Lemma B.1 in the appendix. We also define W (e) = {e} if e ∈ K.
Figure 3 shows an example of a witness set.

We define a weight (distinct from the cost) on all core edges in
such a way that the total weight of core edges equals the total cost
of X , by charging the cost of a cleanup edge to the core edges in its
witness set. More precisely, let

w(e) = c(e) +
∑

f /∈K:e∈W (f)

c(f)

|W (f)| for all e ∈ K.

The following is an easy consequence of Theorem 2.2 and the fact
that

∑
e∈K w(e) = cost(X ):

LEMMA 2.3. Let K be any splitting set. There exists some
component Q such that cost(Q) ≤ w(BQ)/N , where BQ is a
maximum weight basis of MK

Q .

In the next section in (4) we give an explicit formula for the rank
function of MK

Q (for arbitrary Q and K) as the minimum of a sub-
modular function (hence, this provides an independence oracle for
MK

Q ). This explicit formula is crucial for the analysis of the inte-
grality gap. From a computational point of view, however, we can
provide faster ways to compute the rank and find a maximum weight
basis of MK

Q by giving an explicit description of MQ (and thus also

MK
Q ) as a gammoid. This is shown in Appendix A. This gammoid

structure obviates the need for submodular function minimization
and the greedy procedure to obtain a maximum weight basis. More
precisely, determining the rank of MK

Q reduces to a single maxi-
mum flow computation on an appropriate digraph, and finding a
maximum weight basis over MK

Q reduces to a minimum-cost flow
problem.

We are now ready to describe precisely our deterministic algo-
rithm, given in Algorithm 1. In the algorithm, at each stage we
choose a component Q and contract it (in the usual sense, yielding
an instance with a smaller vertex set). Thus at intermediate stages
of the algorithm, X will be a feasible blowup graph of some con-
traction of the original graph G. We also emphasize that the witness
sets W (e), and hence also the weights w(e), depend on the blowup
graph in the particular iteration.

Algorithm 1: A deterministic algorithm for Steiner tree demon-
strating a ln(4) integrality gap.

Input: Graph G with edge costs c and terminal set R, feasible
blowup graph X , and splitting set K.

Result: A Steiner tree T .

T ← ∅.
while T is not a Steiner tree do

Find a component Q ∈ Γ(X ) and maximum weight basis
B ∈ BK

Q with cost(Q) ≤ w(B)/N .
Cleanup: Let F = {e /∈ K |W (e) ⊆ B}.
Update:
T ← T ∪Q, X ← (X −B − F )/Q, K ← K \B.

end

We now define, for any blowup graph X and splitting set K, a
potential function ΦK(X ) by

ΦK(X ) :=
∑

e∈E(X )

c(e)H(|W (e)|),

where H(�) := 1 + 1/2 + · · ·+ 1/� is the harmonic function.

THEOREM 2.4. For any minimal splitting set K and feasible
blowup graph X , Algorithm 1 yields a solution of cost at most
ΦK(X )/N .

The proof of this theorem (given in Appendix B) essentially boils
down to showing that in a single step of the algorithm, the expected
cost of the contracted component is no larger than the decrease in
the potential function scaled down by 1/N . Let Xt and Kt be the
blowup graph and splitting set at iteration t of the algorithm, with
Bt the selected removal set. We are able to show that ΦKt(Xt)−
ΦKt+1(Xt+1) ≥ w(Bt), from which the theorem immediately
follows.

From this, we can use an averaging argument to show the ln(4)
integrality gap bound. Essentially, if K is chosen randomly from
the matroid of possible minimal splitting sets according to an appro-
priate distribution, it can be shown that

E{ΦK(X )} ≤ ln(4) · cost(X ).
It is also possible to minimize ΦK(X ) as a function of K, via a
dynamic program. The full proof can be found in the appendix:
altogether we obtain, recalling cost(X ) = N · cost(x),

THEOREM 2.5. For any solution x of (LP), and choosing K to
minimize ΦK(X ), Algorithm 1 returns a solution of cost at most
ln(4) · cost(x).
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We emphasize again that while we have described everything in
terms of the blowup graph, it is possible to implement Algorithm 1
directly in terms of the LP solution, yielding a polynomial time
algorithm. Details will be provided in the full version.

3. DEEPER INTO THE MATROID STRUC-
TURE

In this section, we discuss in more detail the heart of our ar-
guments: uncovering the matroid structure of edge removals, and
showing appropriate uniform removal probabilities after the random
contraction of a component.

In what follows, we will often need to refer to the terminal set of
a component C, so we will again abuse notation and write, e.g., |C|
for the number of terminals in C. Define hX : 2R \ {∅} → N by

hX (S) = N(|S| − 1)−
∑

C∈Γ(X )

(|S ∩ C| − 1)+. (1)

It is immediate from (LP) that X is feasible if and only if

hX (S) ≥ 0 ∀S ⊆ R,S 
= ∅ and hX (R) = 0. (2)

Indeed, hX (S) is, up to scaling, simply the slack (or if negative,
violation) of the corresponding constraint in (LP). Two important
properties of hX are the following:

LEMMA 3.1. For any blowup graph X ,

i) hX is intersecting submodular, i.e.,

hX (S1 ∪ S2) + hX (S1 ∩ S2) ≤ hX (S1) + hX (S2)

for any two sets S1, S2 ⊆ R with S1 ∩ S2 
= ∅; and

ii) for any F ⊆ E(X ) and ∅ 
= S ⊆ R,

hX (S) ≤ hX−F (S) ≤ hX (S) + |F |.
PROOF. i) This follows immediately from the fact that for any

C ⊆ R, the function S → (|S ∩ C| − 1)+ is intersecting super-
modular.

ii) The removal of any additional edge e ∈ E(X ) from X leads
to a split of some component C of X into subcomponents C1, C2

with C1 ∩ C2 = ∅, C1 ∪ C2 = C. Hence,

hX−e(S)− hX (S)

= (|S ∩ C| − 1)+ − (|S ∩ C1| − 1)+ − (|S ∩ C2| − 1)+

lies in {0, 1}, which leads to hX (S) ≤ hX−e(S) ≤ hX (S) + 1.
Applying this repeatedly yields the claim.

An interesting consequence, that essentially follows by intersecting
submodularity of hX and standard uncrossing techniques, is that
any basic feasible solution (xC)C∈K to (LP) has a support of size
bounded by |R| − 1. More precisely, one can show that any basic
feasible solution to (LP) can be defined by tight non-negativity
constraints (xC ≥ 0) together with a family of tight constraints of
type

∑
C∈K xC(|S ∩ C| − 1)+ ≤ |S| − 1 for a laminar family

of sets S ⊆ R with |S| ≥ 2. A bound of |R| − 1 on the support
of (xC)C∈K then readily follows (see [10] for an example of this
reasoning). For an equivalent version of (LP), this result was already
obtained through a rather involved technique by Chakrabarty et
al. [6].

For convenience, define

hF̄ (S) := hX−F (S) = N(|S| − 1)−
∑

C∈Γ(X−F )

(|S ∩C| − 1)+.

The following lemma describes feasibility of (X � Q) − F in
a convenient form, and also shows that we need only consider
constraints corresponding to subsets containing Q.

LEMMA 3.2. The blowup graph (X �Q)−F is feasible if and
only if hF̄ (R) = N(|Q| − 1) and hF̄ (S) ≥ N(|Q| − 1) for all
S ⊇ Q.

