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We show that the equations of motion for (free) integer higher spin gauge fields can be formulated as
twisted self-duality conditions on the higher spin curvatures of the spin-s field and its dual. We focus on the
case of four spacetime dimensions, but formulate our results in a manner applicable to higher spacetime
dimensions. The twisted self-duality conditions are redundant and we exhibit a nonredundant subset of
conditions, which have the remarkable property to involve only first-order derivatives with respect to time.
This nonredundant subset equates the electric field of the spin-s field (which we define) to the magnetic
field of its dual (which we also define), and vice versa. The nonredundant subset of twisted self-duality
conditions involve the purely spatial components of the spin-s field and its dual, and also the components of
the fields with one zero index. One can get rid of these gauge components by taking the curl of the
equations, which does not change their physical content. In this form, the twisted self-duality conditions
can be derived from a variational principle that involves prepotentials. These prepotentials are the higher
spin generalizations of the prepotentials previously found in the spins 2 and 3 cases. The prepotentials have
again the intriguing feature of possessing both higher spin diffeomorphism invariance and higher spin
conformal geometry. The tools introduced in an earlier paper for handling higher spin conformal geometry
turn out to be crucial for streamlining the analysis. In four spacetime dimensions where the electric and
magnetic fields are tensor fields of the same type, the twisted self-duality conditions enjoy an SOð2Þ
electric-magnetic invariance. We explicitly show that this symmetry is an “off-shell symmetry” (i.e., a
symmetry of the action and not just of the equations of motion). Remarks on the extension to higher
dimensions are given.
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I. INTRODUCTION

Gravitational theories exhibit fascinating “hidden sym-
metries” upon dimensional reduction [1,2]. These hidden
symmetries involve duality in an essential way. For
instance, in the case of 11-dimensional supergravity
reduced to four dimensions, the hidden E7 symmetry
includes SOð2Þ electric-magnetic duality invariance acting
on the 28 Abelian gauge fields present in the theory [2].
It has been conjectured that these hidden symmetries

might actually already be present prior to dimensional
reduction, although not manifestly so, and recent analysis
in the light cone formalism supports this conjecture [3].
It has also been speculated that the finite-dimensional
symmetries uncovered by dimensional reduction to D ≥
3 dimensions are actually a subset of a much larger,
infinite-dimensional Kac-Moody algebra, which could be
E10 or E11 [4–10] for (an appropriate extension of) maximal
supergravity.

A characteristic feature of the nonlinear realizations of
the conjectured hidden symmetry algebras is that they treat
the p-forms and their duals democratically: for each p-form
appearing in the spectrum, the dual D − p − 2 form also
appears. In order to exhibit the hidden symmetries of
gravitational theories, it appears therefore necessary to
reformulate the equations of motion for the p-forms present
in the model in a manner that involves both the p-forms and
their duals on an equal footing, but without doubling the
number of degrees of freedom. This is achieved by
rewriting the equations of motion as “twisted self-duality
conditions” [2,11,12]. These conditions are first-order with
respect to time (and space) and equate the electric field
(respectively the magnetic field) of the p-form to the
magnetic field (respectively, � the electric field) of its
dual. It is easily verified that these conditions are equivalent
to the Maxwell equations. Furthermore, they can readily
accommodate Chern-Simons couplings. This form of
the equations of motion for the 3- and 7-forms of 11-
dimensional supergravity is the starting point of the
authors of [13] in their recent construction of E11-invariant
equations of motion.
The twisted self-duality conditions derive from a varia-

tional principle where both the p-form potential and its dual
are treated as independent fields on an equal footing [14],
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which is however not manifestly spacetime covariant (for
comments on this fact, see [15]).
Now, the nonlinear realizations of all the conjectured

infinite-dimensional hidden symmetries of gravitational
theories involve also the dual to the graviton [9,10]. For
that reason, similar twisted-duality reformulations of grav-
ity are desirable. The task of rewriting the linearized
gravitational field equations as twisted self-duality con-
ditions putting the spin-2 field and its dual on a democratic
footing, in a manner derivable from a variational principle,
has been achieved in [16,17].
One of the original motivations underlying the E10

conjecture [10] was its potential connection with the zero
tension limit of string theory [18]. This zero tension limit
involves an infinite collection of massless higher spin
fields. With this in mind, we continue in this paper our
investigation of twisted self-duality for higher spin gauge
fields. We consider explicitly the case of four spacetime
dimensions but formulate our results in a manner applicable
to higher spacetime dimensions [19].
We establish in this paper a number of results concerning the

twisted self-duality formulation of higher spin gauge fields.
(i) We show that the equations of motion of the free

bosonic higher spin fields can indeed equivalently be
written as twisted self-duality conditions on the
curvatures of the spin-s field and its dual (Sec. II).
The crucial property that allows this reformulation is
the demonstration given in [20] that the equations of
motion of the higher spins are equivalent to the
vanishing of the Ricci tensor. This is not obvious
when s > 2 since the equations of motion are of
second order, while the curvatures contain deriva-
tives of the higher spin gauge field up to the order s.

(ii) The twisted self-duality conditions are highly re-
dundant. In Sec. III, we decompose the higher spin
curvatures into electric and magnetic components,
and point out that the subset of the twisted self-
duality conditions that expresses that the electric
field (respectively the magnetic field) of the spin-s
field is equal to the magnetic field (respectively,
minus the electric field) of its dual, completely
captures the full content of the twisted self-duality
conditions. [The proof of this fact is postponed to
Sec. V.] Remarkably, this subset of the twisted self-
duality conditions contains only first-order time
derivatives of the fields—even though a generic
curvature component can contain up to s time
derivatives.

(iii) In their “electric-magnetic” form, the twisted self-
duality conditions involve the spatial components of
the spin s-field and its dual, as well as the compo-
nents with one index in the time direction, i.e., equal
to zero. These components are pure gauge and can
be eliminated by taking an appropriate curl. The
resulting equations are physically equivalent and

shown to be derivable from a variational principle in
Sec. IV. This variational principle naturally involves
prepotentials, which are introduced to take into
account the constraints on the electric and magnetic
fields. The prepotentials enjoy spin-s diffeomor-
phism invariance and also, somewhat unexpectedly,
spin-s Weyl invariance. The tools necessary to
introduce the prepotentials have been developed
in [21], upon which we heavily rely.

