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Abstract—The observer effect is the fact that observing a
situation or phenomenon necessarily changes it. Observer effects
are especially prominent in physics where observation and uncer-
tainty are fundamental aspects of modern quantum mechanics.
Observer effects are well known in fields other than physics,
such as sociology, psychology, linguistics and computer science,
but none of these other fields have experienced the same level of
publicity and controversy as physics. This may be responsible
for the widely held implicit assumption that ‘“real” observer
effects are exhibited only by quantum objects and not by classical
objects. This misunderstanding may be due, to some extent, to
confusing the observer effect with the Heisenberg uncertainty
principle and with other quantum uncertainty principles. In fact,
observer effects occur in both classical and quantum systems.
This article presents a number of examples of observer effects
in purely classical processes. It also introduces a framework
for understanding and analyzing many of such effects for
classical systems. Ignoring observer effects can cause errors in
experiments at a macroscopic level where no quantum effects
would be discernible. Consequently, there are practical reasons
for being careful to address observer effects.

Keywords: observer effect, quantum mechanics, classical
mechanics, stochastic processes

I. INTRODUCTION

The idea that simply observing a situation can change it
is counter-intuitive. An observer is intuitively assumed to
be a passive entity, independent of what is being observed.
Physicists were the first to recognize observer effects when
quantum mechanics was being developed, and they are a
fundamental aspect of modern quantum physics. It was only
later that observer effects were recognized in other fields,
including sociology, psychology, linguistics and computer
science. However, observer effects are much better known in
physics than in the other fields.

Within quantum mechanics, the observer effect is commonly
confused with uncertainty principles. The first uncertainty
principle was introduced by Heisenberg in 1927 [6]. The
Heisenberg Uncertainty Principle is a quantitative expression
of the inability to measure both the position and momentum
of a particle. There are other uncertainty principles that are
known, and uncertainty principles are now recognized as
arising in quantum mechanics due to the intrinsic nature of
quantum objects and is therefore a fundamental property of
quantum systems, not just technological limitations of mea-
surement devices. However, it appears that even Heisenberg
may have confused his uncertainty principle with the observer
effect, although he was careful to make it clear that the
observer need not be a human, as he explained,

Of course the introduction of the observer must not
be misunderstood to imply that some kind of subjec-
tive features are to be brought into the description
of nature. The observer has, rather, only the function
of registering decisions, i.e., processes in space and
time, and it does not matter whether the observer is
an apparatus or a human being; but the registration,
i.e., the transition from the “possible” to the “actual,”
is absolutely necessary here and cannot be omitted
from the interpretation of quantum theory [7].

Heisenberg was one of the main contributors to the Copen-
hagen interpretation of quantum mechanics in which the obser-
vation of a quantum state causes it to collapse to an eigenstate.
This interpretation has been highly criticized and is no longer
regarded as acceptable by mainstream physicists, although
some variations are still viable. Many other interpretations
have been developed, but none is universally accepted, and
the problem remains open.

This article is concerned only with classical mechanics,
or more precisely, abelian (commutative) probability theory,
in contrast with quantum mechanics, or more precisely, non-
abelian probability theory. Unlike quantum mechanics, classi-
cal mechanics has a generally accepted interpretation. On the
other hand, it does not seem to be well known that classical
systems can exhibit observer effects. Although classical and
quantum systems have many analogies, the proposal in this
article for how to deal with observer effects is limited to the
classical case. No claim is made regarding any applicability
to quantum mechanical observer effects.

Observer effects are an important consideration for situa-
tion awareness (SA). SA is the perception of environmental
elements and events with respect to time or space, the compre-
hension of their meaning, and the projection into the future [4].
Being a perception, SA ultimately depends on observations
which are, in practice, classical mechanical. If the observation
of a phenomenon changes it, then SA can be compromised.
Consequently, to ensure that SA is correct, it is important to
be aware of the possibility of observer effects.