PROOF. Let X ′ = (X � Q) − F . Then X ′ is feasible iff
hX ′(S) ≥ 0 for all S ⊆ R, S 
= ∅, with equality for S = R.
But

hX ′(S) = hF̄ (S)−N(|S ∩Q| − 1)+, (3)

and so this can be equivalently stated as hF̄ (S) ≥ N(|S∩Q|−1)+

for all S 
= ∅, and hF̄ (R) = N(|Q| − 1).
All that needs to be proved then is that only the constraints for

S ⊇ Q need to be considered. So suppose S is a violated set:
hX ′(S) < 0. Then S ∩ Q 
= ∅, otherwise hX ′(S) = hF̄ (S) ≥
hX (S) ≥ 0 by feasibility of X . But for any such S,

N(|S|−1)−N(|S∩Q|−1)+ = N(|S∪Q|−1)−N(|Q|−1)+

and clearly∑
C∈Γ(X−F )

(|S ∩ C| − 1)+ ≤
∑

C∈Γ(X−F )

(|(S ∪Q) ∩ C| − 1)+.

Subtracting the last two lines, using (3) and the definition of hF̄ (·),
we obtain that hX ′(S ∪Q) ≤ hX ′(S). Since S was a violating set,
so is S ∪Q.

Define rQ : 2E(X ) → N by

rQ(F ) = min
S⊇Q

hF̄ (S). (4)

We will show:

PROPOSITION 3.3. The function rQ is the rank function of a
matroid of rank N(|Q| − 1).

Once we have this, it is straightforward to show that this matroid
precisely describes the minimal edge removals:

THEOREM 3.4. The set of bases of the matroid defined by rQ is
precisely BQ.

PROOF. Let B′
Q be the set of bases of the matroid defined by rQ,

and consider any B ∈ B′
Q. By the definition of rQ, we have that

hB̄(S) ≥ rQ(B) = N(|Q| − 1) for any S ⊇ Q.

Moreover, by Lemma 3.1 (ii),

hB̄(R) ≤ hX (R) + |B| = N(|Q| − 1);

the final equality follows since |B| = rQ(B) = N(|Q| − 1) and
hX (R) = 0 by feasibility of X . Thus by Lemma 3.2, (X �Q)−B
is feasible.

Conversely, consider any B ∈ BQ. By feasibility and Lemma 3.2
again, hB̄(S) ≥ N(|Q| − 1) for all S ⊇ Q, with equality for
S = R. Thus rQ(B) = N(|Q| − 1), and so there is some B′ ⊆ B
with B′ ∈ B′

Q. But then B′ is also a feasible removal set by the
above, and so by minimality B′ = B.

PROOF OF PROPOSITION 3.3. First, observe from (1) applied
to the empty blowup graph that

rQ(E(X )) = min
S⊇Q

N(|S| − 1) = N(|Q| − 1).

We must show that rQ is increasing, submodular, and satisfies
rQ(F ) ≤ |F | for all F ⊆ E(X ). The fact that rQ is increasing
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follows immediately from the definitions of rQ and hF̄ ; removing
a larger set can only increase the slack. Considering some fixed
S ⊇ Q, we have by Lemma 3.1 (ii) that hX−F (S) ≤ hX (S)+ |F |.
Thus rQ(F ) ≤ rQ(∅) + |F | = |F | since rQ(∅) = 0 by feasibility
of X .

Now we come to the main part of the proof, showing that rQ is
submodular. We must show that for any F1 ⊆ F2 ⊆ E(X ) and
e /∈ F2,

rQ(F1 + e)− rQ(F1) ≥ rQ(F2 + e)− rQ(F2). (5)

It is clearly sufficient to show this for F1 and F2 differing by a
single edge. Consider any S ⊇ Q and i ∈ {1, 2}. The difference

hFi + e(S)− hFi
(S)

=
∑

C∈Γ(X−Fi)

(|C ∩ S| − 1)+ −
∑

C∈Γ(X−(Fi+e))

(|C ∩ S| − 1)+

is one or zero, and it is one precisely if e splits up some component
C ∈ Γ(X − Fi) into two components C1, C2 that both intersect S.
If this is the case for some component in Γ(X − F2), then e will
also split up some component in Γ(X − F1) into two pieces both
intersecting S, since X −F2 is a subgraph of X −F1. Thus for any
S ⊇ Q,

hF2 + e(S)− hF2
(S) ≤ hF1 + e(S)− hF1

(S). (6)

It also follows that for any S, S′ ⊆ R with Q ⊆ S ⊆ S′,

hF1 + e(S)− hF1
(S) ≤ hF1 + e(S

′)− hF1
(S′). (7)

Let Si be the set of terminal subsets containing Q that minimize
hFi

(S), over all S ⊇ Q. Since hF1
is intersecting submodular

by Lemma 3.1, there is a unique maximal set S∗
1 ∈ S1, meaning

S∗
1 ⊇ S for all S ∈ S1. Similarly, there is a unique minimal set

S∗
2 ∈ S2; so S∗

2 ⊆ S for all S ∈ S2. We first show S∗
2 ⊆ S∗

1 .
Notice that for S ⊇ Q with S /∈ S1 we have hF2

(S) ≥ hF1
(S) ≥

hF1
(S∗

1 ) + 1, where the first inequality follows by Lemma 3.1 (ii).

Furthermore, hF2
(S∗

1 ) ≤ hF1
(S∗

1 ) + 1, again by Lemma 3.1 (ii).

Hence hF2
(S∗

1 ) ≤ hF2
(S) ∀S ⊇ Q,S /∈ S1, and thus S1 must

contain some minimizers of hF2
, i.e., S1 ∩ S2 
= ∅. Since S∗

2 is

the minimal set in S2 and S∗
1 is the maximal set in S1 we obtain

S∗
2 ⊆ S∗

1 .
We finally have

rQ(F2 + e)− rQ(F2)

= hF2 + e(S
∗
2 )− hF2

(S∗
2 )

≤ hF1 + e(S
∗
2 )− hF1

(S∗
2 ) by (6)

≤ hF1 + e(S
∗
1 )− hF1

(S∗
1 ) by (7), since S∗

2 ⊆ S∗
1

= rQ(F1 + e)− rQ(F1).

Proof of Theorem 2.2
We first show that for any component Q,

rQ(K) = N(|Q| − 1).

This in turn implies that BQ = {B ∈ BQ | B ⊆ K} is nonempty,
since the rank of MQ is N(|Q| − 1) by Proposition 3.3, and so
Brem 
= ∅. Notice that for S ⊆ R,S 
= ∅, we have hK(S) =
N(|S| − 1), since in X −K all components contain precisely one
terminal. Hence,

rQ(K) = min
S⊇Q

hK(S) = N(|Q| − 1).

As already discussed in Section 2, the polytope Brem is sim-
ply a weighted Minkowski sum of the base polytopes B(MQ) for
Q ∈ Γ(X ). It is well known that the Minkowski sum of matroid
polytopes is a polymatroid, and moreover, the rank function of the
sum is simply the sum of the rank functions of the summands [14].
Thus, Brem is the base polytope of a polymatroid with rank function

r =
1

|Γ(X )|
∑

Q∈Γ(X )

rQ. (8)

To show that the point p given by pe = N/|Γ(X )| for all e ∈ K
is in Brem, we need to show that r(F ) ≥ |F | ·N/|Γ(X )| for every
F ⊆ K. Expanding out (8) and the definition of rQ, and writing
SQ for the subset S ⊇ Q that attains the minimum in (4), we obtain

r(F ) =
1

|Γ(X )|
∑

Q∈Γ(X )

hF̄ (SQ).