(iv) It turns out that the action principle so derived is
exactly the action principle that one would obtain by
starting from the Fronsdal action, going to the
Hamiltonian formalism and solving the constraints
through prepotentials. This is proved in Sec. V. As a
by-product of this result follows the completeness of
the twisted self-duality conditions on the electric and
magnetic fields.

(v) Although the analysis is explicitly carried out in four
spacetime dimensions, we expect that it should go
through along parallel lines in higher dimensions
where the higher spin field equations also admit a
twisted self-duality reformulation. Arguments sup-
porting this expectation, and how the analysis would
proceed, are outlined in Sec. VI. There is, however, a
feature peculiar to four dimensions (for the types of
Young tableaux under consideration), namely, that
the electric and magnetic fields are tensors of
identical type, and the equations of motion are
invariant under SOð2Þ electric-magnetic duality
rotations in the internal plane of the electric and
magnetic fields. The action expressed in terms of the
prepotentials makes it explicit that this symmetry is
an off-shell symmetry. This result generalizes to
higher spins the known results for spins s ¼ 1 [22],
s ¼ 2 [23,24] and s ¼ 3 [21,25]. This is also
discussed in Sec. VI.

We conclude in Section VII with some comments. Two
appendixes provide the technical steps necessary to derive
the expression of the spin-s field in terms of the prepotentials.
This paper was announced in [21], with the different title

“Emergent conformal geometry for higher spins.”

II. TWISTED SELF-DUALITY FOR HIGHER SPIN
GAUGE FIELDS

A. Standard form of the equations of motion

In four dimensions, a massless field of spin (helicity) s is
described by a completely symmetric tensor hλ1λ2���λs of rank
s, subject to the gauge invariance

δhλ1λ2���λs ¼ s∂ðλ1ελ2���λsÞ ð2:1Þ

where the gauge parameter ελ2���λs is completely symmetric
but otherwise arbitrary. The gauge invariant curvatures
involve s derivatives of the fields and read [26]
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Rλ1μ1λ2μ2���λsμs ½h� ¼ 2s∂ ½μ1j∂ ½μ2j � � � ∂ ½μsjhλ1�jλ2�j���λs� ð2:2Þ

It has Young symmetry type

One can express it in terms of the derivative operator dðsÞ of
[27,28], which fulfills dsþ1

ðsÞ ¼ 0 (see also [29,30]). One has

R ¼ dsðsÞh and δh ¼ dðsÞε (suppressing indices), so that

δR ¼ dsþ1
ðsÞ ε ¼ 0. The curvature tensor fulfills also the

“Bianchi identities”

dðsÞR ¼ 0: ð2:3Þ

In order to get gauge invariant objects that involve no
more than second order derivatives, it is necessary to
restrict the gauge parameter ελ1���λs−1 to be traceless when
s > 2 [31]. The Fronsdal tensor [32],

Fλ1���λs ¼ □hλ1���λs − s∂ðλ1j∂μhμjλ2���λsÞ

þ sðs − 1Þ
2

∂ðλ1∂λ2hλ3���λsÞ ð2:4Þ

which involves only second order derivatives of the gauge
field, is easily seen to be invariant when ελ1���λs−1 is traceless.
In that approach where the gauge parameter is restricted by
trace conditions, the equations of motion are actually

Fλ1���λs ¼ 0 ð2:5Þ

and are derived from the Fronsdal action [32]

S½hμ1μ2���μs � ¼
Z

d4x

�
−
1

2
ð∂ρhμ1���μsÞ2

þ s
2
ð∂ρhρμ1���μs−1Þ2−

�s
2

�
∂ρhρσμ1���μs−2∂σh̄μ1���μs−2

þ 1

2

�s
2

�
ð∂ρh̄μ1���μs−2Þ2þ

3

4

�s
3

�
ð∂ρh̄ρμ1���μs−3Þ2

�

ð2:6Þ

(where h̄μ1���μs−2 ¼ hννμ1���μs−2) which is easily verified to be
gauge invariant up to a total derivative (with traceless gauge
parameter).

B. Equations in terms of the curvature

In a very beautiful piece of work [20], it has been shown
that the tracelessness condition on the gauge parameter is
not necessary and can be viewed as a partial gauge
condition. Equivalent ideas were formulated in [33], but
their realization involves nonlocal terms, and for that reason
we shall follow here [20].

The equations of motion for a spin s gauge field can be
taken to be

R̄λ1λ2λ3μ3���λsμs ¼ 0 ð2:7Þ

where R̄ is the “Ricci” tensor obtained by taking one trace
on the Riemann tensor,

R̄λ1λ2λ3μ3���λsμs ¼ 2s−2f□∂ ½μ3j � � � ∂ ½μsjhλ1λ2jλ3����λs�
− ∂λ1∂μ∂ ½μ3j � � � ∂ ½μsjhμλ2jλ3�j���λs�

− ∂λ2∂μ∂ ½μ3j � � � ∂ ½μsjhμλ1jλ3�j���λs�
þ ∂λ1∂λ2∂ ½μ3j � � � ∂ ½μsjh̄λ3�j���λs�g: ð2:8Þ

The equations (2.7) are differential equations of order s, but
contrary to (2.5), they are invariant under the full gauge
symmetry (2.1) without restriction on the trace of the gauge
parameter. It was shown in [20] that they imply, with an
appropriate choice of the trace of ελ1���λs−1 , the Fronsdal
equations (2.5)—which, conversely, are easily verified to
imply (2.7).
As also pointed out in [20], the equations (2.7) are very

convenient for discussing duality along the lines of [34].
Let Sλ1μ1λ2μ2���λsμs be the tensor dual to Rλ1μ1λ2μ2���λsμs on the
first two indices (say),

Sλ1μ1λ2μ2���λsμs ¼ �Rλ1μ1λ2μ2���λsμs

¼ 1

2
ϵρ1σ1λ1μ1

Rρ1σ1λ2μ2���λsμs ð2:9Þ

The equations of motion (2.7) imply that Sλ1μ1λ2μ2���λsμs
fulfills the cyclic identity, i.e., is a tensor of same Young
type as Rλ1μ1λ2μ2���λsμs . Furthermore, the cyclic identity for
Rλ1μ1λ2μ2���λsμs implies that Sλ1μ1λ2μ2���λsμs is traceless,
S̄λ1λ2λ3μ3���λsμs ¼ 0. There is thus complete symmetry
between the equations fulfilled by R and its dual S.

