
.

Reasoning About Nonatomic Operations

Leslie Lamport ‘

Computer Science Laboratory

SRI International

ABSTRACT

A method is presented that permits assertional reasoning

about a concurrent program even though the atomicity of

the elementary operations is left unspecified. It is based

upon a generalization of the dynamic logic operator [c].

The method is illustrated by verifying the mutual exclusion

property for a twc-process version of the bakery algorithm.

1. Introduction

Assertional methods for reasoning ahout concurrent prc-

grams allow rigorous and, in principle, machine-verifiable

correctness proofs [1], [4], [6], [7], [10], [11], [12]. All of these

methods are based upon a model of program execution as a

sequence of atomic operations. Although one could perhaps

replace the totally ordered sequence by a partial ordering,

the concept of atomicity is crucial. These methods do not

allow one to reason about a concurrent program unless its

atomic operations are specified.

This work was supported in part by the National Science

Foundation under grant number MCS-8104459.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and Its date appear, and notice IS given that copying is by
permission of the Assoclatlon for Computing Machurery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

As an example, consider the trivial program of Figure

1, containing two concurrent processes that are completely

independent of each other. It terminates with z and y

both having the value one, regardless of how many separate

atomic operations are used to implement the assignment

statements. However, this cannot be proved directly by

any previous assertional method; with these methods, one

must first reason that the given program is equivalent to a

diiferent one in which the two assignment statements are

atomic, and then prove the property for the new program.

To reason about the program, one must first change it and

demonstrate that the change is not significant.

cobegin

X:=1 D y:=l

coend

Figure 1..4 Trivial Example

In this example, stating that the assertional methods

cannot reason about a program with nonatomic operations

may seem like a philosophical quibble, since it obviously

makes no difference if the operations are atomic. We now

consider a nontrivial example which clearly demonstrates

that the inability to reason directly about nonatomic opera-

tions is a significant drawback. The example is the two-

process version of the “bakery algorithm” for achieving

mutual exclusion [5], which is given in Figure 2. The symbol

< is defined by
t 3’

@ 1983 ACM 0-89791-090-7/83/001/0028 $00.75

28

declare number array 1..2 of integers initially o

declare choosing array 1..2 of booleans initially ~alse

cobegin

prOce.r8 1: repeat forever

noncritical section;

choo$ing[l] := true;

nurnber[l] := 1 + mnnber[2];

ch008ifag[l] := jalse;

while chooning[2] do od;

while O < number[2] < nurnber[l] do od;
21

critical 8ection;

nurnber[ll := O

end repeat

o

proce.98 2: repeat forever

noncritical 8ection;

choo.sirtg[2] := true;

r4unzber[2] := 1 + nurnber[l];

choosing [2] := ja18e;

while choo~irzg[l] do od;

while O < nurnber[l] <number[2] do od;
1’2

critical 8ection;

nurriber[2] := O

end. repeat

coend

Figure 2. The Two-Process Bakery Algorithm

The correctness criterion to be considered here is mutual

e.rclusion – the two processes may not be in their critical

sections at the same time.

This algorithm is correct regardless of how the opera-

tions are implemented by collections of atomic operations.

For example, the fetching and storing of nurraber[l] can be

dc)ne one bit at a time. Thus, if process 2 reads nwnber[l]

while it is being changed from O to 100, then it could ob-

tain the value 36- or even the value 100,000. We give here

a brief informal demonstration of the algorithm’s correct-

ness, referring the reader to [5] for a more detailed proof.

Process i is said to be in the doorway from the time it has

finished setting choosing [i] true until it has finished choos-

ing a nonzero value of nurnber[i] (in its third statement),

and to be in the bakery from the time it has finished choos-

ing a nonzero value of number[i] until it finishes its critical

section. Thus, a process enters its doorway, chooses a non-

zero number, and then enters the bakery. When process 1,

executing its first while loop, finds choosing pi] lalse (just

prior to exiting the loop), process 2 is not in its doorway.