We now observe that because K is a splitting set, hF̄ (R) = |F |. For
imagine removing the edges of F from X one by one; hX−F (R)−
hX (R) just counts the number of times where a component is split
by the deleted edge in this process. But by the nature of minimal
splitting sets, this must happen at every step—no pendant edges are
formed at any stage. Hence hF̄ (R) − hX (R) = |F |; moreover,
hX (R) = 0 by feasibility, so indeed hF̄ (R) = |F |. Thus to finish
the proof, it suffices to show

CLAIM 3.5.
∑

Q∈Γ(X ) hF̄ (SQ) ≥ N · hF̄ (R).

To prove Claim 3.5, we replace the function hF̄ on the left-hand side
of the inequality by a function f that lower bounds hF̄ and is well
structured. More precisely, f is chosen to be a conic combination of
a special type of intersecting submodular functions which we call
partition functions: for any partition P = {P1, . . . , Pn} of R, the
corresponding partition function fP is given by

fP(S) = (|{j ∈ [n] | Pj ∩ S 
= ∅}| − 1)+ ∀S ⊆ R.

The following theorem (whose proof can be found in Appendix C)
guarantees the existence of the function f that we need to prove
Claim 3.5.

THEOREM 3.6. Let h : 2U → R+ any nonnegative intersecting
submodular function with h({v}) = 0 for all v ∈ U . Then there is
a monotone intersecting submodular function f of the form

f =

k∑
i=1

λifPi ,

for some k ∈ N, where λi > 0 and Pi is a partition of U for each
1 ≤ i ≤ k, satisfying:

i) f(S) ≤ h(S) for all S ⊆ U , and
ii) f(U) = h(U).

Consider the function h+
F̄

defined by h+
F̄
(S) = max{hF̄ (S), 0}.

Then h+
F̄

differs from hF̄ only on the empty set, since hF̄ (S) ≥
0 for all S 
= ∅. Thus h+

F̄
is still intersecting submodular, and

also nonnegative. Furthermore, h+
F̄
({v}) = 0 for any v ∈ R by

definition of hF̄ . Let f =
∑k

i=1 λifPi be the function obtained by
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applying Theorem 3.6 to h+
F̄

. We then have

∑
Q∈Γ(X )

hF̄ (SQ) ≥
∑

Q∈Γ(X )

f(SQ)

≥
∑

Q∈Γ(X )

f(Q)

=
∑

Q∈Γ(X )

k∑
i=1

λifPi(Q)

=

k∑
i=1

λi

∑
Q∈Γ(X )

fPi(Q), (9)

where the first inequality holds since hF̄ (S) = h+
F̄
(S) ≥ f(S) for

all S 
= ∅, and the second inequality holds since f is monotone and
Q ⊆ SQ.

As observed by Chakrabarty et al. [6], any solution x to (LP)
satisfies the following partition constraints for any partition P of R:

∑
C∈K

xCfP(C) ≥ |P| − 1,

where |P| is the number of sets in partition P . In our blown-up
setting this translates into

∑
Q∈Γ(X )

fP(Q) ≥ N(|P| − 1).

Combining this observation with (9) and using |Pi| − 1 = fPi(R),
Claim 3.5 follows since

∑
Q∈Γ(X )

hF̄ (SQ) ≥
k∑

i=1

λi

∑
Q∈Γ(X )

fPi(Q) ≥
k∑

i=1

λiN(|Pi| − 1)

= N ·
k∑

i=1

λifPi(R) = N · f(R) = N · hF̄ (R),

where the last equality follows from property (ii) of Theorem 3.6.

4. QUASI-BIPARTITE GRAPHS
A Steiner tree instance is called quasi-bipartite if there are no

edges between Steiner vertices; in other words, all components are
either stars or single edges. The situation is much simplified in this
case, and we can obtain a better approximation factor. We prove the
following:

LEMMA 4.1. Consider a quasi-bipartite instance. Let K =
E(X ) \ Emin, where Emin consists of a cheapest edge from every
component. Then

ΦK(X ) ≤ 73
60
· cost(X ).

Together with Theorem 2.4, Lemma 4.1 implies a 73/60 < 1.217
bound on the integrality gap of (LP) for quasi-bipartite graphs. This
again matches the currently best approximation algorithm for this
problem [3].

PROOF OF LEMMA 4.1. For any component C, we have that all
edges e of C have |W (e)| = 1 except for the cheapest edge emin for

which |W (emin)| = |C| − 1. Therefore,∑
e∈E(C)

c(e)H(|W (e)|)

= c(emin)H(|C| − 1) +
∑

e∈E(C),e �=emin

c(e)

≤
∑

e∈E(C)

c(e)
|C| − 1 +H(|C| − 1)

|C|

≤ 73

60

∑
e∈E(C)

c(e),

since maxk≥2,k∈N

k−1+H(k−1)
k

= 73
60

(which is attained for k =
5). Summing over all components gives the desired inequality.

One of the major drawbacks of relying on (LP), or any of the
hypergraphic LPs, is that solving them is computational intensive; in

general, to obtain a 1+ε approximation, nothing better than n2Ω(1/ε)

time is known. This can be improved somewhat to nΩ(1/ε) in quasi-
bipartite graphs, but this is still very slow. We show how to sidestep
this issue and obtain a reasonable running time for quasi-bipartite
graphs by instead solving the much more tractable bidirected cut
relaxation. Combined with the fact that we do not need to re-solve
the LP in each iteration, we obtain a markedly faster algorithm than
the one of Byrka et al. [3].

More precisely, we show how a solution to the bidirected cut
relaxation can be transformed into a solution to (LP) with the same
cost, via a natural greedy procedure for quasi-bipartite instances.
Previously, [6] showed that the bidirected cut relaxation always has
the same objective value as the hypergraphic relaxations, and this
was done by lifting an optimum dual solution for the partition-based
relaxation (which is equivalent to (LP) even in general graphs [6])
to a dual solution of (BCR(r)). However, the authors of [6] posed as
an open question: for a given optimum bidirected cut solution, can a
corresponding primal solution to (LP) be directly extracted without
solving (LP)? We answer this question affirmatively.

Let G = (V,E) be a quasi-bipartite graph, and let �E be the

bidirection of E, i.e., for any {u, v} ∈ E, �E contains arcs (u, v)
and (v, u). The bidirected cut relaxation with root terminal r ∈ R
is

min
∑
e∈�E

cexe

x(δ+(S)) ≥ 1 ∀S ⊆ V \{r}, S ∩R 
= ∅
xe ≥ 0 ∀e ∈ �E

(BCR(r))

In words: we need to reserve enough capacity in order to support
a unit flow from every terminal to the current root r.

To avoid an unnecessary case analysis, we split edges between
terminals by inserting a dummy Steiner vertex (we split the edge
cost arbitrarily among the two parts). Let x be an optimum solution
to (BCR(r)); then the natural decomposition is as follows. For a star
with center u ∈ V \R, take an arc (u, s) with positive outgoing flow
and all arcs H = {(t, u) | x(t, u) > 0; t 
= s} carrying incoming
flow. Let ε be the minimum capacity on any of these arcs. Then
transfer this capacity into a component {s} ∪ {t | (t, u) ∈ H}.
Iterate this process until all capacity has been transferred. The main
result of this section is:

THEOREM 4.2. Let x be an optimum solution for (BCR(r)).
Then the natural decomposition yields a feasible optimum solution
for (LP) with the same objective value.