This article is organized as a series of examples that gradu-
ally construct a framework for understanding and analyzing
observer effects for classical systems. The idea is for the
observer and the observed system to be combined into a larger
system. Of course, it is a nontrivial problem to model the
observer, and the interaction between the observer and the
system being observed, so that there is a tractable system



containing them both. This is discussed in Section V. For the
sake of completeness, we end the article by surveying observer
effects in fields other than classical probability theory; namely,
sociology, (classical) physics and computer science.

II. THE REFERENCE POINT PARADOX

Suppose that n > 1 points are dropped at random on a
circle of circumference a. This divides the circle into n arcs
or gaps between points. The average length of one of the
gaps is easily seen to be a/n. However, there is an unstated
assumption that one of the gaps is somehow selected. It is
not entirely obvious how one might do this, since the circle
may not have a preferred coordinate system and the gaps may
not be labeled. One way to choose a gap is to select a point
g called the reference point. The desired gap is then the one
in which the reference point g occurs. Unfortunately, if one
performs this experiment repeatedly, the average length of the
gap containing g will be nearly twice as large as one would
expect. More precisely, rather than an average length of a/n,
the selected gap will have average length 2a/(n + 1). The
reason why the selected gap is so large is that the reference
point will occur in a longer gap simply because such a gap is
longer. In other words, the probability of the reference point
being in a gap is proportional to the length of the gap. Note
that it does not matter whether the reference point is chosen
in some deterministic manner or in a random manner, nor
whether the reference point is selected before the n points are
dropped or after they are dropped. All that matters is that the
n points be randomly dropped on the circle independently of
the location of the reference point. As a result, the reference
point acts like one more point randomly dropped on the circle.
The gap containing the reference point is then actually two
adjacent gaps. Consequently, the average length of the two
gaps is 2a/(n + 1).

This is perhaps the simplest example of an observer effect
in a classical system. The phenomenon is the dropping of
points on a circle. The observer chooses one gap by selecting
a reference point. The observer effect is to change the average
length of a gap.

While this is a very simple example, it illustrates how SA
could be invalidated by an observer effect. Moreover, the
effect is more subtle than the example suggests. The fact that
one is using a reference point to select a gap might not be
immediately obvious to the observer, as the situation may
be embedded in complex data structures and software where
the reference point was introduced as a convenience without
realizing that it has a significant effect.

III. GIRL OR BOY PARADOX

There are three children in a family, having ages 9, 10
and 11. A friend is visiting the family and meets two of the
children, both of which are girls. What is the probability that
all three are girls? The friend then asks the girls how old

they are. Now what is the probability that all three are girls?
Assume that girls are as likely as boys and that each child is
independently either a boy or a girl.

The paradox in this problem is that it seems at first that
being told the ages of the girls should not have any effect on
the probability. It should always be 1/2. However, being told
the ages increases the probability that the third child is a girl
by a factor of 2: from 1/4 to 1/2. How can observing the ages
of the children have any effect?

Assume that the ages of the two girls are 10 and 11.
The probabilities would be the same for any other pair of
ages, as long as one knows the ages of the three children.
The probability space for this problem has 8 points: { GGG,
GGB, ..., BBB }, where the point GGB means that the
two oldest children are girls and the youngest child is a
boy. The relevant events are A = “at least two children
are girls,” B = “the children aged 10 and 11 are girls,”
and C' = “all children are girls.” In terms of sample points,
A = {GGG,GGB,GBG,BGG}, B = {GGG,GGB} and
C = {GGG}. The probabilities of these three events are
therefore P(A) = 1/2, P(B) = 1/4 and P(C) = 1/8. It
is then easy to compute:

P(C|4) =
P(C|B) =

1/4
1/2

The disparity between the two conditional probabilities can
be explained by considering the relative sizes of two kinds of
family, both of which contain families with three girls. If we
choose families having three children, subject to the criterion
that at least two of the children be girls, we will be choosing
among half the families. If we use the second criterion, we
will be choosing among a more restricted set of choices, only
one quarter of the families. Thus, the families with three girls
will seem more probable, not because there are more such
families, but rather because there are relatively more of them.