If 2 subsequently enters its doorway, then it will choose a

value of nurrtber[2] greater than rwrrber[l]. Thus, from the

time 1 finishes its first while loop until it leaves the bakery,

if ‘2 is in the bakery then either:

●

●

In the

process 2 chose its current value of rtumber[2] before

process 1 finished its first while loop, or

process 2 began choosing its current value of

number [2] after process 1 finished its first while

loop, so number[2] > number[l].

first case, process 1 must read the current value

of nwnber[l] when executing its second while loop. This

implies that in either case, after 1 has finished its second

while loop until it leaves the bakery: if 2 is also in the

bakery then rwrnber[l] ,-$ number[2]. The same reasoning

with 1 and 2 interchanged shows that after 2 has exited its

second while loop until it leaves the bakery: if 1 is also in

the bakery then number[2] $ number[l]. Since rwmber[l]s

number[2] and nunrber[2] < number [l] cannot both be true,

we see that the two proj&ses cannot be in their critical

sections at the same time.

As convincing as tlhis proof may appear - and a very

convincing version of it appears in [5] – it is wrong, and the

algorithm of Figure 2 contains an error. The proof tacitly

assumes that process z’ always chooses a positive value of

number [i] in its third statement. If process 1 could read

a value of -1 for rrurnber[2] while process 2 was writing

it, then the algorithm would not work. The algorithm is

correct only with this extra assumption about the third

statement. This illustrates the need for formal proofs; in

fact, we discovered the error only in the course of writing

a formal proof.

Previous methods of assertional reasoning cannot be used

to formalize our argument because they require a knowledge

of what the atomic operations are in order to prove any-

thing about the program. Any particular implementation

in terms of explicit atomic operations changes the program

by disallowing certain forms of behavior. In [6], we tried

to write a very general implementation hy representing

each assignment statement as two operations: the first set-

ting the variable to an indeterminate value which, when

read, can return any value, and the second setting it to

its final value. However, this was obviously not the most

general implementation because it excluded the possibility

of the error mentioned above. It is better to reason directly

about the program as given, with its atomic operations

left unspecified, rather than trying to translate it into an

eql~ivalent program with explicit atomic operations. In this
paper, we present a method for doing this. It allows a

rigorous formulation of the twe-process bakery algorithm’s

informal correctness proof.

29

our method is based upon a new kind of predicate that

is closely related to the predicate [a]P of dynamic logic

[2]. (No linowledge of dynamic logic is needed to under-

stand our method.) We will restrict our attention to prov-

ing safety (invariance) properties. However, the same predi-

cates can be used with the methods of [11] for proving live-

ness (eventuality) properties.

2. Assertional Proofs

As explained in [9], the various assertional methods for

proving safety properties of concurrent programs are bmi-

cally the same. We will use essentially the formulation

of [6] and [10], which is called the Clries-Owicki method.

A predicate is a boolean-valued function of the program

state, where the state includes all information relevant to

the program’s execution, including the values of variables

and “program couilters”. An annotation of a program is

an assignment of a predicate to each control point. We say

that a control point is active in a state if some program

counter has that control point as its value – i. e., if some

process is currently at that control point, and that a state

is consistent with an annotation if the predicate assigned to

each active control point is true. An annotation is invariant

if, starting in any consistent state, executing a single atomic

action of the program results in a consistent state. If the

starting state of a program is consistent with an invariant

annotation, then every state reached during its execution

must be consistent. Safety properties are proved by finding

an invariant annotation.

Proving the invariance of an annotation involves two

steps for each atomic operation o:

● Sequential Correctness: Showing that if a is ex-

ecuted with the predicate attached to its entry point

true, then when it terminates the predicate attached

to its exit point is true.

s Interference Freedom: Executing a leaves the predi-

cate aitached to any other active control point true.

Unlike sequential programs, verifying nontrivial concurrent

programs requires annotations with predicates whose values

depend upon the control state. For this purpose, we use the

following predicates, where p is any program statement.

at(p): True if control is at the entry point of p.

in(p): True if control is anywhere in p, including its

entry point but excluding its exit point(s).

ajter(p): True if control is at an exit point of p.