1168



Imagine that we want to “relocate” the root from r to another
terminal r′. We can do this by considering a unit flow from r′ to r,
and reversing all capacity corresponding to this flow. This provides a

feasible solution for BCR(r′) that we term x(r′), which again has the
same cost (see [11] for a much more complicated proof). Note that
for any {u, v} ∈ E, the sum x(r)(u, v)+x(r)(v, u) is independent
of r, and we denote this sum by x({u, v}). For a Steiner vertex
u ∈ V \R, let N(u) := {v | {u, v} ∈ E, x({u, v}) > 0} be
the set of neighbours in the star with center u. It suffices to show
Theorem 4.2 for basic solutions, since the decomposition of a convex
combination of capacity vectors equals the convex combination of
natural decompositions. By standard arguments, we may assume
that the edge costs are distinct for all edges in the same star.

LEMMA 4.3. In a star with center u and r ∈ N(u) one has
x(r)(r, u) = 0 and x(r)(u, s) = 0 for each s ∈ N(u) with
c(u, s) > c(u, r).

PROOF. The flow on arc (r, u) can be removed and the flow on
(u, s) arc can be redirected to (u, r). Both operations would leave
the solution feasible and decrease the cost, contradicting optimal-
ity.

See Figure 4 for an illustration of the claim.

r

s : csu > cur s : csu < cur

u

Figure 4: Arcs in the optimum solution x(r) that may carry
positive flow.

Observe that if we choose r = argmin{c(u, r) | r ∈ N(u)},
then x(r)(u, s) = 0 for all s ∈ N(u) \ {r}. Next, we consider
one iteration of the natural decomposition for a star with center u,
for this choice of the root. For this purpose, insert an extra Steiner
vertex ū into the graph, which has an edge {ū, s} for s ∈ N(u).
For e = (u, s), we abbreviate ē = (ū, s) (see Figure 5). We define

c(ē) := c(e) and x(r)(e) = 0 for all e ∈ δ(ū). Note that x(r) is
still an optimum solution.

LEMMA 4.4. Let r := argmin{c(u, r) | r ∈ N(u)}, H :=

{(u, r)} ∪ {(s, u) | s ∈ N(u)\{r}} and ε := min{x(r)(e) |
e ∈ H} > 0. Starting from x(r), transfer capacity of ε from all
arcs e ∈ H to ē and term the new capacity reservation x̄(r). Then
the new capacity vector x̄(r) is a feasible optimum solution for
(BCR(r)).

PROOF. Our observation in the previous paragraph together with
our choice of the root imply that the arcs in H are the only ones
incident to u carrying positive flow. Therefore ε as defined is strictly
positive.

We first show that the claim holds for some ε > 0 which is small
enough. As the cost of the solution does not change, we only need to
prove feasibility of x̄(r). Consider any cut S ⊆ V \{r} and assume

for the sake of a contradiction that x̄(r)(δ+(S)) < 1. For ε > 0
small enough, this may only happen if S was a tight cut before, i.e.
x(r)(δ+(S)) = 1. Furthermore, any such critical cut must contain
at least two arcs of the form (s, u), i.e., |N(u)∩ S| ≥ 2; otherwise,
the cut would still be satisfied after our transfer of capacity. Pick
r′ := argmin{c(u, r′) | r′ ∈ N(u) ∩ S}. Since x(r)(δ+(S)) = 1,
the unit flow from r′ to r needs all capacities on (s, u) arcs for
s ∈ N(u) ∩ S. Consequently, when relocating the root to r′, the
flow on all these arcs must be turned around completely. In particular

x(r′)(u, s) > 0 for all s ∈ N(u) ∩ S, contradicting Lemma 4.3 by
our choice of r′ and |N(u) ∩ S| ≥ 2. We conclude that we can

choose some ε > 0 s.t. x̄(r) is feasible. But the argument above
shows that no cut S can become tight, thus the only limitation on ε
is the arc capacity. The claim then follows.

We apply Lemma 4.4 iteratively to all stars (in this process we keep
relocating the root), adding copies of Steiner vertices as required,
until we have a solution x∗ (with root r∗ ∈ R chosen arbitrarily)
where (i) every Steiner vertex has flow on at most one outgoing arc,
and (ii) the flow on all arcs of a star carrying a nonzero amount
of flow is the same. Then x∗ induces a solution to the directed
component-based relaxation:

min
∑

C∈K,s∈C

cost(C) · yC,s

∑
C∈K,s∈C:C∩S �=∅,s/∈S

yC,s ≥ 1 ∀∅ � S ⊆ R\{r∗}

yC,s ≥ 0 ∀C ∈ K ∀s ∈ C.

The solution y∗ corresponding to x∗ is obtained by setting, for each
flow-carrying star with terminal set C and outgoing flow on arc
(u, s), y∗

C,s = x∗(u, s) (the common flow value in the star). All
other components of y∗ are zero. It is easily checked that y∗ is
feasible, and has the same cost as x∗ (and hence x). Then project-
ing to the undirected formulation, the vector (

∑
s∈C yC,s)C∈K is

feasible for (LP) (see [18]), and moreover corresponds precisely to
the natural decomposition described earlier.
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APPENDIX
A. SEPARATION AND GAMMOID STRUC-

TURE
In this section, we investigate the separation problem for (LP).

Although it is not necessary, for convenience we will work in the
blown up formulation; thus, for a given X , our goal is to determine
whether (2) is satisfied (see Section 3 for details of this and the
definition of hX ). For any Q ⊆ R, Q 
= ∅, we will find the
most violated set over all S ⊇ Q. Given this, we can answer the
separation question by checking that minS⊇{v} hX (S) is zero for
each choice of v (note that hX (∅) = −N , and so we must exclude
this trivial set from consideration). For each choice of v, one max-
flow calculation will be required.

We note that since hX is an intersecting submodular function,
minS⊇Q hX (S) can also be computed using submodular function
minimization as a black box [22]. However, the combinatorial
algorithm we demonstrate here gives some additional insights (as
well as being more efficient).

The construction is inspired by one for the forest polytope [17,
16] (see also [22, §51.4]). While what follows is not precisely a
generalization (in the case where all components have size 2, the re-
sulting construction is slightly different), it is similar in spirit. In the
directed component-based relaxation, separation via an equivalent
flow-based formulation is completely straightforward. However this
does not imply such a formulation for the undirected version.

Let X be the blowup graph of some solution x. First, let

yv = |{C ∈ Γ(X ) : v ∈ C}| −N for v ∈ R.

If yv is negative for any v, it is easily seen that X is not feasible (it
corresponds to x(δ(v)) < 1). So from now on, we assume yv ≥ 0
for all v ∈ R. Construct a directed multigraph D = (W,A) (we
will write DX if we wish to be explicit on the choice of X ) as
follows. Begin with the multigraph X , and for each component
C ∈ Γ(X ), pick an arbitrary vertex rC as the root. Adjoin a source
vertex s and sink vertex t. Now orient all edges of E(C) away
from rC for each component, and adjoin the arcs srC for each
C ∈ Γ(X ), and vt for each v ∈ R. We assign capacities z to the
arcs; z(vt) = yv for all v ∈ R, and z(a) = 1 for all other arcs.