C. Twisted self-duality

It is this symmetry which is embodied in the twisted self-
duality formulation. When the equations of motion for the
spin-s field are fulfilled, the tensor S dual to the curvature
not only is of same Young symmetry type

as R, but it fulfills also the Bianchi identities dðsÞS ¼ 0.
This implies the existence of a “dual” spin-s field fλ1λ2���λs
of which S is the curvature [27,28],

S ¼ dsðsÞf:

This second spin-s field has its own gauge invariance since
it is determined up to the dðsÞ of some ηλ1���λs−1 ,
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δfλ1λ2���λs ¼ s∂ðλ1ηλ2���λsÞ ð2:10Þ

We can thus rewrite the equations of motion for the spin-
s theory in a duality-symmetric way where both the spin-s
field and its dual appear on an equal footing as follows,

F ¼ S�F ; ð2:11Þ
where,

F ¼
�
R½h�
S½f�

�
; �F ¼

��R½h�
�S½f�

�
; S¼

�
0 −1
1 0

�
: ð2:12Þ

This form of the equations is completely equivalent to the
original form R̄ ¼ 0, since we have seen that the equation
R̄ ¼ 0 implies (2.11). And conversely, if (2.11) holds, then
both h and f obey R̄½h� ¼ 0, S̄½f� ¼ 0, i.e., fulfill the spin-s
equations of motion. Furthermore, the two spin-s fields are
not independent since f is completely determined by h up
to a gauge transformation and therefore carries no inde-
pendent physical degrees of freedom.
Following [12], one refers to (2.11) as the twisted self-

dual formulation of the spin-s theory.

III. ELECTRIC AND MAGNETIC FIELDS

A. Definitions

The twisted self-duality conditions in their covariant
form (2.11) are highly redundant. We shall extract from
them an equivalent subset that has the interesting property
of containing only first order derivatives with respect
to time.
To that end, we first define the electric and magnetic

components of the Weyl tensor, which coincides on-shell
with the Riemann tensor. It would seem natural to define
the electric components as the components of the Weyl
tensor with the maximum number of indices equal to zero
(namely s), and the magnetic components as the compo-
nents with the maximum number minus one of indices
equal to zero (namely s − 1). By the tracelessness con-
ditions of the Weyl tensor, the electric components can be
related to the components with no zeroes when s is even,
like for gravity, or just one zero when s is odd, like for
Maxwell. It turns out to be more convenient for dynamical
purposes to define the electric and magnetic components
starting from the other end, i.e., in terms of components
with one or no zero. Now, it would be cumbersome in the
general analysis to have a definition of the electric and
magnetic components that would depend on the spin. For
that reason, we shall adopt a definition which is uniform for
all spins, but which coincides with the standard conven-
tions given above only for even spins. It makes the
Schwarzschild field “electric,” but the standard electric
field of electromagnetism is viewed as “magnetic.” Since
the electric (magnetic) components of the curvature of the
spin-s field are the magnetic (electric) components of the

curvature of the dual spin-s field, this is just a matter of
convention, but this convention may be confusing when
confronted with the standard Maxwell terminology.
Before providing definitions, we recall that the curvature

Ri1j1���isjs of the three-dimensional “spin-s field” hi1���is
given by the spatial components of the spacetime spin-s
field hλ1���λs is completely equivalent to its Einstein tensor
defined as

Gi1���is ¼ 1

2s
ϵi1j1k1 � � � ϵisjsksRj1k1���jsks : ð3:1Þ

This tensor is completely symmetric and identically
conserved,

∂i1G
i1i2���is ¼ 0: ð3:2Þ

In the sequel, when we shall refer to the Einstein tensor
of the spin s field, we shall usually mean this three-
dimensional Einstein tensor (the four-dimensional Einstein
tensor vanishes on-shell).
We now define precisely the electric and magnetic fields

off-shell as follows:
(i) The electric field Ei1���is of the spin-s field hλ1���λs is

equal to the Einstein tensor Gi1���is of its spatial
components hi1���is ,

Ei1���is ¼ Gi1���is : ð3:3Þ

By construction, the electric field fully captures the
spatial curvature and involves only the spatial
components of the spin-s field. It is completely
symmetric and conserved,

Ei1���is ¼ Eði1���isÞ; ∂i1E
i1i2���is ¼ 0: ð3:4Þ

(ii) The magnetic field Bi1���is of the spin-s field hλ1���λs is
equivalent to the components with one zero of the
spacetime curvature tensor and is defined through

Bi1���is ¼
1

2s−1
Rj2k2���jsks
0i1

ϵi2j2k2 � � � ϵisjsks ð3:5Þ

It contains one time (and s − 1 space) derivatives of
the spatial components hi1���is , and s derivatives of
the mixed components h0i2���is . The magnetic field
is symmetric in its last s − 1 indices. It is also
transverse on each index,

∂i1B
i1i2���is ¼ 0; ∂i2B

i1i2���is ¼ 0; ð3:6Þ

and traceless on the first index and any other index,

δi1i2B
i1i2���is ¼ 0: ð3:7Þ
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It is useful to make explicit the dependence of the
magnetic field—or equivalently, R0i1j2k2���jsks—on
h0i2���is . One finds

R0i1j2k2���jsks ¼ ∂i1ðds−1ðs−1ÞNÞ
j2k2���jsks

þ “more”

ð3:8Þ
where “more” involves only spatial derivatives of
_hi1���is and where Ni1���is−1 stands for h0i1���is−1,
i.e., Ni1���is−1 ≡ h0i1���is−1 .

Similar definitions apply to the dual spin-s field fλ1���λs .
The electric and magnetic fields possess additional

properties on-shell. First, the electric field is traceless as
a result of the equation R̄0

0i5���is −
1
2
δ00

¯̄Ri5���is ¼ 0,

δi1i2E
i1i2���is ¼ 0: ð3:9Þ

Second, the magnetic field is symmetric as a result of the
equation R̄0i4i5���is ¼ 0,

Bi1���is ¼ Bði1���isÞ ¼ 0: ð3:10Þ
We also note that there are no other independent

components of the spacetime curvature tensor on-shell,
since components with more than one zero can be
expressed in terms of components with one or no zero
through the equations of motion.

