
KU ScholarWorks | http://kuscholarworks.ku.edu

Adaptive Radiations in the 

Context of Macroevolutionary 

Theory: A

Paleontological Perspective

by Bruce S. Lieberman

KU ScholarWorks is a service provided by the KU Libraries’ Office 
of Scholarly Communication & Copyright.

This is the author’s accepted manuscript version of the article, made 
available with the permission of the publisher.  The original published 
version can be found at the link below.

Lieberman, Bruce S. 2012. “Adaptive radiations in the context of 
macroevolutionary theory: a paleontological perspective.” Evolutionary 
Biology (39):181-191. 

Published version: http://dx.doi.org/10.1007/s11692-012-9165-8

Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml

Please share your stories about how Open Access to this article benefits you.

2012



 1 

 

Adaptive Radiations in the Context of Macroevolutionary Theory: A 

Paleontological Perspective  

 

Bruce S. Lieberman 

Department of Geology and Biodiversity Institute, University of Kansas, 1475 Jayhawk Blvd., 

120 Lindley Hall, Lawrence KS 66045, USA 

e-mail: blieber@ku.edu  

Phone: 785-864-2741 

Fax: 785-864-5276 

Total # of words: 



 2 

Abstract 

 

Adaptive radiations are often invoked anytime clades show significant bursts of diversification, 

but it is important to not simply assume that any radiating clade constitutes an adaptive radiation. 

In addition, several highly relevant macroevolutionary concepts including the Turnover Pulse 

Hypothesis, the Effect Hypothesis, exaptation, and species selection, have not been considered in 

the adaptive radiations literature. Here, these concepts are integrated into the theory of 

evolutionary radiations in general, and adaptive radiations in particular, and different types of 

evolutionary radiations are identified, including geographic radiations.  Special emphasis is 

placed on considering the role that abiotic as opposed to biotic factors may play in motivating 

diversification during evolutionary radiations.  Further, recent paleontological data suggesting 

that rather than organismal adaptation it may be principally abiotic factors, such as climate 

change and a taxon’s presence in a geographically complex region, that cause clades to diversify 

will be described.  The fossil record, the source of the initial hallmark examples of adaptive 

radiation, now appears to show little concrete support for this phenomenon.   

 

Keywords    Adaptive radiation, Macroevolution, Geographic radiation, Species selection, 

Exaptation, Speciation 

 

Introduction 

 

One of the important areas of research in evolutionary biology involves studies aimed at gaining 

a deeper understanding of the phenomenon of adaptive radiations, and there is an extensive body 
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of literature dealing with this subject (Osborn 1902; Huxley 1942; Mayr 1942; Simpson 1944, 

1953; Eldredge and Gould 1972; Eldredge 1979, 1989; Stanley 1979; Eldredge and Cracraft 

1980; Cracraft 1982; Gould 1990; Lieberman 1993; Givnish 1997; Vogler and Goldstein 1997; 

Futuyma 1998; Schluter 2000; Losos and Miles 2002; Grant and Grant 2008; Abe and 

Lieberman 2009, 2012; Losos 2009; Olson and Arroyo-Santos 2009; Rundell and Price 2009).  

By the same token, adaptive radiations have often been invoked whenever there are bursts of 

significant diversification in clades. The existence of the adaptation supposedly driving the 

radiation, however, is not always tested for, such that evidence may be lacking.  Further, the 

causal link relating why the hypothesized adaptation should cause the excessive diversification in 

the first place is not generally demonstrated.  In short, adaptive radiations are frequently invoked 

without detailed testing, and it is important to not simply assume that any radiating clade 

represents an adaptive radiation (Eldredge and Cracraft 1980; Cracraft 1982; Gould 1990; 

Gittenberger 1991; Lieberman 1993; Vogler and Goldstein 1997; Rundell and Price 2009).  A 

strict, hypothesis testing framework is needed before an adaptive radiation can be identified.  

Demonstrating an adaptive radiation in fossil taxa can be especially problematic, as it is very 

hard to conduct the detailed functional tests necessary to document the existence of adaptations 

in long extinct populations. It is somewhat ironic, therefore, that it was the vertebrate 

paleontologist Henry Fairfield Osborn (Osborn 1902) who first coined the term “adaptive 

radiation” to describe the radiation of mammal orders in the Cenozoic.  