THEOREM A.1. For any nonempty Q ⊆ R, the value of the
maximum s-(Q ∪ {t})-flow in D is equal to

y(R) +N + min
S⊇Q

hX (S).

PROOF. Use �E(C) to denote the arcs in D corresponding to

E(C) in X , and let A(C) = �E(C) ∪ {srC}. For any S ⊆ R, let
ν(S) ⊆W be defined by

ν(S) = S ∪ {t} ∪
⋃

C∈Γ(X):

C∩S �=∅

(V (C) \R).

CLAIM A.2. For any nonempty S ⊆ R,

z(δ−(ν(S))) = hX (S) + y(R) +N.

Moreover, for any U ⊂W with s /∈ U , t ∈ U and U ∩R = S, we
have z(δ−(U)) ≥ z(δ−(ν(S))).

PROOF. Consider some component C ∈ Γ(X ). If S ∩ C = ∅,
then clearly δ−(ν(S))∩A(C) = ∅. So suppose S∩C 
= ∅. If rC ∈
ν(S), then clearly δ−(ν(S)) ∩ �E(C) = ∅, and srC ∈ δ−(ν(S)).
On the other hand, if rC /∈ ν(S) (implying in particular that rC is

a terminal), then srC /∈ δ−(ν(S)) and |δ−(ν(S)) ∩ �E(C)| = 1,
since all terminals are leaves of the components they belong to. In
either case, z(δ−(ν(S)) ∩A(C)) = 1.

For any v ∈ R, vt ∈ δ−(ν(S)) if and only if v /∈ S. Putting this
all together,

z(δ−(ν(S))) = |{C ∈ Γ(X ) : C ∩ S 
= ∅}|+
∑
v/∈S

yv.

Now taking (1) and adding and subtracting y(S), we have

hX (S) = N(|S| − 1)−
∑

C∈Γ(X )

(|C ∩ S| − 1)+

+

⎛
⎝ ∑

C∈Γ(X )

|C ∩ S| − N |S|
⎞
⎠− y(S)

= |{C ∈ Γ(X ) : C ∩ S 
= ∅}| −N − y(S)

= z(δ−(ν(S))−N − y(R).

Consider any U with t ∈ U , s /∈ U and U ∩ R = S. We again
clearly have vt ∈ δ−(U) for all v ∈ R \ S, and again δ−(U) ∩
A(C) 
= ∅ if S ∩ C 
= ∅. So z(δ−(U)) ≥ z(δ−(ν(S))).

Now let U∗ be any minimum s-(Q ∪ {t})-cut, with t ∈ U∗ and
s /∈ U∗. By the claim, z(δ−(ν(S∗)) ≤ z(δ−(U∗)); since U∗ is a
minimum cut, we must have equality. Then again by the claim,

z(δ−(ν(S∗))) = hX (S∗) + y(R) +N.

The result now follows by the max-flow min-cut theorem.

We now show how this leads to a description of the matroid MQ

as a gammoid. Recall the definition of a gammoid: a directed graph
H is given, along with two subsets X,Y ⊆ V (H). The groundset
of the gammoid is X , and a set I ⊆ X is independent if there are
vertex-disjoint paths from I to some subset of Y . We say in this case
that this defines the gammoid from X to Y in H . It is convenient to
observe that by transforming the digraph H appropriately, we can
replace vertex-disjoint in the above definition with arc-disjoint, and
still characterize gammoids.

We need to slightly tweak the digraph D defined above. For each
f ∈ E(X ), there is a corresponding arc a in D. Split the arc by
adding an additional vertex vf , producing a “front” arc af

f with tail

vf and a “back” arc ab
f with head vf . We may also remove the

vertex s and all its adjacent arcs. Call the resulting modified digraph
D′.

Define the sets

X = {vf | f ∈ E(X )}, X ′ =
⋃

C∈Γ(X )

rC and Y = Q ∪ {t}.

Let G′
Q be the gammoid defined on D from X ′ ∪X to Y , requiring

arc-disjointness rather than vertex-disjointness. Then define GQ =
G′

Q/X
′; this contraction is also a gammoid. By the one-to-one

correspondence between X and E(X ), we may consider this is a
matroid over E(X ).

THEOREM A.3. For any component Q, GQ = MQ.

PROOF. The rank of a set U ⊆ X in GQ is ρ(U) = ρ′(U ∪
X ′)− ρ′(X ′), where ρ′ is the rank function of G′

Q. Notice that the
maximum number of arc-disjoint paths from X ′ to Y is precisely
the max-flow from s to Q ∪ {t} in D. Thus by Theorem A.1,

ρ′(X ′) = y(R) +N + min
S⊇Q

hX (S)

= y(R) +N, (10)
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since by feasibility of X , hX (R) = 0.
Let AU := {ab

f | vf ∈ U}, and let D′
U be the subgraph of

D′ obtained by removing AU . Now ρ′(U ∪X ′) is the maximum
number of arc-disjoint paths from U ∪X ′ to Y in D′; we claim it
is also the number of such paths in D′

U . For take P1, . . . , P� to be
any maximum collection of arc-disjoint paths from U ∪X ′ to Y in
D′. For some vf ∈ U , if some path Pi uses arc ab

f , then certainly
no other path emanates from vf , and so we can simply remove
the initial segment of Pi before vf to obtain another maximum
collection of disjoint paths that do not use ab

f . Repeating this process,
we obtain paths P ′

1, . . . , P
′
� that do not use any arcs in AU , and so

give a feasible collection of arc-disjoint paths in D′
U .

But by contracting all of U to form a source, D′
U corresponds

exactly to DX−U , the digraph for the separation construction corre-
sponding to X −U . So the maximum s− (Q∪{t})-flow in DX−U

has value ρ′(U ∪X ′). Applying Theorem A.1,

ρ′(U ∪X ′) = y(R) +N + min
S⊇Q

hX−U (S)

= ρ′(X ′) + rQ(U),

by (10) as well as the definition of rQ. Thus ρ(U) = rQ(U), and
so GQ = MQ.

B. PROOFS FOR SECTION 2.3
Let us fix a component C ∈ Γ(X ) and a splitting set K. By

the definition of K (as the complement of a spanning tree in the
graph C̃ obtained by contracting terminals), every Steiner vertex
u ∈ V (C)\C has a unique path Pu ⊆ E(C)\K of cleanup edges
to a terminal that we term ru ∈ C (see again Figure 3).

LEMMA B.1. For any splitting set K ⊆ E(X ), component
C ∈ Γ(X ) and edge e ∈ E(C) \K, let

W (e) = {uv ∈ K ∩ E(C) | e ∈ Pu}.
Then W (e) is the unique minimal subset of E(C) ∩K whose re-
moval makes e a pendant edge.

PROOF. Let W̄ ⊆ E(C)∩K be any subset of splitting edges. If
uv ∈W (e) \ W̄ then e remains on a path, namely Pu ∪uv∪Pv ⊆
E(C) \ W̄ between the terminals, implying that e is not pendant.
Thus, any subset W̄ which makes e pendant must contain W (e).

On the other hand, we claim that e is pendant in E(C) \W (e).
To see this, let e = uv with e ∈ Pu. For e not to be pendant,
there would need to be a path P ⊆ E(C) \ (W (e) ∪ {e}) from
u to a terminal. But the first edge in K on P must be in W (e),
contradicting the fact that P ∩W (e) = ∅.