B. Twisted self-duality in terms of electric and
magnetic fields

It is clear that the twisted self-duality conditions (2.11)
with all indices being taken to be spatial read

�
Ei1i2���is ½h�
Ei1i2���is ½f�

�
¼

�
Bi1i2���is ½f�
−Bi1i2���is ½h�

�
: ð3:11Þ

It turns out that these equations are completely equivalent
to the full set of twisted self-duality conditions. This is not
surprising since the components of the curvature tensor
with two or more zeroes are not independent on-shell from
the components with one or no zero. The fact that (3.11)
completely captures all the equations of motion will be an
automatic consequence of our subsequent analysis and so
we postpone its proof to later (Sec. V below).

C. Getting rid of the Lagrange multipliers

While a generic component of the curvature may contain
up to s time derivatives, the twisted self-duality conditions
(3.11) contain only the first-order time derivatives _hi1���is
and _fi1���is . One can give the fields hi1���is and fi1���is as
Cauchy data on the spacelike hypersurface x0 ¼ 0. The
subsequent values of these fields are determined by the
twisted self-duality conditions up to gauge ambiguities.
The Cauchy data hi1���is and fi1���is cannot be taken

arbitrarily but must be such that their respective electric
fields are both traceless since this follows from E ¼ �B
and the fact that the magnetic field is traceless. The
constraints are equivalent to the condition that the traces
of the Einstein tensors of both h and f should be zero,

Ḡi1���is−2 ½h� ¼ 0; Ḡi1���is−2 ½f� ¼ 0: ð3:12Þ

The twisted self-duality conditions involve also the
mixed components h0i2���is and f0i2���is . These are pure
gauge variables, which act as Lagrange multipliers for
constraints in the Hamiltonian formalism. It is useful for the
subsequent discussion to get rid of them. Since they occur
only in the magnetic fields, and through a gradient, this can
be achieved by simply taking a curl on the first index.
Explicitly, from the twisted self-duality conditions (3.11)
rewritten as

Eai1���is ¼ ϵabBbi1���is ð3:13Þ

(Eai1���is ≡ Ei1���is ½ha�, Bai1���is ≡ Bi1���is ½ha�, a ¼ 1, 2,
ðhaÞ ¼ ðh; fÞ, ϵab ¼ −ϵba, ϵ12 ¼ 1), follows obviously
the equation

ϵjki1∂kEai1���is ¼ ϵabϵjki1∂kBbi1���is ð3:14Þ

which does not involve the mixed components h0i2���is or
f0i2���is any more.
The equations (3.14) are physically completely equiv-

alent to (3.13). Indeed, it follows from (3.14) that

Eai1���is ¼ ϵab ~B
bi1���is ð3:15Þ

where ~Bbi1���is differs from the true magnetic field Bbi1���is by
an arbitrary gradient in i1, or, in terms of the corresponding
curvature components

~Ra
0i1j2k2���jsks ¼ Ra

0i1j2k2���jsks þ ∂i1μ
a
j2k2���jsks ð3:16Þ

for some arbitrary μaj2k2���jsks with Young symmetry type

Now, the cyclic identity fulfilled by the curvature implies
∂ ½i1μ

a
j2k2����jsks ¼ 0, i.e., in index-free notation, dðs−1Þμa ¼ 0,

and this yields μa ¼ ds−1ðs−1Þν
a for some symmetric νaj2���js

[27,28]. Comparing with (3.8), we see that this is just the
ambiguity in Ra

0i1j2k2���jsks due to the presence of ha0j2���js .
Therefore, one can absorb μaj2k2���jsks in a redefinition of the
pure gauge variables ha0j2���js and get thereby Eqs. (3.13).
It is in the form (3.14) that we shall derive the twisted

self-duality conditions from a variational principle.
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IV. VARIATIONAL PRINCIPLE

A. Prepotentials

The searched-for variational principle involves as basic
dynamical variables not the fields hai1���is , which are con-
strained, but rather “prepotentials” that solve the constraints
(3.12) and can be varied freely in the action. The general
solution of the constraint equation Ḡai1���is−2 ¼ 0 was
worked out in [21] and implies the existence of prepoten-
tials Za

i1���is from which hai1���is derives, such that the Einstein
tensor Gai1���is of hai1���is is equal to the Cotton tensor
Dai1���is of Za

i1���is .
The Cotton tensor Dai1���is involves 2s − 1 derivatives of

the prepotentials and possesses the property of being
invariant under spin-s diffeomorphisms and Weyl sym-
metries,

δZa
i1���is ¼ s∂ði1ρ

a
i2���isÞ þ

sðs − 1Þ
2

δði1i2σ
a
i3���isÞ: ð4:1Þ

It is symmetric, transverse and traceless. It was introduced
for general spins in [35,36] and [21] (where it was denoted
B), and used extensively in three-dimensional higher spin
models in [37–43].
Explicitly, the Cotton tensor of Za

i1���is is given by

Dai1i2���is ½Z� ¼ εi1j1k1εi2j2k2 � � � εis−1js−1ks−1
× ∂j1∂j2 � � � ∂js−1S

a
k1k2���ks−1

is ½Z�

where Sai1���is ½Z� is the Schouten tensor of Za
i1���is , related to

the Einstein tensor of Za
i1���is through

Sai1���is ½Z� ¼ Gai1���is ½Z�

þ
X½n2�
n¼1

cnδði1i2 � � � δi2n−1i2nGai2nþ1���isÞ
½n� ½Z�

with

cn ¼
ð−1Þn
4n

s
n!

ðs − n − 1Þ!
ðs − 2nÞ! ; ðn ≥ 1Þ

(see [21]).
Because of the gauge symmetries, the solution of

the equation Gai1���is ½h� ¼ Dai1���is ½Z� for hai1���is involves
ambiguities. To any given solution ha½Z� one can add an
arbitrary variation of hai1���is under spin-s diffeomorphisms.
Furthermore Za

i1���is and Za
i1���is þ δZa

i1���is [with δZa
i1���is

given by (4.1)] yield ha½Z�’s that differ by a spin-s
diffeomorphism.
The expression for the spin-s field hi1���is in terms of the

prepotential Zi1���is contains s − 1 derivatives in order to
match the number of derivatives (s) of the Einstein tensor
G½h� with the number of derivatives (2s − 1) of the Cotton
tensor D½Z�. This number is odd (even) when s is even

(odd) and therefore, in order to match the indices of hi1���is
with those of ∂k1 � � � ∂ks−1Zj1���js , one needs one ϵ

ijk when s
is even and no ϵijk when it is odd, together with products
of δij ’s.