    Another aspect of the literature on adaptive radiations is that several highly relevant concepts 

in the area of macroevolutionary theory, including the Turnover Pulse Hypothesis, the Effect 

Hypothesis, species selection, and exaptation have not been considered. Further, data gathered by 

macroevolutionists focusing on what causes clades to diversify have not generally been 
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incorporated into the adaptive radiations literature.  In actuality, abundant evidence has been 

gathered to suggest that it may be principally abiotic factors, such as geologic change, climatic 

change, and a taxon’s presence in a geographically complex region, which causes clades to 

undergo rampant diversification, rather than organismal adaptation.  Further, even when there 

may be biotic factors driving diversification, these may not be organismal adaptations, but 

instead species-level characters that lead to a greater propensity for certain groups to speciate.  

The focus of this paper is on integrating concepts from macroevolution with the theory of 

adaptive radiations, and special emphasis is placed on studying evolutionary radiations in a 

macroevolutionary, hierarchical, and biogeographic context.  Moreover, some results from recent 

paleontological research that may shed some light on the nature of evolutionary radiations will 

be described and emphasized.  

 

Defining what Constitutes an Adaptive Radiation 

 

Tempo and Mode and Natural Selection 

 

In order to more explicitly consider evolutionary radiations in general, and adaptive radiations in 

particular, a two-dimensional space defining pattern, focused on the tempo of speciation, and 

process, focused on the role of selection, is defined for any clade (Fig. 1).   (Although there has 

been debate about whether selection constitutes a pattern or a process, a topic considered 

specifically in reference to adaptive radiations by Cracraft 1982 and Vogler and Goldstein 1997, 

for our purposes here selection will be treated as a process, with the caveat that in certain 

contexts it should instead be referred to as a pattern.)  Other axes/dimensions can be defined for 
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clades, but since evolutionary tempo and selection (which pertains to adaptation) are such 

important aspects of the definition of adaptive radiation, these must be considered primary. Any 

clade might have a below average or above average rate of speciation relative to other clades, but 

clearly a clade must be radiating rapidly to potentially constitute an adaptive radiation.  Thus, 

only clades occupying the right hand side of Figure 1 are even potentially germane to a 

discussion of adaptive radiations. Further, high rates of speciation should be quantified and 

considered in an hypothesis testing framework, and fortunately there are several methods that 

make this possible, e.g., Sanderson and Donoghue (1996), Lieberman (2001), and Nee (2006).   

Especially relevant as exponents of adaptive radiation are clades where selection is the primary 

factor spurring rapid diversification.  Here it is argued that the term adaptive radiation should be 

restricted to clades occupying the lower right hand quadrant of Figure 1.  However, simply 

identifying a clade that corresponds to the lower right hand quadrant of Figure 1 does not 

guarantee it constitutes an adaptive radiation.  The selection spurring diversification may not be 

acting on an adaptation but instead on an exaptation.  Thus, just as there are adaptive radiations, 

there can be “exaptive radiations,” and these are discussed more fully below.  Alternatively, the 

clade could be diversifying rapidly because of the action of selection, but not selection operating 

at the organism-level, but instead selection acting at the species-level.  Such instances of species 

selection mediating evolutionary radiation are also considered herein.  One additional aspect of 

selection worth qualifying in the context of evolutionary radiations is whether it is primarily 

biotically mediated or abiotically mediated.  In particular, is it ecological interactions or 

environmental factors that enable the rapid diversification? 

    Of course, there can be clades that are rapidly radiating but where other factors instead of 

selection are involved. Such circumstances involve clades occupying the upper right hand 
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quadrant of Figure 1.  For instance, a clade could be diversifying rapidly because it occupies a 

geographically complex region, or because it has been buffeted by a series of geologic or 

climatic changes.  Neither of these circumstances precludes the action of natural selection: 

natural selection must operate because it is a statistical law.  However, in neither case is natural 

selection the primary factor that is motivating diversification.  Therefore, it would be factually 

inaccurate to refer to such examples as adaptive radiations.  Instead, here they are referred to as 

“geographic radiations,” and they are discussed more fully below.  Clades undergoing 

geographic radiation represent an interesting and important type of evolutionary radiation.  Many 

clades once thought to be undergoing adaptive radiation might actually comprise geographic 

radiations, and be consigned to the upper right hand quadrant of Figure 1. 