THEOREM 2.4 1. For any splitting set K and feasible blowup
graph X , Algorithm 1 yields a solution of cost at most ΦK(X )/N .

PROOF. We prove the theorem by showing that the decrease in
the potential at any iteration is lower bounded by the weight of the
edges we remove. More formally, consider a given iteration t with
current blowup graphXt, splitting set Kt, and weights wt. let Qt be
the component to contract and Bt ∈ BKt

Q the edges to be removed
from Xt in this iteration. At the end of iteration t a new blowup
graph Xt+1 is obtained with splitting set Kt+1 = Kt \Bt. We will
show

ΦKt(Xt)− ΦKt+1(Xt+1) ≥ wt(Bt). (11)

This in turn implies the theorem since the potential function at any
iteration, and in particular at the end of the algorithm, is nonnega-
tive. Therefore, the total weight of all core edges being removed

throughout the algorithm is upper bounded by the potential value of
the initial blowup graph, i.e.,

∑
t wt(Bt) ≤ ΦK(X ). Furthermore,

since at every iteration, Qt and Bt are chosen such that cost(Qt) ≤
wt(Bt)/N , we obtain that the cost of all contracted components—
which is the cost of the Steiner tree our algorithm returns—can be
upper bounded by

∑
t cost(Qt) ≤ 1

N

∑
t wt(Bt) ≤ ΦK(X )/N ,

as desired. Hence, it remains to prove (11).
For any edge e ∈ Xt, we denote by Wt(e) its witness set at the

beginning of iteration t. For simplicity, we define Wt+1 on all of
E(Xt), defining Wt+1(e) = ∅ for e ∈ E(Xt) \ E(Xt+1). By
definition of the witness sets, we have

Wt+1(e) = Wt(e) \Bt for any e ∈ E(Xt). (12)

Expanding the left-hand side of (11), we obtain

ΦKt(Xt)− ΦKt+1(Xt+1)

=
∑

e∈E(Xt)

c(e)
(
H(|Wt(e)|)−H(|Wt+1(e)|)

)

=
∑

e∈E(Xt)

c(e)

|Wt(e)|∑
k=|Wt+1(e)|+1

1

k

≥
∑

e∈E(Xt)

c(e) · |Wt(e)| − |Wt+1(e)|
|Wt(e)|

=
∑

e∈E(Xt)

c(e) · |Wt(e) ∩Bt|
|Wt(e)| by (12). (13)

Furthermore, by expanding the right-hand side of (11) using the
definition of the weights wt, we obtain

wt(Bt) =
∑
f∈Bt

∑
e∈E(Xt)
e∈Wt(f)

c(e)

|Wt(e)|

=
∑

e∈E(Xt)

∑
f∈Bt∩Wt(e)

c(e)

|Wt(e)|

=
∑

e∈E(Xt)

c(e)
|Wt(e) ∩Bt|
|Wt(e)| . (14)

Inequality (11) finally follows by combining (13) with (14).

In the following, we show that K can always be chosen s.t.
ΦK(X ) ≤ ln(4) · cost(X ), following the proof of [4]. For the
sake of a simpler exposition, we replace every Steiner vertex in X
of degree higher than 3, with a binary tree consisting of cost zero
edges in order to obtain vertices that have degree exactly 3. Suppose
we find a suitable pair (K,F ) of splitting and cleanup edges in this
auxiliary graph. Then every Steiner vertex u in the original graph
has potentially several paths P1, . . . , Pq ⊆ F of cleanup edges to
terminals. We keep the one path minimizing c(Pi) and discard the
first edge of all other paths. This does not increase ΦK(X ). Apply-
ing this iteratively, we end up with a feasible pair of cleanup edges
and splitting edges.

From now on, we assume that every component C ∈ Γ(X ) is
a binary tree. We pick an arbitrary edge eC ∈ E(C) as root edge.
From any interior vertex u ∈ V (C) \ C, there are two outgoing
edges (these are the edges that do not lie on the path from u to the
root edge). We randomly pick one of these edges as cleanup edge
and the other one as splitting edge. In other words, every interior
vertex u has a unique path of cleanup edges to some terminal and
hence, K is a legal splitting set. Moreover, for every non-root edge
e one has P{e ∈ K} = 1

2
.
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LEMMA B.2. If E(X ) is chosen randomly according to the
above distribution,

E{ΦK(X )} ≤ ln(4) · cost(X ).
PROOF. Fix a component C and an edge e ∈ E(C). It suffices

to show that E{H(|W (e)|)} ≤ ln(4). The root edge is always a
splitting edge, thus |W (eC)| = 1. So, let e be a non-root edge
and let v0, v1, . . . , vk+1 be the path from e to the root edge, i.e.
v0v1 = e and vkvk+1 = eC . Let

X := max{i | v0v1, v1v2, . . . , vi−1vi ∈ E(C) \K}
be the number of consecutive cleanup edges on this path, starting
from e (and X = 0 if already v0v1 ∈ K). Then P{X = i} =
( 1
2
)i+1 for i < k and P{X = k} = ( 1

2
)k. Furthermore |W (e)| =

X + 1 if X < k and |W (e)| = k otherwise. We calculate

E{H(|W (e)|)} ≤
k−1∑
i=0

P{X = i} ·H(i+ 1) + P{X = k} ·H(k)

≤
∞∑
i=0

H(i+ 1) ·
(
1

2

)i+1

= ln(4).

The above argument can be derandomized by the method of
conditional expectations, and this leads to a proof of Theorem 2.5.
Another option is to observe that the best choice of K can be found
in polynomial time, via a dynamic program as is indicated below.
Combined with the above lemma, this implies Theorem 2.5.

LEMMA B.3. A splitting set K minimizing ΦK(X ) can be found
in polynomial time.

PROOF. Since the potential function can be decomposed into
terms corresponding to each component, and a splitting set K con-
sists of the union of splitting sets in each component, it suffices
to consider each component separately. Hence, let C be any fixed
component with vertices V (C) and edges E(C); our goal is to find
a splitting set K for C that minimizes

∑
e∈E(C) c(e)H(|W (e)|).

As usual when applying dynamic programming to problems on
trees, we start by computing tables (to be specified soon) for subtrees
consisting of a single terminal, and successively combine those
tables until a table for the full tree is obtained, revealing the optimal
splitting set. To specify the order in which we create tables for
larger subtrees from smaller ones, we direct the edge of the tree C
away from an arbitrarily chosen vertex in V (C). We consider the
following type of subtrees that we call partial trees. For any vertex
r ∈ V (C) and subset U ⊆ δ+(r) of arcs leaving r, the partial tree
TU with root r is the induced subgraph of C consisting of r and all
vertices that can be reached from r with paths starting with one of
the arcs in U . To simplify notation we also use TU to refer to the
edge set of the partial tree. Furthermore, let TU = E(C) \ TU , and
let RTU ⊆ R denote the terminals contained in the partial tree TU .

To better understand what information should be stored for a
partial tree T , we first briefly discuss how the choice of splitting
set K within T impacts the witness sets in T , and vice versa. We
will refer to the choice of core and cleanup edges (i.e., the choice of
K) within some subset of edges as a configuration for that subset.
We distinguish two ways that the root r of T can be connected to a
terminal through cleanup edges: case (A) through a path within the
partial tree T , and case (B) through a path outside of T . Correspond-
ingly, we call a configuration for T a type (A) configuration if case
(A) holds for the root of T , and a type (B) configuration otherwise.