Letting Pa and Q. be the predicates assigned to the entry

and exit points of an atomic operation a, the verification

conditions for a can be restated more precisely as follows:

Sequential Correctness: {Pa} a {Q=}

Interference Freedom: For each predicate R assigned

to a control point .$ that can be active at the same

time as the entry point of a:

{Pa A R A at(a) A active(~)} @

{R A after(cr) A active(~)}

where active(g) denotes the at or ajter predicate

which asserts that control is at ~.

Ilere, {P} a {Q) denotes the usual Floyd-Hoare input/out-

put conditions for the atomic operation a.

A safety property is proved by showing the invariance

of an appropriate annotation. For example, to prove that

the trivial program of Figure 1, modified so the assignment

statements are atomic, terminates with z = y = 1, we

u~e the annotation of Figure 3. (Angle brackets enclose

atomic operations; control points with no explicitly indi-

cated predicate are assigned the predicate true.) Its in-

variance> is proved by verifying the following four condi-

tions.

cobegin

U:(.r, ==l){.c=l}

b: (;:=l) {g=l}

coend{z=l Ay=l}

Fi~ure .9. Annotation of a Trivial Example

● {true} (.z:=l){z=l}

● {true }(y:=l){y=l}

● {y = 1 A at(a) A after(b)} (z := 1)

{Y= 1 A after(a) A after(b)}

● {z = 1 A at(b) A ajter(a)} (y := 1)

{Z= 1 A a~ter(b) A after(a)}

The program’s starting state is obviously consistent with

the annotation, so the program will remain in a consistent

state throughout its execution. This means that when it

reaches the end, the predicate z = 1 A y = 1 assigned to

its exit point must be true, which is the desired result.

As a more interesting example, we verify the mutual ex-

clusion property of the bakery algorithm when each assign-

ment and while test is atomic. The annotation is given in

Figure 4, where writing a predicate in front of a nonatomic

statement indicates that the predicate is to be assigned to

all control points in the statement, excluding the exit point,

and the predicates C,j W,, Xi) and i < j are defined as

follows.

c, = choosing [i] = true

Wi = nwnber[i] >0

X;j E ~~ A [(at(tkj) A Cj) 3

30

(rwrnber[i] $ rwrnber[j])]

i < ~ z W; A [(~ in bakery A Wj) o

rtwnber[i] $ rzwnber-[j]]

where i in bakery E at(fk;) V at(wl,) V

Ut(UJ2’~)V in(CSi)

declare number array 1..2 of integers initially O

declare choo8ing array 1..2 of booleans initially /a/se

cobegin

proces8 1: repeat forever

noncritical section;

(choo.sing[l] := true);

{C’, } dwl: (number[l] := 1 + number[2]);

{Cl A W,) bk,: (choo8ing[l] := jake);

{W’l } WI,: while (choo,ing[2]) do od;

{.Y-,,) rcJ2,: while (O< nrmber[2] s number[l])

do od;

{1 < 2} c.9,: critical trection;

(number[l] := O)

end repeat

o

proce88 2: repeat forever

noncritiml 8ection;

(ch008ing[2]:= true);

{C, } dw,:(number[2] :=l+number[l]);

{C’, AWZ) bk,: (choosirzg~2] := falae);

{W<} WI,: while (choming[l]) do od;

{Y,, } w2,: while (O < nurnber[l] s nurnber~2])

do od;

{2 < 1} c8,: critical 8ection;

(number[2] := O)

end repeat

coend

Figure 4. An Atomized Version of the Two-Process

Bakery Algorithm

We urge the reader to write down the verification conditions

—especially the ones for statements dwl and rfw – and

convince himself that they are satisfied. In doing so, he

will make use of the tacit assumption that atomic actions

in the critical and noncritical sections do not modify any

element of the arrays choosing and number.

The initial state of the program, in which each process

is in its noncritical section, is obviously consistent with

this annotation. The invariance of the annotation therefore

means that 1 < 2 is true whenever process 1 is in its critical

section, and 2 + 1 is true whenever process 2 is in its

critical section. This easily implies that the two processes
cannot both be in their critical sections, which is the desired

result.