  

Adaptations, Exaptations, and Exaptive Radiations 

 

Not every character currently subject to natural selection is an adaptation.  There are many 

characters that evolved under one selective regime and later came to serve a different function 

and then subsequently came under another selective regime.  That there was a distinction 

between these characters and traditional adaptations was first hinted at by Gould and Lewontin 

(1979) and then discussed in detail by Gould and Vrba (1982).  Gould and Vrba (1982) referred 

to characters where the historical origin of the character vis à vis selection was different from its 

current utility as exaptations.  Gould and Vrba (1982) further characterized adaptations and 

exaptations as each an exponent of a broader category - aptation.  Pertinent to a discussion of 

evolutionary radiations, in cases exaptations rather than adaptations may have spurred 

subsequent rapid diversification.  These cases should be properly defined as exaptive radiations 
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to differentiate them from truly adaptive radiations.  Further, some times because evolutionary 

radiations began in the distant past, or even constitute extinct clades frozen in the fossil record, it 

may be difficult to prove whether such instances truly represent exaptive as opposed to adaptive 

radiations.  Thus the term “aptive radiation” may be the most accurate and theory neutral 

appellation to give to clades occupying the lower right hand quadrant of Figure 1, until such time 

as the character(s) in question posited to be spurring diversification can be shown to be 

adaptations, as opposed to exaptations.  To fully document adaptation, and thereby demonstrate 

that an aptive radiation is indeed adaptive, detailed functional and phylogenetic tests are 

necessary.  If it can be shown that the character in question posited to be responsible for the 

diversification of the clade had been continually shaped by natural selection for just such a 

purpose then it is fair to say that we are dealing with an adaptive radiation. Because of the nature 

of the paleontological record, the term aptive radiation is especially relevant for fossil taxa, as 

demonstrating adaptations in these is a particularly thorny problem.   

    It is possible that some clades once thought to constitute adaptive radiations might instead be 

exaptive radiations.  Consider horses, one of the hallmark examples of adaptive radiation 

documented extensively in Simpson (1944, 1953).  Simpson (1944) discussed how horses 

developed a character, hypsodonty (high-crowned teeth), which initially was pre-adaptive in his 

parlance, i.e., the character evolved due to genetic drift or selection for something else, perhaps 

selection for larger body-size during climatic cooling.  It later came under selection for feeding 

habit, and ultimately facilitated a move by horses from a browsing to a grazing lifestyle.  If the 

evolution of hypsodonty was first associated with selection for large body size and only later 

associated with a change in feeding (i.e., Wang et al. 1994), then hypsodonty would represent a 
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patent example of an exaptation, and the diversification of horses would represent an exaptive 

radiation.  Further, without the climate change, the radiation never would have happened. 

 

Levels of Selection and Evolutionary Radiations 

 

The debate about the importance of species selection has been extensive and fascinating, and 

considering it in detail would be beyond the scope of this paper, so the interested reader is 

referred to Vrba (1984, 1989), Vrba and Eldredge (1984), Eldredge (1985, 1989), Jablonski 

(1986, 2007), Lieberman et al. (1993), Lieberman and Vrba (1995, 2005), Gould (2002) and the 

references therein for more detailed discussion.  It is clear from these and other studies that there 

are certain properties, emergent at the species-level, which cause clades to undergo rapid 

speciation.  For instance, dispersal capabilities that influence population genetic structure, and 

variability within species, constitute such emergent properties (Vrba and Eldredge 1984; 

Jablonski 1986; Vrba 1989; Lieberman and Vrba 2005). If there are clades with these emergent 

properties that show a concomitant increase in the rate of speciation then they embody legitimate 

examples of species selection, and they also occupy the lower right hand quadrant of Figure 1 

(they are radiating and selection is the cause).  Yet a perspective that assumes all diversification 

is driven by organismic adaptation might mistakenly treat such clades as undergoing adaptive 

radiation.  It is worth considering how clades experiencing species selection should be viewed in 

the adaptive radiations framework.   

    Characters emergent at the species-level are not adaptations (Lieberman and Vrba 1995) as 

they did not evolve nor are they maintained for the purposes of promoting high diversification 

rates.  They are instead side consequences and hitchhike as properties relating to or dependent on 
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some other features.  Thus, they are exaptations.  Clades undergoing species selection represent 

an important higher-level example of the exaptive radiations already mentioned, and are here 

referred to as “species-level exaptive radiations.”  

    One recent example that may partially fit the pattern of a species-level exaptive radiation 

comes from the work of Moyle et al. (2009) on birds within the genus Zosterops.  Moyle et al. 

(2009) described how this group did not show the characteristic ecomorphological signature 

predicted for a biotically driven adaptive radiation (discussed more fully below), yet had a high 

diversification rate.  Further, correlated with this were certain properties that might influence 

population genetic structure and enhance propensity to speciate, and thereby be emergent at the 

species level.  This includes aspects of their dispersal ability, intraspecific variability, and social 

structures.  