1. Even spins

We first turn to the even s case. We recall that in the spin-
2 case, a particular solution is given by [23]

hij ¼ ϵðijkl∂kZljjÞ ð4:2Þ

where the indices between the symbol jj are omitted in the
symmetrization—which is as usual carried with weight one
such that it is a projector. The gauge freedom of the
prepotential is given by

δZij ¼ δijσ þ 2∂ðiρjÞ; ð4:3Þ

which generates the particular diffeomorphism δhij ¼∂ðiθjÞ of the field, where θi ¼ ϵikl∂kρl (it is a diffeo-
morphism whose parameter is divergenceless). The gen-
eralization of this formula to general even spin s ¼ 2n is
given in Appendix A.
We give here for definiteness the expression of the spin 4

field hijkl in terms of its prepotential ϕijkl. One has

hijkl ¼ ϵðijmn∂m

�
−ΔZnjjklÞ þ

1

2
δjjkΔZ̄n

lÞ

−
1

2
δjjk∂p∂qZn

lÞpq

�
: ð4:4Þ

The gauge freedom of the prepotential is given by:

δZijkl ¼ 4∂ðiρjklÞ þ 6δðijσklÞ; ð4:5Þ

which implies:

δhijkl ¼ ∂ðiθjklÞ; ð4:6Þ

where

θijk ¼ ϵðijmn∂mμnjjkÞ; ð4:7Þ

μijk ¼ −3Δρijk þ
1

2
δðij½Δρ̄kÞ − ∂p∂qρkÞpq

−4∂pσkÞp�: ð4:8Þ

In fact, as discussed in Appendix A, the expression (4.4) is,
up to a multiplicative factor, the only one (with the
requested number of derivatives) that implies that a gauge
variation of Z gives a gauge variation of h.
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2. Odd spins

In the odd spin case, the number of derivatives on the
prepotential is even, so that the expression relating h to Z
does not involve the Levi-Civita tensor. The expression for
the spin-3 field in terms of its prepotential is explicitly
given in [21]

hijk ¼ −ΔZijk þ
3

4
δðijΔZ̄kÞ

−
3

4
δðij∂r∂sZkÞrs þ

3

10
δðij∂kÞ∂rZ̄r: ð4:9Þ

The last term in (4.9) is actually not necessary but included
so that δhijk ¼ 0 under Weyl transformations of Z. One
easily verifies that a gauge transformation of the prepo-
tential induces a gauge transformation of the spin-3 field.
The expression of hi1���is in terms of Zi1���is is given in

Appendix B for general odd spin.

B. Twisted self-duality and prepotentials

In terms of the prepotentials, the electric fields are
given by

Eai1���is ¼ Dai1���is ½Z� ð4:10Þ
while the magnetic fields have the property

ϵj
i1k∂kBaji2���is ¼ _Dai1���is ½Z�: ð4:11Þ

It follows that the twisted self-duality conditions take the
form

ϵi1 jk∂jDaki2���is ½Z� ¼ ϵab _D
bi1���is ½Z� ð4:12Þ

in terms of the prepotentials: the curl of the Cotton tensor of
one prepotential is equal to (�) the time derivative of
the other.

C. Action

In their form (4.12), the twisted self-duality conditions
are easily checked to derive from the following variational
principle,

S½Z� ¼
Z

dx0
�Z

d3x
1

2
εabDai1���is _Zb

i1���is −H
�

ð4:13Þ

where the Hamitonian H reads

H ¼
Z

d3xδab

�X½s2�
k¼0

akG½k�ai1���is−2kG½k�b
i1���is−2k

�
ð4:14Þ

where G½k�ai1���is−2n stands for the kth trace of the Einstein
tensor Gai1���is ½Z� of the prepotential Za

i1���is . A lengthy but
conceptually direct computation shows that the coefficients
ak are explicitly given by

ak ¼ ð−Þk n!
ðn − kÞ!k!

ð2n − k − 1Þ!ð2n − 1Þ!!
2kð2n − 1Þ!ð2n − 2k − 1Þ!!

1

2

for even spin s ¼ 2n, and

ak ¼ ð−Þk n!
ðn − kÞ!k!

ð2n − kÞ!ð2nþ 1Þ!!
2kð2nÞ!ð2n − 2kþ 1Þ!!

1

2

for odd spin s ¼ 2nþ 1, where the definition of the double
factorial is recalled in the Appendix. These coefficients are
in fact uniquely determined up to an overall factor by the
property that the action is invariant, up to a surface term,
under the gauge symmetries (4.1) of the prepotentials.
Invariance under spin-s diffeomorphisms is manifest, while
invariance under spin-s Weyl symmetry forces ak to be
given by the above expression (up to an overall factor).

V. HAMILTONIAN FORMALISM

A. Constraints and Hamiltonian

It turns out that the action (4.13) is exactly the action that
one obtains by rewriting the Fronsdal action in Hamiltonian
form and solving the constraints.
The procedure to establish this fact proceeds as follows.
(i) First one writes the Fronsdal action in Hamiltonian

form [44,45]. The Hamiltonian canonical variables
are the spatial components hi1���is of the spin-s field,
their conjugate momenta πi1���is , the variables αi1���is−3
equal to h000i1���is−3 − 3δklh0i1���is−3kl and their conju-

gate momenta ~Πi1���is−3 . The canonical action takes
the form

S½hi1���is ; πi1���is ; αi1���is−3 ; ~Πi1���is−3 ;N i1���is−2 ; Ni1���is−1 �

¼
Z

dx0
�Z

d3xðπi1���is _hi1���is þ ~Πi1���is−3 _αi1���is−3Þ

−H −
Z

d3xðN i1���is−2Ci1���is−2

þ Ni1���is−1Ci1���is−1Þ
�

ð5:1Þ

where Ci1���is−2 and Ci1���is−1 are the constraint-gener-
ators related to temporal (ϵ0i1���is−2) and spacelike
(ϵi1���is−1) spin-s diffeomorphisms, respectively, and
N i1���is−2 ¼ h00i1���is−2 and Ni1���is−1 ¼ h0i1���is−1 are the
corresponding Lagrange multipliers. The explicit
form of the constraints is rather cumbersome and
has been given in [45]. The function H is the
Hamiltonian. It is the integral over space of a density
H which is quadratic in the conjugate momenta and
in the first spatial derivatives of hi1���is ;αi1���is−3 ,
H ¼ R

d3xH. We shall not need here the explicit
expression of H in terms of ∂khi1���is ; π

i1���is ;
∂kαi1���is−3 ; ~Π

i1���is−3 , which is also cumbersome. By
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analogy with the spin-2 case, we shall call the
constraint

Ci1���is−2 ¼ 0 ð5:2Þ

the “Hamiltonian constraint” and the constraint

Ci1���is−1 ¼ 0 ð5:3Þ

the “momentum constraint.”
(ii) The second step is to solve the constraints in terms of

prepotentials Za
i1���is , s ¼ 1, 2. One needs two pre-

potentials, one for solving the Hamiltonian con-
straint, the other one for solving the momentum
constraint. The procedure uses the conformal tools
developed in [21] and follows exactly the same
pattern as for spins 2 and 3. It is displayed in the next
two sections.