This is yet another example of a seemingly innocuous
observation that has a significant effect. The original paradox
used only two children and was stated more vaguely [5]. Much
of the controversy surrounding this paradox is the result of
the vagueness. Our purpose here is to give an example of an
observer effect, not with the difficulties of interpreting vague
natural language statements.

IV. THE INSPECTION PARADOX

A Geiger counter is set up to examine a small radioactive
sample which produces one click every hour on average. In
addition, the machine has a timer which shows how long it has
been since the last click. The Geiger counter has been running
unobserved for some days when you start observing the timer.
You wait until the next click and then note the time shown on
the timer. It would seem obvious that the time that you note
will be one hour on the average. Yet, it paradoxically seems
much longer, indeed two hours on the average. Since your



situation awareness of this phenomenon is ultimately based
on observations, and there seems to be no reason to suppose
that your presence in the room observing the timer should have
any effect on the radioactive sample, this represents a loss of
SA.

To understand what is happening, suppose that there is a
reset button on the timer. The timer now shows how long it has
been since the last click or since the timer has last been reset
manually. Using the reset button should not have any effect
on the radioactive sample. Now, instead of simply starting to
observe the timer, you push the reset button and write down
what the timer indicated (call this 7). As before, you then
wait until the next time the Geiger counter clicks, and you
also write down what the timer indicates when this happens
(call this T7). If you did not push the reset button, then when
the click occurs the timer would show Ty + T7.

There are two ways to compute the expectations of Tj
and T3. First, T + 13 is the total waiting time between two
successive clicks of the Geiger counter, so that E(Ty + 1)
should be 1 hour. Since your arrival may be regarded as
randomly dividing in two the total time between the two
successive clicks, F(T,) should be the same as F(T}), and
hence, E(Tp) and E(T;) both should be 30 minutes. The
second analysis begins by noting that because the exponential
distribution is memoryless, the waiting time 77 is itself expo-
nentially distributed with mean 1 hour. Therefore, whatever
the distribution of 7, is, we have E(T3) = 1 hour and
E(Ty + T1)> 1 hour. Thus, the two analyses disagree.

In fact, the second computation is the correct one. Ty + 17
does not have an exponential distribution with intensity 1
click/hour even though it is the time between two clicks. The
problem is that the randomly chosen reset time is more likely
to occur during a longer time interval than a shorter time
interval simply because there is more time in the former than in
the latter. This is what happened in the reference point paradox
in Section II above. In fact, both Ty and 7} are exponentially
distributed with intensity 1 hour so that E(To+T1) = 2
hours. It should be clear that T} is exponentially distributed
because of the memorylessness of the exponential distribution.
It is less obvious that Tj is exponentially distributed. To see
why this is true, note that the probability P(Ty>t) is the same
as P(N(t) = 0) in the Poisson process; and, in the Poisson
process, the parameter ¢ is the size of the region. This region
need not have any relationship to time. For example, it could
be an area or volume. Thus, the probability is the same whether
we are observing a click that occurred in the past or one that
will occur in the future.

Actually, this analysis is an oversimplification. It assumes
that the process has been running forever backwards in time,
when in fact we only know that it has been running for “some
days”. We give a more accurate analysis in the next section
below.

V. STOCHASTIC FRAMEWORK FOR OBSERVER EFFECTS

The examples discussed so far all involve an observer O
and a stochastic process P being observed. In addition, there
is an relationship between O and P that is typically unstated.
To resolve the effect of the observer O on the process P, one
models O as a stochastic process and then explicitly specifies
the relationship between O and P. Together these define a
process OP.

For example, in the Reference Point Paradox in Section II,
the P is the process of randomly dropping n points on a circle.
The observer O is the process of selecting one point on the
circle. It does not matter how this is done so long as it is
independent of the process P. The relationship between O and
P is the selection of the gap of the process P in which the point
of O occurs. The paradox arises from mistakenly interpreting
the process OP as being P, ignoring the process O.

