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Continuous weak measurement allows localizing open quantum systems in state space and tracing out
their quantum trajectory as they evolve in time. Efficient quantum measurement schemes have previously
enabled recording quantum trajectories of microwave photon and qubit states. We apply these concepts to a
macroscopic mechanical resonator, and we follow the quantum trajectory of its motional state conditioned
on a continuous optical measurement record. Starting with a thermal mixture, we eventually obtain
coherent states of 78% purity—comparable to a displaced thermal state of occupation 0.14. We introduce a
retrodictive measurement protocol to directly verify state purity along the trajectory, and we furthermore
observe state collapse and decoherence. This opens the door to measurement-based creation of advanced
quantum states, as well as potential tests of gravitational decoherence models.
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Within the Copenhagen interpretation of quantum
mechanics, the quantum state of an isolated physical
system is represented by its wave function. This math-
ematical object encodes the probability of possible meas-
urement outcomes and contains the maximum possible
knowledge about the system. Under the usually inevitable
coupling of the system to an unknown environment, the
state evolves into a statistical mixture of quantum states in a
process known as decoherence. The mixture is described
via a density matrix ρ, which again encodes measurement
probabilities, while accounting for the ignorance about
system-environment interactions. Decoherence entails the
disappearance of some of the most salient, and useful,
features of quantum mechanics, such as superposition and
entanglement. However, if information becomes available
on how the system has interacted with the environment, it is
possible to restore and retain the purity of the quantum state
(i.e., the extent to which the mixture is dominated by a
single random but known wave function). Measurements
can yield such information; over a finite time interval,
however, the obtained information is often incomplete
[1,2]. The density matrix can anyways be updated, by
conditioning on the particular measurement outcome,
which purifies the state. Sufficient measurement repetitions
can then have the cumulative effect to project the
system into a pure quantum state—akin to an ideal von
Neumann measurement, which instantaneously collapses

the quantum state into a pure eigenstate of the measurement
operator. As the information accumulation through such a
weak measurement takes time, obtaining pure conditional
states requires measurement rates that approach the sys-
tem’s total decoherence rate. The latter may be notably
increased by the presence of the measurement apparatus,
which can itself be considered a bath that decoheres the
system through its quantum backaction.
In the continuous limit of many weak subsequent

measurements carried out over short times, the state
conditioned on a measurement record traces out the
system’s quantum trajectory in time [3]. Observing pure
quantum trajectories is a challenging task, so far it has been
achieved only in very clean settings such as cavity [4] and
circuit [5,6] QED. Here, we extend these ideas to mea-
surements of the motion of a macroscopic mechanical
resonator [7–12]. In this setting, pure conditional states are
obtained through measurements of high efficiency
ηmeas ¼ Γmeas=ðγ þ ΓqbaÞ, where Γmeas is the measurement
rate; and γ and Γqba are decoherence rates induced by a
thermal bath and the measurement quantum backaction,
respectively [13,14]. Prior experiments on motional state
estimation have remained confined to the classical regime,
due the fast decoherence by the thermal bath [15–18]. In
contrast, by probing the system with a measurement for
which the efficiency reaches ηmeas ≈ 67%, we are able to
observe individual quantum trajectories of highly pure
conditional states. Moreover, building on recent theoretical
and experimental work on retrodiction [10,11,19,20] and
past quantum states [21,22], we introduce a retrodiction-
based trajectory-verification technique, and we use it to
confirm the purity of the conditional state by statistical
analysis of ensembles of trajectories. This allows us to
directly observe the collapse of the conditional state, as
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well as the decoherence that occurs in the absence of
information from the measurement.
We explore these ideas in an optomechanical system