    The Effect Hypothesis.- Particularly germane here is consideration of Vrba’s Effect Hypothesis 

(Vrba 1984, 1989).  Vrba (1984, 1989) framed her discussion of the Effect Hypothesis using a 

specific example from bovids.  She analyzed diversification patterns in the group, and 

specifically focused on one clade’s differential predilection to produce new species through time 

relative to a closely related taxon.  She concluded that this increase in net diversification rate was 

not due to species selection, but rather arose because organisms within the group were specialists 

and more likely to be subjected to directional natural selection during times of climate change 

(Vrba 1984, 1989).  That is, the species sorting within the group (Vrba and Gould 1986; 

Lieberman and Vrba 1995) was due to organism-level natural selection.  Further, this arose as a 

side consequence of another trait (one clade consists of specialists, the other of generalists).  

Vrba’s (1984) example of the Effect Hypothesis appears to constitute a legitimate example of an 

exaptive radiation because there is an increase in speciation rate driven by natural selection.   
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Abiotic and Biotic Factors and Exaptive and Adaptive Radiations 

 

Another important aspect of the discussion of the role of selection in adaptive and exaptive 

radiations is considering whether it is primarily biotic or abiotic factors that caused the selection.  

For this reason, the realm of the adaptive and exaptive radiation, the lower right hand quadrant of 

Figure 1, can be further partitioned as in Figure 2, based on the role that biotic factors, including 

competition, as opposed to abiotic factors, including climatic change, played in mediating the 

selection pressure that led to diversification.   

    Consider the case of Vrba’s Effect Hypothesis just mentioned.   There, the bovid radiation was 

mediated by interactions between the abiotic environment and biotic attributes of organisms.  

Thus, there is a distinctly abiotic flavor to this exaptive radiation, for without the environmental 

change the radiation would not have transpired. Probably the example from horses already 

mentioned also was primarily driven by abiotic factors.   

    By contrast, in cases where species selection is occurring, there clearly are biotic factors that 

are ramping up diversification rates, such that any time there is a species-level exaptive radiation, 

it was produced by biotic factors (see Fig. 2).  Returning to the example from Moyle et al. 

(2009), as already mentioned above, aspects of that radiation fit the pattern of a species-level 

exaptive radiation.  Intriguingly, there are also aspects of the Zosterops radiation consonant with 

an exaptive radiation mediated by Vrba’s Effect Hypothesis, because selection operating at the 

organism level may have helped to foment the radiation.  Unlike the example from Vrba’s 

bovids, however, there is a more distinctly biotic flavor to this aspect of the radiation.  In 

particular, several species of Zosterops have short generation times (Moyle et al. 2009), 



 11 

suggesting that individual organisms within the group may be able to respond rapidly to the 

action of natural selection.  In this case it is not changes in the abiotic environment that are 

triggering the directional selection.  Instead, it is the presence of distinct food sources these birds 

may encounter on new islands, and thus biotic factors. This points out the fascinating and 

complex nature of evolutionary radiations, for within any given clade more than one cause may 

explain the radiation, and perhaps even within any given clade there may be more than one 

radiation.  

    Adaptive radiations mediated by abiotic factors, especially climate change, are likely to be 

important, although these have received less attention in the scientific literature.  By contrast, 

there have been several treatments of adaptive radiations detailing how biotic factors such as 

ecological interactions or entering a new region, adaptive zone, or ecospace can spur 

diversification (e.g., Givnish1997; Schluter 2000; Losos 2009; Rundell and Price 2009; Yoder et 

al. 2010).  Since paleontological evidence for this type of radiation seems anecdotal, or at times 

even illusory (the views of Osborn 1902 and Simpson 1953 not withstanding), it will not be the 

principal focus herein.  However, because of its centrality in several discussions of adaptive 

radiations, some discussion is warranted. One consistently invoked litmus test for these types of 

radiation is the ability to recover a pattern of morphological and ecological, or ecomorphological 

(Ricklefs and Miles 1994) divergence, which involves demonstrating that phenotypes and 

environments/ecology are closely related, sometimes using morphometric evidence (Harmon et 

al. 2003, 2010). These radiations are treated herein as principally being caused by biotic factors 

(Fig. 2).  Scientific evidence to affirm this type of radiation includes the ability to invoke newly 

available lifestyles or landscapes, the acquisition of key characteristics, some significant 

ecological interactions between radiating taxa, and also to document some evidence for 
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sympatric speciation. The fact that speciation is typically allopatric (geographic) and not 

sympatric (ecological) is significant, and is discussed more fully below.  

    Abe and Lieberman (2012) used morphometric methods to study patterns of morphological 

diversification across phylogenetic space in a group of Devonian trilobites, the calmoniids.  