The Girl or Boy Paradox of Section III begins with a
probability space with 4 elements, each equally likely; namely,
the families with three children with ages 9, 10 and 11 at least
two of which are girls. This is the process P. The observer O is
the friend who is visiting. The observation is the ages of two
of the girls. The combined process OP has only two elements.

To understand what is happening in this example, it helps
to “think probabilistically.” In other words, observations and
measurements should always be regarded as being probability
distributions rather than exact values. Indeed, in the case of
continuous probability distributions, it is impossible to observe
an exact value. For example, if one selects a point = of the
unit interval [0, 1] uniformly at random, then x has an infinite
amount of information. While one can develop mathematical
models in which one selects such a point exactly, in reality one
can only determine x to some finite number of decimal places,
and sensors will measure some variable with a known error
distribution (usually a normal distribution). However, even for
discrete distributions, it is better to think in terms of probability
distributions. In particular, the answer to any question about
a stochastic process will be a probability distribution. For
example, the answer to the question “What is the result of
flipping a fair coin?” is the probability distribution that assigns
a probability of 1/2 to each of the two possible outcomes.

Now return to the so-called Girl or Boy Paradox. In this
case, one starts with a model in which one only knows that
there are three children in the family and that each child
is a boy or a girl, equally likely and independently. One
then makes a series of observations that successively change
the probability distribution. The initial probability distribution
assigns 1/8 to every sample point of the probability space.
After meeting two of the children, one assigns 1/4 to four
of the sample points and 0 to the rest. After asking their
ages, one assigns 1/2 to two of the sample points. If one
thinks of the probability distribution as being a state, then the
observations are “collapsing” the state. Nothing is happening
to the children, of course, so it is the observer’s perception of



the children that is collapsing. Note that all of these states are
“mixed states” (or “superpositions”) rather than “pure states”
which would assign a probability of 1 to a single sample point.

Next consider the Inspection Paradox of Section IV. We
can now understand what is missing from our analysis of
this problem: we have not specified the stochastic process
of the observer O. Clearly, one could have different results
if the reset button is pressed in a periodic sequence (e.g.,
once a day) rather than in a random sequence (e.g., a Poisson
process). The simplest assumption is that the observer is an
independent Poisson process in which « resets are performed
every hour. Combining the Geiger counter process with the
observer process produces a combined process that is Poisson
with intensity 1 4+ « clicks or resets per hour. The random
variables T and 7T} are in the combined process.! They are
both exponentially distributed fvith intensity 1 + «. So they

both have the same mean, Toa hours, and their sum has

mean hours. We were not given the exact value of

a, but we Oélo know that the Geiger counter was “running
unobserved for some days,” which suggests that « is no more
than about 0.02. Consequently, the combined process is only
slightly different from the Geiger counter process alone, and
the average total time between clicks or resets will be between
1 hour and 57 minutes and 2 hours. As « approaches 0, the
combined process converges to the Geiger counter process,
and the average time between clicks or resets will approach 2
hours.

The behavior in this example is common to any Poisson
process or more generally any renewal process. To incorporate
the observer into the process, one must combine the observer
process with the renewal process. The relationship between
the two processes is the sum of two gaps in the combined
process.

More generally, the observer effect can be analyzed by
combining the process P being observed with the observer
process O, together with a relationship between O and P, to
form a new process OP. The process OP can be analyzed in
itself, or it could be observed by a meta-observer M by forming
a process MOP, and so on.

The lesson for the SA of an observer is that the observer
should be regarded as part of the process being observed. The
combined process could then be observed (for example, as in
[2]), and this higher-level observer may also be regarded as
part of the combined process, and so on.