based on an ultracoherent soft-clamped membrane reso-
nator [23]. The mechanical mode of interest (at the
frequency Ωm=2π ¼ 1.14 MHz) corresponds to a localized
defect mode created within a phononic crystal. This design
simultaneously reduces radiative energy loss and avoids
loss-inducing mode curvature, resulting in an extremely
low mechanical energy dissipation rate, Γm. For the device
used here, we find Q ¼ Ωm=Γm ¼ 1.03 × 109 at temper-
ature T ¼ 11 K. This motion is dispersively coupled to the
frequency of a Fabry-Perot cavity mode [linewidth of
κ=ð2πÞ ¼ 18.5 MHz] at a characteristic vacuum optome-
chanical coupling rate of g0=ð2πÞ ¼ 129 Hz. Populating
the cavity with a large coherent field (with n̄cav average
photons) leads to a linearized field-enhanced coupling
at a rate of g ¼ ffiffiffiffiffiffiffiffi

n̄cav
p

g0. A probe laser that drives this
cavity resonantly will acquire phase modulation side-
bands proportional to the mechanical displacement,
which we detect via a balanced homodyne receiver.
The total detection efficiency (including cavity out-
coupling) is ηdet ¼ 74%, ensuring that minimal mechani-
cal information is lost.
In addition to a resonant probe beam, we also utilize an

auxiliary beam to provide some precooling of other modes
of the membrane, via both sideband and feedback cooling
[24]. The effect of this beam on the main mode of interest is
simply to change its effective thermal environment. Small,
residual detuning of the probe similarly provides some
damping. In the following, we account for both of these
and refer to the effective energy damping rate and bath
occupancy as, respectively, Γm=2π ≈ 130 Hz and n̄th ≈ 2
such that γ ¼ Γmn̄th ≈ 2π × 260 Hz.
The quantum measurement backaction of the probe is

manifest as radiation pressure force fluctuations, leading to
additional mechanical decoherence at a rate of Γqba ¼
4g2=κ ≈ 2π × 2.54 kHz. Similarly, the mechanical dis-
placement measurement can be characterized by a meas-
urement rate of Γmeas ¼ 4ηdetg2=κ ≈ 2π × 1.88 kHz. Thus,
the experimental system studied here can achieve
measurements in which quantum backaction dominates
thermal motion, and the measurement rate approaches the
total decoherence rate (i.e., the measurement efficiency
ηmeas → 1).
The quantum trajectory of the mechanical resonator is

derived from quadratures i ¼ ðiX; iYÞ of the homodyne
photocurrent, IðtÞ, demodulated at frequency Ωm. This
demodulation, which occurs in postprocessing, uses a high-
order low-pass filter for which the ∼120 kHz bandwidth
is significantly larger than the total decoherence rate
(γ þ Γqba ≈ 2π × 2.80 kHz) such that it has a negligible
effect on the mechanical signal [7,25]. The continuous data
stream is subdivided into 3.2 ms segments: each of which is
treated as an individual experimental realization. Examples

of the raw photocurrent and one demodulated quadrature
are shown in Fig. 1(b).
These photocurrent quadratures form the measurement

channels from which we extract the quantum trajectory.
This is done according to a stochastic master equation
(SME), which simultaneously describes unitary evolution
of the system, environmental coupling, and Bayesian
updates according to the measurement record [12,26,27].
Note that, although our system is composed of both an
optical mode and a mechanical mode, the cavity field can
be adiabatically eliminated because κ ≫ Ωm [7,28]. For a
high-Q resonator, it is also convenient to move to the
interaction picture at frequency Ωm and make a rotating
wave approximation. Thus, we describe the system in terms
of the slowly varying quadratures r̂ ¼ ðX̂; ŶÞ, where the
mechanical position is q̂ ¼ X̂ cosðΩmtÞ þ Ŷ sinðΩmtÞ. The
corresponding SME is [7]