These have often been treated as a classic example of an adaptive radiation (see discussion in 

Eldredge and Cracraft 1980, Lieberman et al. 1991, and Lieberman 1993).  Abe and Lieberman 

(2012) found that there was no statistical difference in the amount of morphological change that 

occurred when speciation was either sympatric or allopatric, nor did the amount of 

morphological change at speciation decline through time and with cladistic rank as the clade 

became more diverse.  Thus, any stamp of ecological interaction and ecomorphological 

divergence is lacking, and it appears that the calmoniids were not undergoing an adaptive 

radiation mediated by biotic factors (the type of evolutionary radiation the calmoniids appear to 

comprise is discussed more fully below).  It is of course difficult to know at this time the extent 

to which this example is characteristic of other evolutionary radiations in general, and those 

preserved in the fossil record in particular.  Certainly there are several examples based on studies 

of extant taxa that indicate adaptive radiations caused by biotic factors are important phenomena, 

but the evidence for these types of radiations in the fossil record does seem to be quite narrowly 

circumscribed.  The paucity of paleontological examples of these types of radiations may find 

explanation in an important perspective introduced by Rundell and Price (2009), who argued that 

in older radiations the signature of ecologically fueled differentiation characteristic of biotically 

driven adaptive radiations could get effaced.  This is because closely related, sympatric species 

often tend to merge and have only an ephemeral existence, especially when they experience 

climate change.  This perspective is especially apposite when considering radiations preserved in 
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the fossil record: such radiating clades perforce require an ample amount of time to become 

established so that they can become manifest to paleontologist’s.  Another issue is that the 

cryptic or nearly cryptic species often produced in the early phases of biotically driven adaptive 

radiations by definition cannot be discerned in the fossil record, and thus any diversity produced 

by such radiations might be paleontologically invisible.  

  

Geographic Radiations 

 

Although demonstrable examples of biotically mediated adaptive radiation seem few and far 

between in the fossil record, this is not to suggest that evolutionary radiations themselves are rare 

in the fossil record: indeed, they are quite commonplace.  Such radiations typically seem to 

comprise clades occupying the space in the upper right hand quadrant of Figure 1.  Sometimes 

such clades have been mistakenly treated as epitomizing adaptive radiation, but the primary 

factor motivating diversification is not natural selection.  Discussing this issue requires some 

consideration of speciation mode.  Of course sympatric speciation, which is ecologically driven, 

provides a direct connection between speciation and the phenomenon of adaptive radiation.  It is 

now clear, however, that speciation is transcendently allopatric, perhaps even in clades that are 

typically held up as examples of adaptive radiation (Glor et al. 2004).  What if climate change or 

geological change is responsible for triggering an evolutionary radiation by triggering bouts of 

allopatric speciation?  Evidence is accumulating to suggest that some of the classic examples of 

adaptive radiation may primarily have been produced by speciation operating in the standard 

allopatric mode.  It would seem somewhat inaccurate to refer to evolutionary radiations 

triggererd by allopatric speciation in a geographically complex region as adaptive radiations. 
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Certainly islands biotas comprise a significant proportion of the examples of so called adaptive 

radiations, and islands undoubtedly qualify as geographically complex regions.  Given that 

speciation typically occurs in the allopatric mode, it is very likely that a clade’s presence in such 

a region will amplify opportunities for diversification.  We might suspect that the most 

spectacular examples of diversification involve clade’s that possess biotic characteristics that 

make them likely to diversify, perhaps emergent properties of species, that also occupy a 

geographically complex region.  For instance, birds possess distinctive dispersal capabilities that 

could influence population genetic structure, and they are one type of taxon that especially seems 

to proliferate once they arrive on islands. Cadena et al. (2005), Emerson and Kolm (2005), and 

Whittaker et al. (2007) do also provide interesting recent treatments and discussions of some of 

the ecological phenomena associated with islands that might make them cradles of diversity.    

    A paleontological example of how geographic complexity can be the arbiter for where and 

why radiations happen comes from the work of Abe and Lieberman (2009).  Using phylogenetic 

biogeographic analysis and also evolutionary rate studies they documented how the patterns of 

diversification in the calmoniid trilobites, the aforementioned classic example of an adaptive 

radiation, seem to be related to the fact that the group occurred in a geologically complex region 

that consisted of several distinct marine basins that were not always connected.  Overlaid over 

this complex topography there were repeated episodes of climate change that caused oscillations 

in sea-level that would join and later sunder marine connections between the basins (remove and 

then reinstate geographic barriers), allowing and then restricting opportunities for movement 

between the basins by trilobite taxa.  This provided for repeated episodes of range expansion 

followed by allopatric differentiation and speciation (Abe and Lieberman 2009).  Allopatric 

differentiation following isolation might involve a combination of adaptive and non-adaptive 
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mechanisms (including drift) so at least in one sense the calmoniid radiation is not without any 

adaptive character.  However, the intiating factors that precipitated the radiation were geological 

and climatic (Abe and Lieberman 2009).  Moreover, as already described above, there does not 

seem to be the characteristic signature of morphological divergence across phylogenetic space in 

the calmoniids that one would associate with the existence of prominent ecological interactions 

between species (Abe and Lieberman 2012).  Thus, it would be theoretically murky and 

inaccurate to refer to the calmoniid diversification as an adaptive radiation.  Rundell and Price 