VI. THE PRISONER

Armed with this framework, we now analyze another ob-
server effect and some variations. The basic observer effect
is called the Three Prisoners Problem.?> Three prisoners are

'Note that one or both of the gaps Ty and T} could be bounded by two
resets. If « is large, then most gaps will be between resets, not clicks.
2Note that this problem is very different from the Prisoner’s Dilemma.

informed by their jailer that one of them has been chosen at
random to be executed and that the other two are to be freed.
They are told they will learn their fate in one week’s time.
Prisoner A asks the jailer to tell him privately the name of a
fellow prisoner who will be set free, claiming that there would
be no harm in divulging this information, since he already
knows that at least one will go free, and he cannot inform the
prisoner in question about his good fortune. The jailer refuses
to tell prisoner A, pointing out that if A knew the name of one
of his fellows to be set free, then his own probability of being
executed would rise from 1/3 to 1/2, since he would then be
one of two prisoners; and this would be cruel. Does this make
sense?

This problem has generated quite a few debates, some very
heated. Unfortunately, much of the controversy surrounding
this problem lies in translating the vague language of the
problem into the language of probability theory. Since our
purpose is the observer effect, we will use a precise formu-
lation of the problem. Accordingly, let A, B and C be the
events that prisoners A, B and C are set free. These events
are not independent. For example, ANB = C. There are four
points of view in this problem corresponding to the following
probabilities:

P(A) =2 Prisoner A before being told anything

P(A|B) =5 Prisoner A after being told that B will
be set free

P(A|C) =1 Prisoner A after being told that C will
be set free

P(A)=0o0r 1 Jailer’s point of view

Now the prisoner is right that his probability of being executed
will not change no matter what the jailer says, because
P(A) = £. However, it seems clear that the jailer is referring
not to P(A) but to P(A|B) or P(A| C), since the jailer
refers to the respective probabilities. The prisoner, on the
other hand, is referring only to P(A) for himself, although he
does seem to recognize that if he could somehow inform the
other prisoner about his fate, then that would affect the other
prisoner. The fact that he cannot do this is part of prisoner A’s
argument.
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Let us now try to look a little more deeply at the problem.
Suppose that the jailer agrees to the prisoner’s request. If A is
going to be executed, the jailer has a choice: either tell A that
B is going to be set free or tell A that C is going to be set
free. One naturally assumes that the jailer will make one of
these choices at random with probability % Is such a model
reasonable? In practice, one would expect some bias (the jailer
being human after all). So assume that the choice is made to
say B with probability p and C with probability ¢ = 1 — p. If
we make this assumption, our whole model changes. We now
have four events to consider:

B = “Bis executed”

Ql
|

“C is executed”



D,
Dy

“A is executed and the jailer says that B will go free

“A is executed and the jailer says that C will go free

By assumption:

P(B) = P(C) = P(DiDy) =
P(Dy|4A) = p
P(Dy|A) = ¢
Hence,
P(Dy) = P(Dy | 4) P(4) = §
and similarly,
P(Dy) = 3

The event that the jailer tells the prisoner that B will be set
free is now D,UC. The probability that A is set free given
that the jailer tells the prisoner that B is set free is now:
P((AND;)U(ANC))
P(D,UC)

P(ANDy) 4+ P(ANC)

P(Dy) + P(C)
+
+
1

P(A| DyU0O)

o
Wl

wis
W[

p+1
Similarly, the probability that A is set free given that the jailer
tells the prisoner that C is set free is

P(A| DUB) = .

Now consider some cases:

Unbiased jailer This is the case in which p = ¢ = 1.

For this case the two conditional probabilities are:

— 1 2

P(A| D,UC) = 173
2

— 1 2

P(A|DUC) = ==

;+1 3

So if the jailer agrees to be fair, the probability does not
change!

Totally biased jailer For example, assume that p = 1
and ¢ = 0. Now the conditional probabilities are:

— 1 1
— 1

This looks paradoxical until you realize that the only
way for the jailer to tell A that C is going to be set free
is if B was going to be executed. So in this case the
probabilities do change, possibly very dramatically.