dρ¼ðLthþLqbaÞρdtþ
ffiffiffiffiffiffiffiffiffiffi

Γmeas

p

ðH½X̂�ρdWXþH½Ŷ�ρdWYÞ;
ð1Þ

where Lth and Lqba describe interactions with the thermal
and quantum optical baths, respectively [25]. The final
term, written in terms of the measurement superoperatorH
and two independent Wiener processes, W ¼ ðWX;WYÞ,
describes the conditioning of the state upon the measure-
ment record i. We define r⃗ ¼ trðr̂ρÞ as the vector of the
quadrature expectation values. Assuming Gaussian statis-
tics, the conditional state is fully characterized by these
expectation values along with the covariance matrix
Vij ¼ trðfr̂i − r⃗i; r̂j − r⃗jgρÞ=2, where f·g is the anticom-
mutator. For our purposes, this covariance can be written in
terms of a single number: Vij ¼ Vδij.
The dynamics of these first and second moments are

given by

dr⃗ ¼ −
Γm

2
r⃗dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

4Γmeas

p

VðtÞdW; ð2aÞ

_VðtÞ ¼ −ΓmVðtÞ þ Γm

�

n̄th þ
1

2

�

þ Γqba − 4ΓmeasVðtÞ2;

ð2bÞ

where the Wiener process is given by the measurement
record dW ¼ idt −

ffiffiffiffiffiffiffiffiffiffiffiffiffi

4Γmeas
p

r⃗dt such that the quantum
trajectory as defined in Eq. (2b) represents a filtering of
the measurement record i. Note that, although the expect-
ation value evolution is stochastic (driven by the stochastic
term dW), the conditional variance evolves deterministi-
cally, decaying to a steady-state value

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16VbathΓmeas=Γm

p

− 1

8Γmeas=Γm
; ð3Þ
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where Vbath ¼ ðn̄th þ 1=2þ Γqba=ΓmÞ is the total bath
variance [13]. The reduction of the conditional variance
[Fig. 2(a)] to its steady state happens in a characteristic
collapse time, which depends inversely on the measure-
ment rate [8]. In the regime of fast, efficient measurement
Γmeas ≫ γ ≫ Γm, which is relevant to this work, this
variance approaches V ≈ 1=ð2 ffiffiffiffiffiffiffiffiffiffi

ηmeas
p Þ. Thus, in the limit

of highly efficient measurements (ηmeas → 1), the meas-
urement process is able to project the initial thermal state
into a pure coherent state (V ¼ 1=2). We note that Eqs. (2a)
and (2b) are formally equivalent to a Kalman filtering
problem [8], with constraints on the measurement and
process noises imposed by quantum mechanics. Like the
state estimate of a Kalman filter, the quantum state ρðtÞ
enshrines the most accurate possible prediction of sub-
sequent measurement outcomes.
In Fig. 1(d), we show an example of a quantum trajectory

r⃗ðtÞ, as calculated according to Eq. (2a). The region
0 < t < 100 μs indicates the collapse time of the meas-
urement; after which, the conditional variance has decayed
to its steady-state V. For the large probe strength used here
(corresponding to ηmeas ¼ 67%), the predicted conditional
variance is V ¼ 0.61, which is only 20% larger than the
zero-point fluctuations. This corresponds to a coherent
state with purity P ¼ trðρ2Þ ¼ 1=ð2VÞ ¼ 0.82, which is an
improvement of almost two orders of magnitude as
compared to the initial thermal state purity of P ¼ 0.02.
The extracted quantum trajectory depends on the model

and the parameters chosen to describe the experiment.
Successful modeling of data acquired in earlier experiments
testifies to a good understanding of our system, as well as
reliable methods to extract its key parameters [24]. We can
gain further confidence in the validity of the state estima-
tion by analyzing the experimental innovation function
vdt ¼ idt −

ffiffiffiffiffiffiffiffiffiffiffiffiffi

4Γmeas
p

r⃗dt. For correct modeling, this func-
tion represents a white noise with a flat power spectral
density [16]. This matches the assumption, made above,
that the measurement record is driven by a Wiener process.
With all system parameters estimated independently, we
have calculated the innovation function and checked that,
indeed, it has a flat spectrum [25].
Unlike r⃗, the conditional variance V cannot be immedi-