(iii) One then inserts the expression for the canonical
variables in terms of the prepotentials inside the
action and obtains (4.13).

B. Solving the momentum constraint

We first solve the momentum constraint. This constraint
reads [45]

Ci1���is−1 ≡ ∂kπ
ki1���is−1 þ “more” ¼ 0 ð5:4Þ

where “more” stands for terms that are linear in the second
order derivatives of αi1���is−3 , which one can set to zero by a
suitable gauge transformation. In the gauges where “more”
vanishes, the constraint reduces to

∂kπ
ki1���is−1 ¼ 0; ð5:5Þ

the general solution of which is given by πi1���is ¼ Gi1���is ½P�
[27,28]. Here Gi1���is ½P� is the Einstein tensor of some
prepotential Pi1���is which is totally symmetric.
For fixed momentum πi1���is , the prepotential Pi1���is is

determined up to a spin-s diffeomorphism. However, there
is a residual gauge freedom in the above gauges, so that
πi1���is is not completely fixed. It is straightforward but
somewhat tedious to check that the residual gauge sym-
metry is accounted for by a spin-s Weyl transformation of
the prepotential Pi1���is , which therefore enjoys all the gauge
symmetries of a conformal spin-s field.
These results extend what was found earlier for spins 2

[23] and 3 [21]. It is instructive to exhibit explicitly the
formulas in the case of spin 4, which illustrates all the
points and still yields readable expressions.
The momentum constraint reads in this case

0 ¼ 4∂nπklmn þ 6δðklΔαmÞ

− 10δðkl∂mÞ∂nαn ð5:6Þ

and the gauge freedom is

δπklmn ¼ −12∂ðk∂lΞmnÞ
þ 12δðklðΔΞmnÞ þ ∂m∂pΞnÞpÞ
þ 4δðklδmnÞð2ΔΞ̄þ 3∂p∂qΞpqÞ; ð5:7Þ

δαk ¼ −6∂lΞkl − 2∂kΞ̄: ð5:8Þ

The residual gauge transformations in the gauge
3Δαk − 5∂k∂lαl ¼ 0, which eliminates the α-terms from
the constraint, must fulfill

0 ¼ −18 ∂lΔΞkl þ 4 ∂kΔΞ̄þ 30 ∂k∂l∂mΞlm:

The divergence of this equation gives (after acting with
Δ−1), 3 ∂k∂lΞkl þ ΔΞ̄ ¼ 0. Substituting this finding in the
previous equation yields, after acting again with Δ−1,
3 ∂lðΞkl þ 1

3
δklΞ̄Þ ¼ 0. This is the divergence of a sym-

metric tensor, so the solution is the double divergence of a
tensor with the symmetry of the Riemann tensor:

Ξkl þ
1

3
δklΞ̄ ¼ ∂m∂nΘmknl: ð5:9Þ

Therefore, one has

Ξkl ¼ ∂m∂nΘmknl −
1

6
δkl∂m∂nΘmp

np: ð5:10Þ

This class of gauge transformations can be checked to give
a zero variation not only to the contribution of αk to the
constraint but in fact also to αk itself.
We can dualize Θklmn ¼ ϵklpϵmnqθ

pq, with a symmetric
θkl, to obtain:

Ξkl ¼
5

6
δklðΔθ̄ − ∂m∂nθmnÞ

þ 2∂ðk∂mθlÞm − ∂k∂lθ̄ − Δθkl: ð5:11Þ

The gauge transformation of πklmn with this parameter is
found then to be exactly the Einstein tensor of a Weyl
diffeomorphism

δπklmn ¼ Gklmn½12δðpqθrsÞ�: ð5:12Þ

Once the spin-4 momentum constraint has been brought
in the standard form ∂kπklmn ¼ 0 by partial gauge fixing, it
can be solved by the familiar techniques recalled at the
beginning of this section for general s. As it is known
[27,28], the general solution of the equation ∂kπklmn ¼ 0 is
indeed the Einstein tensor of a symmetric tensor Pklmn,
which is the prepotential for the momenta:

πklmn ¼ Gklmn½P�:
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~Πi ¼ 6Δω̄i þ 10∂i∂kω̄k

−
1

4
ϵimn∂mð∂kΔZ̄n

k þ ∂p∂q∂kZn
kpqÞ: ð5:24Þ

One could in fact add a solution κi of the equation
∂ðiκjÞ ¼ 0 (Killing equation) to ~Πi but we do not consider
this possibility here by assuming for instance appropriate
boundary conditions (vanishing of all fields at infinity elim-
inates κi∼Ciþμijxj, where Ci and μij¼−μji are constants).

D. Hamiltonian action in terms of prepotentials

The elimination of the canonical variables in terms of the
prepotentials in the action is a rather burdensome task.
However, the derivation can be considerably short-cut by
invariance arguments.
The kinetic term in the action is quadratic in the

prepotentials Z and P and involves 2s − 1 spatial deriva-
tives, and one time derivative. Furthermore, it must be
invariant under spin-s diffeomorphisms and spin-s Weyl
transformations of both prepotentials. This implies, making
integrations by parts if necessary, that the kinetic term has
necessarily the form of the kinetic term of the action (4.13)
upon identification of the prepotential Z with the prepo-
tential Z1 and the prepotential P with the prepotential Z2.
Similarly, the Hamiltonian is the integral of a quadratic

expression in the prepotentials Z and P involving 2s spatial
derivatives. By spin-s diffeomorphism invariance, it can be
written as the integral of a quadratic expression in their
Einstein tensors and their successive traces—or equiva-
lently, the Schouten tensors and their successive traces. As
we have seen, Weyl invariance fixes then the coefficients up
to an overall rescaling, so that the Hamiltonian takes
necessarily the form (4.14), but with δab that might be
replaced by a diagonal μab with eigenvalues different from
1. However, given that the equations of motion following
from the action (4.13) are, as we have seen, consequences
of the Fronsdal equations, they cannot be in contradiction
with the equations of motion following from the
Hamiltonian action (equivalent to the Fronsdal equations)
and this is possible only if μab ¼ δab.
One thus concludes that the action (4.13) for twisted self-

duality is indeed the Hamiltonian form of the Fronsdal
action with the constraints solved for in terms of prepo-
tentials. This shows in particular that the electric field-
magnetic field version of twisted self-duality obtained by
considering only the spatial components of (2.11) form
indeed a complete set, as announced. The analysis also
shows that duality-conjugate and canonically conjugate are
equivalent (up to field-independent factors).