“This example illustrates the fact that even in a simple classical

,,probability model, one can have complicated observer effects.
In this case, the original model of one prisoner being selected
at random to be set free is essentially trivial. The complexity
arises when this model is combined with the prisoner and
jailer, regarded as stochastic processes.

Many variations of this problem exist. This simplest is to
change the problem from one randomly chosen prisoner to
be set free to one randomly chosen prisoner to be executed.
Another variation includes the prisoner specifying that the
jailer should choose the other prisoner to tell him about
randomly if there is a choice. Still other variations allow the
prisoners to communicate with each other, either in just one
direction or in two.

Yet another variation is the Monty Hall problem. While this
problem is an interesting puzzle, it is not actually an example
of an observer effect. It was included because it is similar
to the Three Prisoners Problem? and variations of it do have
observer effects. The Monty Hall problem is posed as a game
show with three doors, one of which has a valuable prize. The
contestant selects one door but is not shown what is behind
it. The game show host then opens another door which is
shown not to have the prize. The contestant is then given
the option to change their choice. Note that the game show
host must always open a door that does not have the prize,
must give the contestant the option to change their choice, and
the contestant knows all of this in advance. The best strategy
is to exercise the option and change the choice to the other
door. Indeed, exercising the option increases the probability of
winning the prize by a factor of 2. The reason is quite simple.
The probability that the prize is behind the selected door is
1/3 and the probability that the prize is behind one of the other
two doors is 2/3. The option to change is effectively giving the
contestant the ability to open two doors. This analysis seems
to require that the prize be randomly placed behind a door.
This is not actually necessary for the analysis. What matters
is that the contestant has no knowledge of a bias in favor of
any door.

The Monty Hall problem would have an observer effect if
some of the requirements were relaxed, such as not requiring
that the game show host must always open a door and must
always give an option to change. This would dramatically
change the problem since now the game show host could
choose to give the option only if the contestant selected the
door with the prize, or could do so with some probability. One
can only surmise that it is some variation like this that many
people are assuming when the problem is presented to them.

VII. SOCIOLOGICAL OBSERVER EFFECTS

We now consider observer effects in sociology. The earliest
example was a research study on working conditions at the

3Indeed, there are variations of the Three Prisoners Problem that are
mathematically equivalent to the Monty Hall Problem.



Hawthorne Works of Western Electric in Cicero, Illinois,
where it was found that individuals appeared to modify their
behavior as a result of an awareness of being observed rather
than any changes in the working conditions. It seems clear
that there was an observer effect, but there is little agreement
on exactly what the effect was. One interpretation is that
the increased attention was the cause of the increase in
productivity. This interpretation is now referred to as “The
Hawthorne Effect” [9].

The observer effect also occurs in sociolinguistic research.
The problem is that subjects may modify their behavior when a
field worker is attempting to capture linguistic speech patterns.
When attempting to observe the daily vernacular of a language,
the speaker is aware that their speech is being used for
scholarly research, and as a result may adopt a more formal
pattern of speech. This produces data that is unrepresentative
of the speaker’s typical speech [8, p. 209].

A more significant sociological effect is the secondary
observer effect.* This effect is concerned with how researchers
select and process data to produce scientific results. Unlike the
Hawthorne effect, this is not an effect on experimental sub-
jects. Rather, it is a secondary effect on the observers. Different
researchers will have their own techniques for selecting the
data for a study and for analyzing it. Even relatively innocu-
ous differences in the analysis steps can cause significantly
different results on the same data. Different software packages
that supposedly perform the same analysis may produce small
but significantly different results. The use of data downloaded
from the Internet leads to yet another problem. Online sources
are often updated over time, so it need not be the case that
the same source data remains the same [3].

