
Concurrent Reading and Writing of Clocks

LESLIE LAMPORT

Digital Equipment Corporation

As an exercise in synchronization without mutual exclusion, algorithms are developed to imple-
ment both a monotonic and a cyclic multiple-word clock that is updated by one process and read
by one or more other processes.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.4 [Software Engineering]: Program Verification—correctness proofs; D.4.1 [Oper-

ating Systems]: Process Management—Concurrency

General Terms: Algorithms, Verification

Additional Key Words and Phrases: concurrent programming, nonatomic operations, synchro-
nization

1. INTRODUCTION

In an asynchronous multiprocess system, consider a clock that is updated by one
process and read by one or more other processes. The clock is represented as a
sequence of digits, where reading or writing each digit is a separate operation. We
seek an algorithm to guarantee that a process reads a correct clock value, even if the
read is performed while the clock is being updated. A read that occurs while the
clock is being changed from 11:57 to 12:04 is allowed to return any value between
11:57 and 12:04 (inclusive). However, it is not allowed to return values such as 11:04,
12:07, or 12:57, which could be obtained if no attempt were made to synchronize
the reader and writer. The relevance of this problem to the implementation of a
multiword clock in an operating system should be obvious.
It is widely believed that this problem can be solved only by “locking”—that

is, by using a mutual exclusion protocol to prevent the reader and writer from
concurrently accessing the clock. This belief is wrong. Using the results of [1], I
will derive a solution in which processes never wait. Such a solution is likely to
be more efficient than one that uses locking. It is the goal of this paper not only
to present a potentially useful algorithm, but also to remind readers that one can
sometimes avoid the need for mutual exclusion by using the techniques of [1].
It is customary to assume that reading or writing a single digit is an atomic

operation. The algorithms presented here and the theorems of [1] on which they are
based are valid under the weaker assumption that each digit is, in the terminology
of [2], a regular register. (The version of [1] submitted for publication assumed only

Author’s address: Systems Research Center, Digital Equipment Corporation, 130 Lytton Avenue,
Palo Alto, CA 94301.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
c© 1990 ACM 0000-0000/91/0000-0000 $00.00

ACM Transactions on Computer Systems, Vol 8, No. 4, November 1990, Pages 305–310.

306 · Leslie Lamport

regular registers, but the editor was afraid that the concept of nonatomic operations
on individual digits might be considered heretical and insisted that it be removed
from the paper.) However, readers who wish to ignore the subtle distinction between
atomic and regular digits can simply think “atomic” when they read “regular”.
There are two different kinds of clocks—monotonic clocks that never decrease

and cyclic clocks that cycle through a bounded set of values. Monotonic clocks
are commonly used in operating systems to encode the date and time, while cyclic
clocks that display the time of day are encountered in everyday life. I will first
present an algorithm to implement a monotonic clock and then indicate how it can
be extended to implement a cyclic clock.

2. NOTATION AND THEOREMS

To begin, let us recall the notations and results of [1]. Write operations to a data
item v are assumed to be sequential; the sequence of values written to v is denoted
by v[0], v[1], . . . , where the write of v[i] precedes the write of v[i+1]. The 0th write,
which initializes the value, is assumed to precede all reads. A read of v is said to
see version v[i] if the read ended after the write of v[i] was begun and began before
the write of v[i+1] ended. A read that is concurrent with a write will see more than
one version.
In a somewhat illogical but useful notation, for natural numbers k and l with

k ≤ l, let v[k,l] denote both the value obtained by a read and the assertion that the
read saw versions v[k], v[k+1], . . . , v[l] and no other versions. Thus, if a read obtains
the value v[k,l], then either k = l and the read overlapped no writes, or k < l and
the read overlapped the writes of v[k+1], . . . , v[l].
A data item v is said to be regular if the value v[k,l] obtained by a read equals

v[i] for some i with k ≤ i ≤ l. This is a somewhat weaker condition than requiring
that reads and writes of v be atomic.
An m-digit data item v is a sequence v1 · · · vm of digits, where the left-most digit

v1 is the most significant. The ranges of values of the vi need not all be the same;
mixed-radix representations are allowed. A read or write of v consists of a single
read or write of each digit, in any order. Thus, v[i] = v

[i]
1 · · · v[i]

m . A read or write of
v is said to be from left to right if the digits are accessed in the order v1, v2, . . .,
vm; it is said to be from right to left if the digits are accessed in the opposite order.
The following theorems and lemma are proved in [1]. (Theorem 2 will not be used
here, but is included for completeness.)

Theorem 1. If v = v1 · · · vm is always written from right to left, then a read
from left to right obtains a sequence of values v

[k1,l1]
1 , . . . , v

[km,lm]
m with k1 ≤ l1 ≤

k2 ≤ . . . ≤ km ≤ lm.