Notice that in a type (A) configuration, every vertex within T is
connected to a terminal in RT by cleanup edges. For a partial tree
T we will store two tables, one corresponding to case (A) and one
to case (B).

Consider case (A) and let P be the path of cleanup edges connect-
ing a terminal in RT to r. Notice that in this case W (e) ⊆ T ∀e ∈
T . Hence, the configuration for T does not have any impact on the
contribution of the edges of T to the function

∑
e∈E(C) c(e)H(|W (e)|).

However, the witness sets of the edges in P depend on the configu-
ration for T , namely every core edge that can be reached within T
from r by following cleanup edges is part of the witness set of any
e ∈ P . Hence, the only information about the configuration for T
that matters in finding an optimal configuration within T is the num-
ber α of core edges in T that can be reached from r through cleanup
edges. Thus for case (A) we want to store a table for T which con-
tains, for each value of α ∈ {0, . . . , |T |}, a corresponding type (A)
configuration that minimizes

∑
e∈T ceH(|W (e)|). Here, |W (e)|

can be computed without knowing the precise configuration in T
(apart from α) since

|W (e)| =
{
|W (e) ∩ T | if e ∈ T \ P,
|W (e) ∩ T |+ α if e ∈ P.

Now consider case (B) and let P be the path in T connecting a
terminal to r. In this case the situation is reversed and W (e) ⊆ T
for any e ∈ T . Hence, the configuration for T does not have
any impact on the contribution of the edges of T to the function∑

e∈E(C) c(e)H(|W (e)|). However this time, the witness sets of
edges on P depends on the configuration for T , namely every core
edges that can be reached within T from r by following cleanup
edges is part of the witness set of any e ∈ P . Hence, the only
information that has to be stored for T in case (B), in order to
describe how the configuration within T impacts the configura-
tion outside of T , is the number β of core edges in T that can
be reached from r through cleanup edges. Hence, for case (B)
we want to store a table for T which contains, for each value of
β ∈ {0, . . . , |T |}, a corresponding type (B) configuration that mini-
mizes

∑
e∈T c(e)H(|W (e)|).

Clearly, if we can compute the (A) table for the full component
C, then we are done, since the globally best configuration is the one
minimizing the potential function over all values of α. Computing
type (A) and (B) tables for partial trees corresponding to single
terminals is trivial: table (A) contains one entry corresponding
to α = 0 of value zero, and table (B) is empty. There are two
constellation we exploit to compute tables for larger partial trees
based on the tables of smaller ones.

The first constellation is the following. Assume that we have ta-
bles (A) and (B) for two partial trees TU1 and TU2 with U1∩U2 = ∅,
and both having root r. Then we can compute the two tables for
TU1∪U2 from the tables of TU1 and TU2 . This can be done by con-
sidering all legal combinations (meaning pairs of configurations that
can be completed to a splitting set) of one table entry corresponding
to TU1 and one corresponding to TU2 , keeping the best ones. Since
the size of each table is polynomially bounded in the input, this
can be done efficiently. We skip the somewhat tedious details for
combining those tables which are based on standard arguments.

In the second constellation, we consider a vertex r and one of
its out-neighbors v, i.e., there is an arc directed from r to v, such
that both tables for Tδ+(v) have already been computed. We can
then compute the two tables for T{rv} by considering all legal
combinations of an entry of one of the tables of Tδ+(v) and the two
possibilities of rv being a core edge or a cleanup edge.

It is easy to observe that starting from the terminals and leveraging
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the above two update rules, one can construct both tables for the full
component C efficiently.

For the following Lemma, we assume that the graph G is quasi-
bipartite.

LEMMA 4.1 1. Let K = E(X ) \ Emin, where Emin consists of
a cheapest edge from every component. Then

ΦK(X ) ≤ 73
60
· cost(X ).

PROOF. Consider a component C, which now is a star with edges
e1, . . . , ek. Assume ek minimizes the cost, then the splitting edges
in C are K ∩ C = {e1, . . . , ek−1}. First of all, K is obviously a
legal splitting set. Secondly |W (ei)| = 1 for i ∈ {1, . . . , k − 1}
and |W (ek)| = k − 1. Thus

k∑
i=1

c(e)·H(|W (ei)|) ≤ (k−1+H(k−1))·cost(C)

k
≤ 73

60
·cost(C),

using that 1+ H(k−1)−1
k

is maximized for k = 5. The claim follows
by summing over all components C ∈ Γ(X ).

C. A LOWER-BOUND PROPERTY OF
NONNEGATIVE INTERSECTING
SUBMODULAR FUNCTIONS

The main goal of this section is to prove Theorem 3.6. Before pre-
senting the core part of the proof we discuss some basic properties of
partition functions, and make some general observations concerning
the statement of Theorem 3.6 which are useful to understanding its
proof.

Let U be a finite set. We recall that F ⊆ 2U is called a lattice
family if it is closed under unions and intersections. A functionF →
R is submodular on F if f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)
for all A,B ∈ F ; supermodular on F , intersecting supermodular
on F etc., are defined similarly in the obvious way.

Any partition P = {P1, . . . , Pn} of U induces naturally a lattice
family FP ⊆ 2U which consists of all possible unions of sets in
P . Consider the coverage function α(S) = |{j ∈ [n] | Pj ∩
S 
= ∅}|, which is clearly submodular. Notice that we can write
fP(S) = (α(S) − 1)+, and in particular fP(S) = α(S) − 1 for
all S 
= ∅. Thus fP is intersecting submodular: for any A,B ⊆ U
with A ∩B 
= ∅,

fP(A) + fP(B) = (α(A)− 1) + (α(B)− 1)

≥ α(A ∪B)− 1 + α(A ∩B)− 1

= fP(A ∪B) + fP(A ∩B).

Furthermore, it is easy to see that fP is intersecting supermodular
on FP . Hence fP is intersecting modular on FP , i.e., fP(A) +
fP(B) = fP(A ∪ B) + fP(A ∩ B) for any intersecting sets
A,B ∈ FP .

By the above observation, the function f claimed by Theorem 3.6
is by construction intersecting submodular since all fPi are inter-
secting submodular. Similarly, f is monotone due to the mono-
tonicity of fPi . We prove the following slightly stronger version of
Theorem 3.6.

THEOREM C.1. Let h : 2U → R+ any nonnegative intersect-
ing submodular function, such that all maximal sets S ⊆ U with
h(S) = 0 form a partition P1 of U . Then there is an intersecting
submodular function f of the form

f =

k∑
i=1

λifPi ,

where k ≤ |U | − 1, λi > 0 ∀i ∈ [k], P1, . . .Pk are partitions of
U that become coarser with increasing index, and f satisfies:

i) f(S) ≤ h(S) ∀S ⊆ U ,
ii) f(U) = h(U).

Furthermore, the partitions Pi together with the coefficients λi, and
hence f , can be constructed efficiently.

Notice that the condition in Theorem C.1 stating that the maximal
tight sets of h form a partition of U is equivalent to the property
that the family of all tight sets of h covers U , due to the following
uncrossing argument. If the tight sets of h cover U then so do the
maximal tight sets; furthermore, for any two intersecting tight sets
A,B ⊆ U ,

0 = h(A) + h(B) ≥ h(A ∪B) + h(A ∩B) ≥ 0,

by intersecting submodularity and nonnegativity of h; hence A ∪B
is also tight. Hence, this condition is indeed weaker than the one
used in Theorem 3.6, which states that all singletons must be tight.