(2009) described other examples that seem to match the pattern found in the calmoniids.   

    Cracraft (1982) and Gittenberger (1991) provided a very useful discussion of how 

opportunities for allopatry can stimulate diversification.  Gittenberger (1991) further argued that 

clades diversifying because of extensive opportunities for allopatry should be treated as 

undergoing “non-adaptive radiation.”  He held that non-adaptive radiations were especially likely 

to prevail and should be invoked when there is no profound role for biotic factors driving 

diversification.  Rundell and Price (2009) reiterated and supported this perspective and Losos 

and Glor (2003) also discussed some of the issues pertaining to considering divergence 

mechanisms in the context of speciation.  Gittenberger’s (1991) observations seem fundamental, 

yet there might be some concern with applying the term non-adaptive radiation to the calmoniid 

trilobite radiation (and possibly other radiations), as the clade persisted for tens of millions of 

years: in at least a trivial sense the clade must have been adapted, so that descriptor could 

perhaps be rejected by some as potentially inaccurate or confusing.  Further, some differentiation 

in allopatry, even if that particular aspect of differentiation did not cause the radiation, can still 

have an adaptive character.  However, the treatment herein very much endorses the perspective 

that Gittenberger (1991) brought to the discussion of these radiations, as it is not adaptation that 
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is causing the profound divergence.  Instead, the term “geographic radiation” is offered to best 

describe the situation found in these calmoniid trilobites.  Further, any time a geographic 

radiation occurs, it is fundamentally being driven by abiotic factors. 

    Interestingly, in the calmoniid trilobites, just as it was geographic complexity that spurred the 

radiation of the group, it was the demise of such complexity that ultimately terminated the 

radiation.  In particular, during the Devonian there were repeated episodes of sea-level rise and 

fall, but generally sea-level was on the rise.  At some point in the Devonian sea-level rose 

sufficiently to the point where even during the oscillations that precipitated a drawdown in sea-

level, sea-level was still high enough to ensure largely continuous marine connections between 

the once isolated, distinct marine basins in the region (Abe and Lieberman 2009, 2012).  In a 

sense, the climatic changes ultimately trumped the geological factors that had made the region 

the trilobites occupied once so complex, and opportunities for allopatric differentiation 

diminished.  Ultimately the speciation faucet was shut off and the group ceased radiating, with 

speciation rate falling to zero.  In the face of continual, low to moderate extinction rates, the 

group basically faded away over the course of a few millions of years.   

    Paradoxically perhaps, since it is often offered as such a paradigm example of the adaptive 

radiation phenomenon, aspects of the radiation of Galapagos Finches may match the pattern 

found in the trilobites.  Certainly there are many fascinating patterns associated with the 

radiation, which has been studied in detail over the course of many years (see Grant and Grant 

2008).  However, consider that the bulk of speciation in the group seems to be allopatric and 

further that the Galapagos finches are not monophyletic: one species within the group is found in 

Cocos Island, some 800 km northeast of the Galapagos Island chain (Grant and Grant 2008).  

Like its Galapagos kin, this species has diverse feeding behaviors, yet there has not been a 
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corresponding radiation of Cocos finches.  This suggests that there may have been something 

about the Galapagos and the fact that it was a relatively geographically complex island chain that 

facilitated the radiation of the finches there (Abe 2010). 

 

Different types of Allopatric Speciation and Further Characterizing Geographic Radiations 

 

One additional aspect of geographic radiations worth considering has to do with the fact that 

there are two primary types of allopatric speciation relevant to discussions dealing with fossil 

taxa: vicariance and peripatric or peripheral isolates speciation (Wiley and Mayden 1985; Brooks 

and McLennan 1991; Lieberman 2000; Wiley and Lieberman 2011).  When speciation occurs via 

vicariance species are not expanding their ranges by dispersing over pre-existing barriers 

(although their ranges may expand up to the limit of those barriers).  Instead, barriers emerge 

within pre-existing ranges, thereby subdividing them.  By contrast, with peripatric speciation, 

organisms are actively dispersing over pre-existing barriers.  With vicariance, an important 

component of the work involved with proximally causing speciation is done by geology and 

climate and the organisms are more languorous.  With peripatry, organisms are providing an 

important component of the action, although of course the geological or climatic barriers must 

have been produced previously and are still some of the important ultimate causes of speciation 

(Lieberman 2000).   