Lemma Let v = v1 · · · vm and assume that v[0] ≤ v[1] ≤ · · ·.

(a) If i1 ≤ · · · ≤ im ≤ i then v
[i1]
1 · · · v[im]

m ≤ v[i].

(b) If i1 ≥ · · · ≥ im ≥ i then v
[i1]
1 · · · v[im]

m ≥ v[i].

ACM Transactions on Computer Systems, Vol 8, No. 4, November 1990.

Concurrent Reading and Writing of Clocks · 307

Theorem 2. Let v = v1 · · · vm and assume that v[0] ≤ v[1] ≤ · · · and the digits
vi are regular.

(a) If v is always written from right to left, then a read from left to right obtains a
value v[k,l] ≤ v[l].

(b) If v is always written from left to right, then a read from right to left obtains a
value v[k,l] ≥ v[k].

The reader who enjoys puzzles may wish to pause here and attempt his own
implementation of a monotonic clock using regular digits.

3. A MONOTONIC CLOCK

A monotonic clock is a data item c = c1 · · · cm such that c[0] ≤ c[1] ≤ c[2] ≤ · · ·.
The correctness condition for such a clock asserts that if a read obtains the value
c[k,l], then c[k] ≤ c[k,l] ≤ c[l]. The individual digits ci are assumed to be regular.
To implement a monotonic clock c, two copies c1 and c2 of the clock are main-

tained. The writer updates c by first writing c2 from left to right and then writing
c1 from right to left. The reader first reads c1 from left to right and then reads
c2 from right to left. In the following analysis, we deduce what value the reader
should return.
Let r1 and r2 denote the values of c1 and c2 read by the reader. By Theorem 1

applied to the 2m-digit data item c11 · · · c1mc2m · · · c21,

r1 = c1[k11,l11]
1 · · · c1[k1m,l1m]

m (1)

r2 = c2[k21,l21]
1 · · · c2[k2m,l2m]

m (2)

with

k11 ≤ l11 ≤ k12 ≤ · · · ≤ k1m ≤ l1m ≤ k2m ≤ l2m ≤ k2m−1 ≤ · · · ≤ k21 ≤ l21 (3)

The regularity assumption and (1)–(3) imply the existence of integers iq and jq

such that

r1 = c1[i1]
1 · · · c1[im]

m (4)

r2 = c2[j1]
1 · · · c2[jm]

m (5)

and

k11 ≤ i1 ≤ · · · ≤ im ≤ jm ≤ · · · ≤ j1 ≤ l21 (6)

The definition of c[k,l] implies that k ≤ k11 and l21 ≤ l, so a correct read is allowed
to return any value in the interval [c[i1], c[j1]].
Applying part (a) of the lemma to c1 with im substituted for i, and part (b) to

c2 with jm substituted for i, using (4) and (5), we get r1 ≤ c1[im] and c2[jm] ≤ r2.
The monotonicity assumption and (6) then imply

r1 ≤ c1[im] ≤ c2[jm] ≤ r2 (7)

Monotonicity, (6), and the assumption that c1 and c2 are just two copies of c imply

c[i1] = c1[i1] ≤ c1[im] ≤ c2[jm] ≤ c2[j1] = c[j1] (8)

If r1 = r2, then (7) and (8) imply that the read can return the value r1, since it
can return any value in the interval [c[i1], c[j1]]. Because (7) implies that r1 ≤ r2,
we need now consider only the case of r1 < r2.

ACM Transactions on Computer Systems, Vol 8, No. 4, November 1990.

308 · Leslie Lamport

For 1 ≤ q ≤ m, let v1···q denote v1 · · · vq, and let v1···0 = 0. Define v↓q and v↑q

to be the smallest and largest m-digit values w such that w1···q = v1···q. Thus, v1···q
consists of the left-most q digits of v, and, if the vi are decimal digits, then v↓q and
v↑q are the values obtained by replacing the right-most m − q digits of v with 0’s
or 9’s, respectively. In general, we have

v↓q ≤ v ≤ v↑q (9)

for 1 ≤ q ≤ m.
Since we are assuming that r1 < r2, there exists a unique p, with 0 ≤ p < m,

such that

r11···p = r21···p (10)
r1p+1 < r2p+1 (11)

From (11) we have
r1↑p+1 < r2↓p+1 (12)

Applying part (a) of the lemma to c11···p with ip+1 substituted for i and p sub-
stituted for m, and part (b) to c21···p with jp+1 substituted for i and p substituted
for m, we obtain

r11···p ≤ c1[ip+1]
1···p (13)

r21···p ≥ c2[jp+1]
1···p (14)