PROOF OF THEOREM C.1. The partitions P1, . . . ,Pk and co-
efficients λ1, . . . , λk defining f are obtained as follows.

1. Let i = 1, h1 = h, and P1 be the maximal tight sets
with respect to h.

2. While hi(U) > 0:
(a) Let λi ∈ R+ be the maximum value such that

hi(S)− λifPi(S) ≥ 0 ∀S ∈ FPi .

(b) hi+1 ← hi − λifPi ; let Pi+1 ⊆ FPi be the
maximal tight sets with respect to hi+1.

(c) i← i+ 1.

We start by observing that each function hi encountered during
the algorithm is intersecting submodular overFPi−1 (by convention
we set P0 = 2U ), and that Pi indeed forms a partition of U . This
can easily be verified through an inductive argument. By assumption
h1 is intersecting submodular over U , and P0 is a partition of U .
The intersecting submodularity of hi+1 = hi − λifPi over FPi

follows by the intersecting submodularity of hi over FPi and the
intersecting (super)modularity of fPi over FPi . Since hi+1 is
intersecting submodular over FPi , the maximal tight sets Pi+1 of
hi+1 in FPi thus again form a partition of U .

The suggested procedure can indeed be implemented efficiently.
At any iteration i and for any fixed λ > 0, finding the set S ∈ FPi

minimizing hi(S)− λfPi is an intersecting submodular function
minimization problem. Hence, in step (2a), λi can be found by using
e.g. binary search, or by applying the parametric search technique
of Megiddo [15].

Furthermore, since fPi(S) = 0 for all the sets S ∈ FPi that are
tight with respect to hi—which are precisely the sets in Pi—we
have λi > 0 in each iteration. By choosing λi to be maximum
in step (2a), there is at least one set S ∈ FPi that is tight with
respect to hi+1 but not hi. Hence, |P1| > |P2| > . . . , and the
procedures will terminate. Let k be the index of the last λ that was
set in step (2a). Hence, hk+1(U) = 0, and Pk+1 = {U}. Since we
start with |P0| ≤ |U | and the partitions coarsen at each step, this
implies k ≤ |U | − 1. Additionally, point ii) of Theorem C.1 clearly
holds by the termination criterion of the while-loop.

Hence, it remains to prove point i), which we prove by showing
the following claim through induction from j = k + 1 to j = 1,
where j = 1 corresponds to the statement i):

hj(S)−
k∑

i=j

λifPi(S) ≥ 0 ∀S ∈ FPj−1 . (15)
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For j = k + 1, (15) clearly holds, since hk+1(S) = hk(S) −
λkfPk (S) ≥ 0 ∀S ∈ FPk , by choice of λk. Now let j ∈
{1, . . . , k} and assume that (15) holds for all values above j. Let
S ∈ FPj−1 , and we define S′ ∈ FPj to be the minimal set in FPj

that contains S, i.e.,

S′ :=
⋃

P∈Pj ,
P∩S �=∅

P.

Notice that

hj(S) = hj(S) +
∑

P∈Pj ,
P∩S �=∅

hj(P ) ≥ hj(S′), (16)

where the equality holds since all sets in Pj are tight with respect to
hj by construction, and the inequality follows by standard uncross-
ing arguments: for any set T ⊆ U and any P ∈ Pj with P ∩T 
= ∅,
we have hj(T ) + hj(P ) ≥ hj(T ∪ P ) by intersecting submodu-
larity and nonnegativity of hj . Thus starting with T = S and any
P ∈ Pj , P ∩ S 
= ∅, the two terms hj(S) and hj(P ) in (16) can
be replaced by hj(S ∪ P ), and this procedure can be repeated until
one reaches hj(S′). In other words, we simply exploit that any
nonnegative intersecting submodular function has the subadditivity
property for any family of sets that are connected when seen as
hyperedges on the given ground set.

The inductive step of the proof of (15) finally follows by

hj(S)−
k∑

i=j

λifPi(S) ≥ hj(S′)−
k∑

i=j

λifPi(S
′)

= hj+1(S′)−
k∑

i=j+1

λifPi(S
′) ≥ 0,

where the first inequality follows from (16) and the monotonicity of∑k
i=1 λifPi(S), and the last one by the inductive hypothesis.

D. NP-HARDNESS FOR SOLVING THE
COMPONENT-BASED RELAXATION

It is well-known that there is a PTAS for solving (LP). In other
words, for every fixed ε > 0, there is a polynomial time algorithm
that computes a feasible fractional solution to the considered hy-
pergraphic relaxation (LP), which is within a 1 + ε factor of the
optimum fractional value. We argue now, that this is best possible
(answering the question posed in [6]).

THEOREM D.1. Solving (LP) is strongly NP-hard.

PROOF. Let G = (V,E) be a complete graph with terminals
R = {s1, . . . , sk} ⊆ V , edge cost c(e) ∈ {1, 2} for all e ∈
E. Bern and Plassmann [1] showed that it is NP-hard to decide
whether the cost OPT of the cheapest Steiner tree is at most a given
parameter Z.

We construct another Steiner tree instance G′ = (V ′, E′) as
follows: For each terminal si ∈ R in the original instance, we add a
terminal s′i and an edge sis

′
i with cost c(si, s

′
i) := M with M :=

3n2 and n = |V |. Furthermore, we downgrade the original terminal
to an ordinary vertex, i.e., we define R′ := {s′i | i = 1, . . . , k}
as terminal set. Let OPT ′

f be the value of the optimum fractional
solution of (LP) for instance G′ (using components of arbitrary size).

First we show that OPT ≤ Z ⇒ OPT ′
f ≤ Z + k ·M . Let S∗

be the optimum integral Steiner tree in G. We add all sis
′
i edges

to S∗ and consider the emerging tree as component with fractional
weight 1 and cost OPT + k ·M .

Next, we prove that OPT ≥ Z +1⇒ OPT ′
f ≥ Z +1+ k ·M

(which in turn implies the claim of the theorem). Let x be an
optimum solution to (LP) in G′. For a component C ∈ K, we
denote E(C) as the contained edges from the original graph (i.e.
without sis

′
i edges) and by |C| we denote the number of terminals.

Either C contains less than k terminals, or cost(E(C)) ≥ Z + 1.
In any case

cost(E(C)) +M

|C| − 1
≥ min

{
Z + 1 +M

k − 1
,

M

k − 2

}

≥ Z + 1 +M

k − 1
,

using that M = 3n2, k ≤ n and Z ≤ 2n. Now we can bound the
cost of the fractional solution as

OPT ′
f =

∑
C∈K

(cost(E(C)) + |C| ·M) · xC

= M
∑
C∈K

(|C| − 1)xC +
∑
C∈K

(cost(E(C)) +M)xC

≥ (k − 1)M +
∑
C∈K

|C| − 1

k − 1
(Z + 1 +M)xC

= Z + 1 + kM,

exploiting
∑

C∈K xC(|C| − 1) = k − 1.

Observe that the above reduction in not approximation preserv-
ing. This is not surprising, considering the fact that Steiner tree is
APX-hard even with edge weights {1, 2} (e.g., by a straightfor-
ward reduction from Set Cover with sets of size 3).
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