    The example from the calmoniids already discussed seems to principally involve vicariance 

(Abe and Lieberman 2009, 2012): species are not actively dispersing over pre-existing barriers.  

Instead, the episodes of sea-level rise and fall are causing more passive range expansion.  By 

contrast, certain examples of geographic radiation within island chains, especially involving 
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birds, are more likely to have involved peripatric speciation and thus more active dispersal by 

component taxa (Mayr 1942; Grant and Grant 2008).  When information about the dominant 

type of allopatric speciation driving a geographic radiation is available, it may be worth 

providing additional qualifiers for geographic radiations: geographic radiations spurred by 

vicariance can be referred to as “vicariant geographic radiations;” those spurred by peripatry can 

be referred to as “peripatric geographic radiations.”  At this time not enough is known about the 

relative proportions of either of these to ascertain whether vicariant geographic radiations or 

peripatric geographic radiations are numerically more dominant.  It is even conceivable that 

many geographic radiations may include episodes of both vicariance and peripatry, such that it 

would not always be possible to further parse geographic radiations into sub-categories, but the 

example from the calmoniids appears to comprise a legitimate vicariance geographic radiation. 

 

Evolutionary Radiations and Monophyly 

 

These discussions have principally focused on evolutionary radiations in the context of single 

clades, but another aspect of defining these radiations is considering whether the term should be 

restricted to a single, monophyletic clade, as Eldredge and Cracraft (1980) argued (see also 

Givnish 1997; Abe 2010), or rather whether the term should encompass several different clades 

simultaneously radiating.  In point of fact, Osborn (1902), the architect of the term adaptive 

radiation, distinguished between “general adaptive radiations” which would circumscribe several 

coevally radiating clades and “local adaptive radiations” which in today’s parlance would be 

restricted to a single clade.  Focusing on general radiations and not considering whether they 

might be adaptive or not, examples would include the Cambrian radiation, which is the 
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proliferation of bilaterian animals at the end of the Proterozoic and start of the Phanerozoic 

(Lieberman 2003), and the aforementioned Cenozoic radiation of mammals.  Whether the 

primary force driving these radiations was generally ecological factors and adaptation is still 

debated, but here the perspective is suggested that applying the term general adaptive radiation is 

too imprecise: in reality, probably what is transpiring during the Cambrian radiation is several, 

separate radiations occurring in several phyla (and even classes, etc.).  These may, or may not, 

have been driven by the same process, and further, there is little evidence that adaptation played 

a paramount role (Lieberman 2003).  Another instructive instance comes from cichlids, which 

have undergone separate monophyletic radiations in several different African lakes (Kocher 

2004; Seehausen 2006; Abe 2010), yet there is no one cichlid, or even African cichlid, adaptive 

radiation. 

  

The Turnover Pulse Hypothesis 

 

One other excellent example of a phenomenon that has relevance to the discussion of 

evolutionary radiations in general and the question of monophyly in particular is Vrba’s 

Turnover Pulse Hypothesis (Vrba 1985, 1992).  She defined Turnover Pulse’s as involving 

episodes of climatic change that caused geographic isolation in various taxa; the isolation 

subsequently spurred extinction and speciation in several different clades.  Vrba’s paradigm 

examples came from several clades of Plio-Pleistocene tropical mammals including suids, 

bovids, and hominids, but examples have since come from taxa as far afield as Devonian 

trilobites (Lieberman 1999).  In a sense, each set of the clades radiating during a Turnover Pulse 

comprises a separate, independent instance of a geographic radiation.  The mechanism behind 
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these radiations is an Earth history phenomenon, climate change, which spurs allopatric 

speciation.  The Turnover Pulse Hypothesis is significant because it extends the geographic 

radiation concept from a single to a multi-clade context.   

    In a sense, showing that several separate clades are radiating during a commonly experienced 

episode of climate change is powerful evidence that it is not the individualistic, biotic 

characteristics of each of these clades that is spurring the diversification, but rather the common 

Earth history factors.  Indeed, this signifies the important connection between the Turnover Pulse 

Hypothesis and phylogenetic biogeography, where the emphasis is on identifying biogeographic 

congruence, similarities in patterns of evolution across geographic space, in several different 

clades (Wiley 1981; Brooks and McLennan 1991; Lieberman 2000; Morrone 2008; Wiley and 

Lieberman 2011).  Such congruence can be attributed to a common causal factor, either 

geological change or climatic change, which triggers vicariant speciation.  Thus, episodes of 

Turnover Pulse can be treated as vicariant geographic radiations.    