Since ip+1 ≤ jp+1 by (6), monotonicity implies that c1[ip+1] ≤ c2[jp+1], so c1[ip+1]
1···p ≤

c2[jp+1]
1···p . Hence, (10), (13), and (14) imply

r11···p = c1[ip+1]
1···p = c2[jp+1]

1···p = r21···p

By (4) and (5), this implies

r11···p+1 = c1[ip+1]
1···p+1 (15)

c2[jp+1]
1···p+1 = r21···p+1 (16)

Combining (9), (15), (16), and (12) yields

c1[ip+1] ≤ c1[ip+1] ↑p+1 = r1↑p+1 < r2↓p+1 = c2[jp+1] ↓p+1 ≤ c2[jp+1]

Hence, the reader can return any value in the interval [r1↑p+1, r2↓p+1].
The algorithm that has just been derived is shown in Figure 1, where an arrow

over a variable name means that the corresponding read or write is performed left-
to-right or right-to-left, as indicated by the arrow’s direction. Note that it does not
matter how the writer reads c2, since it is the only process that changes c2.
As a final optimization, observe that the reader reads c1m immediately before

reading c2m, while the writer writes c2m immediately before writing c1m. The
algorithm remains correct if the two reads or writes are performed as a single
operation. Hence, the two digits c1m and c2m can be implemented by the same
digit, which is read and written just once. In the most common application, m = 2
and reading or writing the clock requires only three single-digit reads or writes. A
version of the algorithm for a two-digit clock is shown in Figure 2. A clock value
is a pair (l, r) where l is the left digit and r the right digit, and 0 is assumed to be
the smallest possible right digit.
ACM Transactions on Computer Systems, Vol 8, No. 4, November 1990.

Concurrent Reading and Writing of Clocks · 309

Reader

r1 :=
−→
c1;

r2 :=
←−
c2;

if r1 = r2
then return r1
else p := max{i : r11···i = r21···i};

return any value in [r1↑p+1, r2↓p+1]
fi

Writer
−→
c2 := any value ≥ c2;
←−
c1 := c2

Fig. 1. The monotonic-clock algorithm.

Reader

v1 := l1;
w := r;
v2 := l2;
if v1 = v2 then return (v2, w)

else return (v2, 0)
fi

Writer

(l′, r′) := any value ≥ (l2, r);
l2 := l′;
r := r′;
l1 := l′

Fig. 2. A two-digit monotonic-clock algorithm.

4. A CYCLIC CLOCK

A cyclic clock c is a data item that can assume any sequence of values. A write
that decreases the value of c is said to cycle c. The cycling of c is interpreted to
mean that c has “passed midnight”. For notational convenience, assume that 0 is
the smallest value c can assume.
We can convert a cyclic clock c to a monotonic clock c by adding a fictitious left-

hand part that is incremented whenever the value of c is decreased. The correctness
condition for c is that the value returned by a read is the right-hand part of a correct
value for a read of c. Thus, if c is cycled during the read, then the read may return
the value 0. If c is cycled twice during the read, then the read may return any
value.
To construct an algorithm for implementing an m-digit cyclic clock c = c1 · · · cm,

we first augment c to an m + 1-digit cyclic clock c by adding an extra left-most
binary digit c0, so c = c0 · · · cm. The left-most bit c0 of c is thus incremented
(complemented) whenever the clock c is cycled. The digits c0, . . . , cm are assumed
to be regular.
The reads and writes of c are performed as in the monotonic-clock algorithm, so

the writer begins by writing c20 and ends by writing c10, while the reader reads c10

first and c20 last. If the reader finds c10 �= c20, then the read overlapped a write
that cycled c, so the read can return the value 0. If the reader finds c10 = c20, then
either c was not cycled during the read or else it was cycled two or more times.
In the first case, the monotonic-clock algorithm returns a correct value because it
returns the value it would have obtained had it seen the entire fictitious clock c; in
the second case, the read is permitted to return any value. Hence, in either case,
the (right-most m digits of the) value obtained by the monotonic-clock algorithm
is correct.
The reader should be suspicious of this kind of informal argument because it often

leads to errors. However, since I know of no practical application of the cyclic-clock
algorithm, I will leave its precise statement and rigorous correctness proof to the
reader.

ACM Transactions on Computer Systems, Vol 8, No. 4, November 1990.

310 · Leslie Lamport

ACKNOWLEDGMENTS

Tim Mann discovered an error in my original correctness proof of the monotonic
clock algorithm and suggested several improvements to the presentation.

REFERENCES

[1] Lamport, L. Concurrent reading and writing. Commun. ACM 20, 11 (Nov. 1977), 806–811.

[2] Lamport, L. On interprocess communication. Distributed Computing 1 (1986), 77–101.

Received December 1989; revised November 1990; accepted December 1990.

ACM Transactions on Computer Systems, Vol 8, No. 4, November 1990.