ately obtained from the experimental data: averaging
individual trajectories approximates only the unconditional
variance, Vbath in this regime [25] (see Fig. 1). To actually
verify the prepared conditional state at time t0, an experi-
menter could make a strong projective measurement at that
time. Here, we approximate this by a positive-operator
valued measure (POVM) measurement based on sub-
sequent data collected for t > t0 [20,21]. To do so, we
backpropagate an effect operator E from future times to the
past time t0. The role of the effect operator is to refine, in a
Bayesian sense, the probabilities for measurement out-
comes, as determined by a density matrix ρðt0Þ. Together, ρ
and E define the past quantum state [20,21] from which the
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FIG. 1. Measuring a mechanical quantum trajectory. (a) Ex-
perimental setup. The mechanical resonator is coupled to an
optical cavity, driven resonantly by a probe laser (red). The
motion is imprinted on the phase quadrature of the transmitted
light, which is measured with a balanced homodyne detector.
The photocurrent IðtÞ is digitized and analyzed in postpro-
cessing. (b) Example calibrated photocurrent, containing
information about all mechanical modes coupled to the cavity.
Inset shows one quadrature signal obtained by demodulating
the photocurrent at Ωm. (c) Sketch of a quantum trajectory in
phase space, in terms of the first moment r⃗ (red line) and
conditional variance (dark gray area, standard deviation). The
variance is reduced as information is gathered during the
measurements. Averaging different realizations together leads
to an unconditional, thermal state (light gray area), with
variance Vbath. (d)–(e) Measured single quantum trajectory

r⃗ðtÞ in terms of slowly varying quadratures, X⃗ðtÞ and Y⃗ðtÞ.
Insets illustrate predicted decay of the conditional variance as
the conditional state collapses (gray shaded area, standard
deviation).
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expectation value of an operator Â is calculated as
TrðÂρEÞ=TrðρEÞ. The (unconditional) thermal state could
be chosen for ρðt0Þ, disregarding the data collected before
t0. If any prior (to t0) information about the system is
ignored, then ρðt0Þ ∝ 1 and E contains all information
about the quantum state at time t0—as determined exclu-
sively from measurements at later times.
For states for which the evolution ρðtÞ is restricted to

Gaussian states, the effect operator E can be characterized
by the expectation value r⃖ ¼ trðrEÞ and the covariance
matrix ðVEÞij¼ trðfr̂i− r⃖i; r̂j− r⃖jgEÞ=2. For the mechani-
cal measurement performed here, VE can be written as
ðVEÞij ¼ VEδij; and the first and second moments evolve
according to [10,11,20]

−dr⃖≡ r⃖ðt − dtÞ − r⃖ðtÞ

¼ Γm

2
r⃖dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

4Γmeas

p

VEðtÞdWE; ð4aÞ

− _VEðtÞ≡VEðt− dtÞ−VEðtÞ
dt

¼ ΓmVEðtÞ þ Γm

�

n̄th þ
1

2

�

þΓqba − 4ΓmeasVEðtÞ2;

ð4bÞ

where dWE ¼ idt −
ffiffiffiffiffiffiffiffiffiffiffiffiffi

4Γmeas
p

r⃖dt is a stochastic variable,
and the steady-state conditional variance is VE ¼
V þ Γm=ð4ΓmeasÞ ≈ V. It is this retrodicted trajectory
(determined only by the measurement record after t0) that
we will use to verify individual quantum trajectories such
as the one shown in Fig. 1.
In Fig. 2(a), we show predicted and retrodicted trajecto-

ries, r⃗ðtÞ and r⃖ðtÞ, in a time interval in which both
conditional variances have reached the steady state.
These trajectories are compared at an arbitrary common
end point, t0. Various pairs of r⃗ðt0Þ and r⃖ðt0Þ, from different
experimental trials, are shown in Fig. 2. We calculate, over
this ensemble of experimental realizations, the covariance
matrix of the relative trajectories σ2 ¼ Cov½r⃗ðt0Þ − r⃖ðt0Þ�.
As expected, we always find that σ2XY ≈ 0 and σ2XX ≈ σ2YY