 

Mass Extinctions and Evolutionary Radiations 

 

Mass extinction is another important paleontological phenomenon particularly relevant to 

discussions of evolutionary radiations and monophyly.  For instance, consider the 

aforementioned Cenozoic radiation of mammals after the end Cretaceous mass extinction.  This 

episode of rampant diversification following the mass extinction, and other episodes of 

diversification after other mass extinctions, has been anecdotally referred to as adaptive 

radiations, but in the case of the mammals what is transpiring actually seems to comprise several 

separate radiations.  Moreover, these types of radiations have been attributed to the creation of 
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open ecospace and the relaxation of selection pressures.  Although it is easy to understand how 

the survivors of such an event might be ecologically successful, with the number of organisms 

within any of the surviving species growing precipitously in the face of propitious ecological 

conditions, it is harder to see how that organismic success translates to the diversification of 

species (Yoder et al. 2010), especially if one takes an explicitly hierarchical view of nature (Vrba 

and Eldredge 1984; Eldredge 1985, 1989; Gould 1990, 2002; Benton 1996; Lieberman 2000).  

At this time it is clear that bouts of diversification do follow mass extinctions, but it is harder to 

understand the precise evolutionary mechanisms why, especially when thinking in a 

macroevolutionary context.  One possibility though is that perhaps the survivor species have 

become so fragmented into small, isolated populations that multiple episodes of allopatric 

speciation ensue (E. Wiley, pers. comm.).  

 

Conclusions 

 

Adaptive radiations have rightly been recognized as an important topic in evolutionary biology, 

but sometimes a variety of different patterns and processes have been subsumed under the term 

adaptive radiation.  In order to more fully understand the various phenomena that generically 

have been called adaptive radiation, it is critical to distinguish the causal factors responsible, 

especially the role of selection processes both at the organism and species level, the relative 

contribution of biotic and abiotic factors, and also to determine whether the characters involved 

are adaptations or exaptations.  In reality, several different types of radiating clades exist running 

the gamut from those undergoing geographic radiation, where adaptation is not playing the 

primary role in motivating diversification, to those undergoing biotically driven adaptive 
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radiation, the classic style of adaptive radiation replete with evidence of ecomorphological 

divergence, and finally to those undergoing species-level exaptive radiation where species 

selection explains the diversification.  At least in the fossil record, ironically the source of the 

initial hallmark examples of adaptive radiation, it now seems that patent evidence for adaptive 

radiation driven by biotic factors is likely very restricted.  Instead, the fossil record seems a 

better exponent of geographic radiation and other styles of abiotically mediated radiation 

including abiotically driven exaptive radiations.  Perhaps this is not surprising given that the 

history of life is ultimately a drama preserving the interaction between our planet’s biota and the 

various abiotic impulses it has been subjected to, including climatic and geologic change 

(Lieberman 2000).  Further, in the fossil record competitive factors seem to have left less of an 

imprint, at least at the macroevolutionary scale (Benton 1996; Myers and Lieberman 2011).  

Ultimately, our understanding of evolutionary radiations will continue to advance as scientists 

better characterize the patterns they are studying and more fully grasp the processes generating 

them.  
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Figure legends 

 

Fig. 1. Any clade can be categorized somewhere within a two-dimensional space that 

emphasizes the role selection plays in driving diversification and the tempo of speciation.  Only 

clades on the right hand side of the diagram are radiating, and further only clades in the lower 

right hand quadrant represent potential examples of adaptive radiation: the diversification in such 

clades still may be explicable by other phenomena.  Clades in the upper right hand quadrant, 

although not adaptively radiating, constitute interesting phenomena in and of themselves and 

may be undergoing geographic radiation, where diversification is spurred by the taxon’s 

presence in a geographically complex regions. 

 

Fig. 2. Any clade situated in the lower right hand quadrant of Figure 1 can be more thoroughly 

categorized depending on whether the diversification is spurred by abiotic or biotic factors, 

whether the aptations are adaptive or exaptive in character, and whether selection is operating at 

the organism or species-level.   Some examples are provided where appropriate.  The box on the 

top left does not appear to constitute a viable phenomenon, and therefore is filled in with 

diagonal lines.  Adaptive radiations driven by abiotic factors such as climate change may 

potentially be important, but have not been fully explored in the literature.  
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