Both primary and secondary observer effects can be mod-
eled by analogy with the framework in Section V. In other
words, the observer should also be considered as an exper-
imental subject by a meta-observer. The combination of the
scenario being studied and the observers who are studying
it then forms the subject of the meta-study. A whimsical
example of this appears in “The Hitchhiker’s Guide to the
Galaxy” [1] in which the Earth is actually a computer or
laboratory created for and run by mice, and the researchers
who are experimenting on mice are the actual subjects. This is
not very much different from studies of primary and secondary
observer effects, making Douglas Adams quite far ahead of his
time; indeed, nearly 40 years before secondary observer effects
were first considered by researchers.’

VIII. SCHRODINGER’S CAT

In quantum mechanics, a popular example of the observer
effect is the Schrodinger’s cat thought experiment, sometimes
referred to as a paradox. The usefulness of this example is

4This could also be called a meta-observer effect.
5 Alternatively, in the spirit of Douglas Adams’ book, a copy of a paper on
observer effects was sent backward in time...

that it furnishes a simple framework for distinguishing the
various interpretations of quantum mechanics. Although the
thought experiment was formulated in the context of quantum
mechanics, it is unclear how it is actually quantum mechanical.
One has a cat in a sealed container together with a mechanism
that will kill the cat with probability 1/2. Schrodinger was
explicit that the mechanism was a radioactive sample, and even
gave details about how the cat would be killed. None of this
is especially relevant to the thought experiment, which could
easily be regarded as being purely classical. One aspect of the
paradox is that it does not seem to make intuitive sense for a
macroscopic entity like a cat to be in a mixed state of being
half alive and half dead. However, if one accepts this, then the
other aspect of the paradox is that when one opens the sealed
container, the mixed state somehow instantly collapses into a
pure state; namely, the cat is either alive or dead at that point,
not a mixed state of both. How does the observer cause this
effect by simply observing the state of the cat?

While the quantum mechanical version of this problem is
far from being resolved, from the classical point of view,
there is no paradox at all. Mixed states are commonplace in
probability. Indeed, as discussed in Section V, it is the essence
of thinking probabilistically to view every measurement as
being a probability distribution rather than to require that every
measurement be a single value. Classical states (i.e., probabil-
ity distributions) can evolve (as a result of new information),
and there is no need for arbitrary, unexplained state collapses
to occur. Unfortunately, this does not resolve the quantum
mechanical problem.

IX. SOFTWARE MONITORING

Complex mechanical and electronic systems can be prone
to observer effects. These effects are called probe effects for
electronic systems, and observer effects for software systems.
Complex multithreaded applications are especially vulnerable
to observer effects. Threads can have subtle thread coordi-
nation errors (commonly called “race conditions”). When a
multithreaded application fails, the usual approach for dealing
with the problem is to add additional software to monitor the
behavior and isolate the cause. Unfortunately, such monitors
can affect the functioning of the software so much that the
failure no longer occurs. When this happens, the error is called
a “Heisenbug.” This name was inspired by the Heisenberg
uncertainty principle. Unfortunately, while the name is very
clever, it is also inappropriate. As was pointed out in Section I,
the observer effect is not the same as an uncertainty principle,
and a Heisenbug is clearly an observer effect, not any kind of
uncertainty principle.

Software monitoring can have other effects as well, even
when it is not being used to find a thread coordination error.
Monitoring can invalidate the effects one is attempting to
observe, and it can even cause its own errors and failures. For
example, monitoring software to determine its performance



can be invalid due to the impact of the monitoring as a result
of effects on caching and pipelining.

Needless to say, adding monitors to a software system will
produce a different software system, and the modified system
may have very different characteristics. The observer effect
for such systems is a complex problem.

X. CONCLUSION

A number of examples of observer effects for classical
systems have been presented. The main purpose was to make
the case that observer effects are not exclusively a quantum
mechanical issue. To analyze such effects for classical systems,
it was proposed that the observer should be modeled as
another stochastic process and a relationship between the
observer process and the process being observed. The process
being observed should be combined with the observer process
to form a new process. The relationship between the two
processes is a key part of the combined process. This approach
may be useful for situation management as well as in other
fields.
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