(within 2%), and henceforth report only the average
diagonal term, σ2. This experimental variance provides a
direct measurement of the desired quantum conditional
variance V. As we derive in the Supplemental Material
[25], the ensemble variance is given by a simple sum of the
variances of the operators characterizing the pre- and
retrodicted quantum states, respectively,

σ2 ¼ V þ VE ≈ 2V; ð5Þ

which is a result quite compatible with intuition. We
experimentally find a variance of σ2 ¼ 1.29, which agrees
with the predicted σ2 ¼ V þ VE ¼ 1.24 to within 4% and

corresponds to a purity of P ¼ 0.78. (This includes a
correction due to a 6% systematic error introduced by
demodulation filter correlations [25]). This corresponds to a
displaced thermal state of occupation of n̄cond ¼ 0.14.
In this sense, this process is sometimes referred to as
“cooling by measurement” [15]. Force feedback based on
the predicted quantum state can, in principle, entirely
undo the displacement to yield a zero-mean low-entropy
state [7,29].
We can extend this retrodiction-verification protocol to

study the measurement process in more detail, including its
dynamics. In particular, we can observe both the meas-
urement-induced collapse of the conditional state and
decoherence in the absence of measurement conditioning.
To do so, we compare retrodicted quadrature values with
the forward-calculated ones at a time t0, which now varies
within the interval 0 < t0 < 3 ms. The resulting relative
trajectories [r⃗ðt0Þ − r⃖ðt0Þ] and their ensemble variance are
shown in Figs. 3(a) and 3(b), respectively. Note that the
retrodiction always begins at 3.2 ms such that its condi-
tional variance is in the steady state throughout the
displayed time interval. In contrast, the predictions all
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FIG. 2. Verification of the conditional state. (a) A single
quantum trajectory, r⃗ðtÞ (red line), calculated until time t0 is
compared with a retrodiction, r⃖ðtÞ (blue line), backpropagated to
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begin at t ¼ 0 μs. Thus, up to ≈50 μs, the conditional
variance VðtÞ is expected, per Eq. (2b), to decay from an
unconditional thermal state. Indeed, this is exactly the
behavior revealed by the retrodictive state verification in
Fig. 3(b). Next, to visualize the dynamics of the system in
the absence of measurement, we set the measurement
efficiency to zero in Eq. (2a) from a time of 0.7 ms
onward. That is, we stop conditioning the predicted
quantum trajectory based on the measurement record.
Thus, the conditional variance rethermalizes, and our
nearly pure state decoheres into a statistical mixture.
The ability to effect strong projective displacement

measurements via continuous weak measurement opens
the door to various measurement-based protocols.
Applying the same underlying machinery to modified
measurement schemes allows, for example, the production
of conditional mechanical squeezed states, as well as
conditional entanglement and quantum steering
[10,11,30]. Moreover, although the analysis presented here
was implemented in the postprocessing of data, there is no
fundamental obstacle to implementing this protocol as a
real-time filter—e.g., using a field-programmable gate
array (FPGA). Real-time feedback that removes the
(known) mean displacement can then yield unconditional
states with the desired quantum correlations. Finally, the
application of an optimal quantum-limited state estimation
to such ultracoherent mechanical resonators may be of
interest to test and constrain models of spontaneous wave

function collapse. Indeed, the resonator in this work already
suggests experimental bounds for continuous spontaneous
localization that are competitive with the state of the art
[25,31,32], and the prospects should improve dramatically
at millikelvin temperatures.
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