VI. ADDITIONAL CONSIDERATIONS

A. Higher dimensions and twisted self-duality

In higher spacetime dimension D, the equations of
motion can also be reformulated as twisted self-duality

conditions on the curvatures of the spin-s field and its dual.
What is new is that the dual of a spin-s field is not given by
a symmetric tensor, but by a tensor of mixed Young
symmetry type

Consequently, the curvature tensor and its dual are also
tensors of different types. Nevertheless, the electric (respec-
tively, magnetic) field of the spin-s field is a spatial tensor
of the same type as the magnetic (respectively, electric)
field of its dual and the twisted self-duality conditions again
equate them [up to � similarly to Eq. (3.11)]. The electric
and magnetic fields are subject to tracelessness constraints
that can be solved in terms of appropriate prepotentials,
which are the variables for the variational principle from
which the twisted self-duality conditions derive. Again, this
variational principle is equivalent to the Hamiltonian
variational principle.
We have not worked out the specific derivation for all

spins in higher dimensions D, but the results of [17] for the
spin-2 case, together with our above analysis, make us
confident that this derivation indeed goes through as
described here.

B. Manifest SOð2Þ electric-magnetic duality invariance
in D= 4

In D ¼ 4 spacetime dimensions, the spin-s field and its
dual are tensors of the same type, as we have seen. The
equations enjoy then SOð2Þ electric-magnetic duality
invariance that rotates the field and its dual in the internal
two-dimensional space that they span. This comes over and
above the twisted self-duality reformulation.
The SOð2Þ electric-magnetic duality invariance amounts

to perform rotations in the internal space of the prepoten-
tials. It is clear that it is also a symmetry of the action
(4.13). Thus, the prepotential reformulation makes it
obvious that SOð2Þ electric-magnetic duality invariance
is a manifest off-shell symmetry, and not just a symmetry of
the equations of motion.

VII. COMMENTS AND CONCLUSIONS

In this paper, we have achieved two things. (i) First, we
have rewritten the equations of motion for higher spin
gauge fields as twisted self-duality conditions, in which the
spin-s field and its dual are put on exactly the same footing.
(ii) Second, by introducing prepotentials for the spin-s field
and its dual, we have shown how these equations derive
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from a variational principle, providing thereby a duality
symmetric formulation of the theory.
One observes again, for all spins, the intriguing emer-

gence of higher spin Weyl gauge symmetries [46–50] for
the prepotentials, in addition to spin-s diffeomorphisms.
This generalizes what was found in the spin-2 case in [23].
One should also stress the remarkable simplicity of the

final action. Furthermore, this final action takes the same
form for all spins. This uniformity suggests that the
prepotential formalism might perhaps be a good starting
point for exploring the symmetries mixing all spins—in
particular the spð8Þ-symmetry in four spacetime dimen-
sions [51,52].
We have restricted the analysis to massless fields in flat

spacetime. Extension to constant curvature backgrounds
[24] and to partially massless fields would be of definite
interest [53–55].
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APPENDIX A: PREPOTENTIALS FOR
EVEN SPINS

Wegive in this appendix the form of the spin-s field hi1���is
in terms of the corresponding prepotential Zi1���is when s is
even. The case of an odd s is treated in Appendix B.
Because of the gauge symmetries, the expression h½Z� is

not unique. To any solution, one may add a gauge trans-
formation term. Our particular solution corresponds to a
definite choice.
Our strategy is as follows: (i) First, one writes the most

general form for h in terms of Z compatible with the index
structure and the fact that it contains s − 1 derivatives.
(ii) Second, one fixes the coefficients of the various terms
such that a gauge transformation of Z induces a gauge
transformation of h. This turns out to completely fix h½Z�
up to an overall multiplicative constant. (iii) Third, one
fixes that multiplicative constant through the condition
G½h½Z�� ¼ D½Z�, which we impose and verify in a conven-
ient gauge for Z.

1. First step

A generic term in the expression for hi1���is in terms of
Zi1���is involves one Levi-Civita tensor when s is even, as

well as s − 1 derivatives of Z. It can also contain a product
of p δijik ’s with free indices among i1; i2;…; is. Hence a
generic term takes the form

δi1i2 � � � δi2p−1i2pϵk1k2k3∂m1
� � � ∂ms−1

Zj1���js ðA1Þ

for some p such that 0 ≤ p ≤ n − 1 where s ¼ 2n (p
cannot be equal to n since the Levi-Civita symbol must
necessarily carry a free index, see below, so that there must
be at least one free index left). Among the indices
k1; k2; k3; m1;…; ms−1; j1; j2;…; js, there are s − 2p indi-
ces equal to the remaining ia’s, and the other indices are
contracted with δab’s. There is also an implicit symmetri-
zation over the free indices ia, taken as before to be of
weight one.
The structure of the indices of the Levi-Civita symbol is

very clear: because of the symmetries, one index is a free
index ib, one index is contracted with a derivative operator,
and one index is contracted with an index of Z.
Furthermore, if an index mb on the derivatives is equal
to one of the free indices ib, then, the term can be removed
by a gauge transformation. This means that apart from one
index contracted with an index of the Levi-Civita tensor,
the remaining indices on the derivative operators are
necessarily contracted either among themselves to produce
Laplacians or with indices of Z. In other words, the
remaining free indices, in number s − 2p − 1 are carried
by Z. One index on Z is contracted with one index of the
Levi-Civita tensor as we have seen, and the other indices on
Z, in number 2p, are contracted either among themselves to
produce traces or with the indices carried by the derivative
operators. Thus, if we know the number of traces that occur
in Z, say q, the structure of the term (A1) is completely
determined,

δi1i2 � � � δi2p−1i2pϵti2pþ1k
∂k∂j1 � � � ∂j2p−2qΔn−1−pþq

Z½q�
i2pþ2���istj1���j2p−2q ; ðA2Þ

or, in symbolic form,

δpðϵ · ∂·Þð∂ · ∂·Þp−qΔn−1−pþqZ½q�: ðA3Þ

One has 0 ≤ q ≤ p and complete symmetrization on the
free indices ib is understood.
Accordingly, the expression for hi1���is in terms of Zi1���is

reads

h ¼
Xn−1
p¼0

Xp
q¼0

ap;qδpðϵ · ∂·Þð∂ · ∂·Þp−qΔn−1−pþqZ½q�: ðA4Þ

where the coefficients ap;q are determined next.
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2. Second step

By requesting that a gauge transformation of Zi1i2���is
induces a gauge transformation of hi1���is , the coefficients
ap;q are found to be given by

ap;q ¼ 2−pð−Þq

×
ðn− 1Þ!ð2n− p− 1Þ!ð2n− 1Þ!!

q!ðp− qÞ!ðn − p− 1Þ!ð2n − 1Þ!ð2n− 2p− 1Þ!!a

ðA5Þ

where the multiplicative constant a is undetermined at this
stage. The double factorial of an odd number 2kþ 1 is
equal to the product of all the odd numbers up to 2kþ 1,

ð2kþ 1Þ!! ¼ 1 · 3 · 5 � � � ð2k − 1Þ _ð2kþ 1Þ
The computation is fastidious but conceptually straightfor-
ward and left to the reader.

3. Third step

Finally, we fix the remaining coefficient a by imposing
that G½h½Z�� ¼ D½Z�. This is most conveniently done in the
gauge

∂i1Zi1���is ¼ 0; Zi1
i1i3���is ¼ 0 ðA6Þ

(transverse, traceless gauge). This gauge is permissible
given that the gauge transformations of the prepotential
involves both spin-s diffeomorphisms and spin-s Weyl
transformations. In that gauge, the Cotton tensor reduces to

D½Z�i1i2���is ¼ −ϵði1jjk∂jΔ2n−1Zkji2���isÞ ðA7Þ

or in symbolic form,

D½Z� ¼ −ðϵ · ∂·ÞΔ2n−1Z; ðA8Þ

while hi1���is is also divergenceless and traceless (which
shows, incidentally, that on the Ḡ½h� ¼ 0 shell, one may
impose both conditions also on h) and its Einstein tensor,
expressed in terms of Z, becomes

G½h½Z��i1���is ¼ ð−ÞnΔnh½Z�i1���is
¼ ð−Þnaϵði1jjk∂jΔ2n−1Zkji2���isÞ

i.e.,

G½h½Z�� ¼ ð−Þnaϵ · ∂ · Δ2n−1Z: ðA9Þ
This shows that

a ¼ −ð−Þn ðA10Þ
and completes the determination of h in terms of its
prepotential Z.

APPENDIX B: PREPOTENTIALS FOR
ODD SPINS

The procedure for odd spins follows the same steps, but
now there is no Levi-Civita tensor involved in the expres-
sion h½Z� since there is an even number of derivatives.

1. First step

A generic term in the expression for hi1���is in terms of
Zi1���is involves s − 1 derivatives of Z. It can also contain a
product of p δijik ’s with free indices among i1; i2;…; is.
Hence a generic term takes the form

δi1i2 � � � δi2p−1i2p∂m1
� � � ∂ms−1

Zj1���js ðB1Þ

for some p such that 0 ≤ p ≤ n where s ¼ 2nþ 1. Among
the indices m1;…; ms−1; j1; j2;…; js, there are s − 2p
indices equal to the remaining ia’s, and the other indices
are contracted with δab’s. There is also an implicit sym-
metrization over the free indices ia.
Again, if an indexmb on the derivatives is equal to one of

the free indices ib, then, the term can be removed by a
gauge transformation. This means that the indices on the
derivative operators are necessarily contracted either
among themselves to produce Laplacians or with indices
of Z. In other words, the remaining free indices, in number
s − 2p are carried by Z. The other indices on Z, in number
2p, are contracted either among themselves to produce
traces or with the indices carried by the derivative oper-
ators. Thus, if we know the number of traces that occur in
Z, say q, the structure of the term (B1) is completely
determined, as in the even spin case

δi1i2 � � � δi2p−1i2p∂j1 � � � ∂j2p−2qΔn−pþq

Z½q�
i2pþ1���isj1���j2p−2q ; ðB2Þ

or, in a more compact way:

δpð∂ · ∂·Þp−qΔn−pþqZ½q�: ðB3Þ

One has 0 ≤ q ≤ p and complete symmetrization on the
free indices ib is understood.
Accordingly, the expression for hi1���is in terms of Zi1���is

reads

h ¼
Xn
p¼0

Xp
q¼0

ap;qδpð∂ · ∂·Þp−qΔn−pþqZ½q�: ðB4Þ

where the coefficients ap;q are determined in the sec-
ond step.

2. Second step

By requesting that a gauge transformation of Zi1i2���is
induces a gauge transformation of hi1���is , the coefficients
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ap;q are found to be given up to an overall multiplicative
constant a by

ap;q ¼ ð−Þq2−p n!ð2n− pÞ!ð2nþ 1Þ!!
q!ðp− qÞ!ðn− pÞ!ð2nÞ!ð2n − 2pþ 1Þ!!a:

ðB5Þ

The computation is again somewhat fastidious but con-
ceptually straightforward and left to the reader.

3. Third step

Finally, we fix the remaining coefficient a by imposing
that G½h½Z�� ¼ D½Z�. This is most conveniently done in the
transverse, traceless gauge for Z

∂i1Zi1���is ¼ 0; Zi1
i1i3���is ¼ 0 ðB6Þ

which is again permissible. In that gauge, the Cotton tensor
reduces to

D½Z� ¼ ðϵ · ∂·ÞΔ2nZ ðB7Þ

while the Einstein tensor of h½Z� becomes

G½h½Z�� ¼ ð−Þnaϵ · ∂ · Δ2nZ: ðB8Þ

This leads to

a ¼ ð−Þn: ðB9Þ

and completes the determination of h in terms of its
prepotential Z.
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