The Gries-Owicki method can be derived as an applica-

tion of the generalized Iloare Logic (GIHL) introduced in [7].

In GIIL, the assertion {F’} T {Q} means:

If any single atomic action of rr is executed with

P true, then either:

(i) control remains in rr and P remains true,

or

(ii) control reaches the exit point of n and Q

becomes true.

This generalizes the ordinary Hoare logic because if m con-

sists of a single atomic operation, then {P} rr {Q} asserts

the partial correctnms of T with respect to the input predi-

cate P and the output predicate Q.

It is convenient to view an annotation of a program ir

as the C;HL formula {P} n {Q} in which Q is the predicate

written at the exit point of n and P is the conjunction of

all predicates

where PP and Q@ are the predicates written in front of

and at the exit point of statement p. This GHL formula

asserts the invariance of the annotation. As explained in

[9], the Gries-Owicki method and other assertional methods

can be viewed as a way of breaking the verification of a

GHL assertion {P} jr {Q} into simpler subproblems using

the following rules:

Decomposition Principle: If each atomic opera-

tion of rr is an atomic operation of one of the

~i) then

{1} 7r, {1}, {1} rrn {1}—
{I}rr{I}

Locality Rule:

{i?drr) A 1} T {a~ter(rc) A ~}

{I}rr {z}

Conjunction Rule:

The Disjunction Rune - obtained by replacing A by V in

the Conj~nction Rule – is also valid, as is the converse of

the Locahty Rule, which follows from the Conjunction Rule

and the axiom {in(~)} T {after}.

These rules imply that to verify the GHL assertion cor-

responding to an annotation of a program r, we must verify

the following two conditions for every elementary operation

p of m, where Pp is the conjunction of all predicates written
in Front of p or in front of ~ome statemmt containing p, and

Qp is the conjunction of all predicates similarly “attached”

to the exit point of PI.

31

. Sequential Correctness: {Pp} p {Ql}

e Interference Freedom: For each predicate I?f writ-

ten in front of or after a statement ~ in a different

clause of a cobegin that contains p:

{Pp A R A in(p) A active(&)} P

{~ A after(p) A active(f)}

where active(f) denotes either in(~) or ajter(f).

If each elementary operation p is atomic, then these are

just the Floyd-Hoare verification conditions of the Gries-

Owicki method. The method described here will permit

the reduction to stop at elementary nonatomic operations,

such as the entire assignment statement

number[l] := 1 + number~2]

in the bakery algorithm.

3. Generalized Dynamic Logic

The basis of our method is a new class of predicates that

generalize ones used in dynamic logic [2]. For a predicate

Q and a program statement p, we define [p] Q to be the

predicate that is true if and only if either:

e Q A - in(p) is true, or

. in(p) is true, and any execution of p starting in

the current state, with no other program statement

being executed concurrently, either:

— fails to reach an exit point of p, or

reaches an exit point of p with Q true.

It is important to realize that [p] Q is a predicate - a

boolean function of the program state. If s is a state for

which control is in p, then saying that [p] Q is true for s

asserts what would happen if p were to be executed starting

in the state s. It does not assert that p will be executed.

As an example, consider the following program state-

ment p.

p: begin

a:(fernp := z);

P:(z := temp+ 1);

end

For this statement, [p] (z > 5) is the predicate

(=in(p) > z > 5) A (at(o) o x > 4)

A (at(/?) ~ temp > 4) .

The usual Floyd-Hoare input/output condition, denoted

P {p} Q as in [3], is equivalent to P A at(p) > [p] Q. It

follows from this that the predicate denoted [p] Q in ordi-

nary dynamic logic is equivalent to the predicate that we

write at(p) A [p] Q. Just as {P} p {Q} generalizes the or-

dinary Hoare assertion P {p} Q by considering executions

of p started with control not at its entry point, so [P] ~

generalizes the corresponding dynamic logic predicate by

considering states in which control is not at the entry point

of p.

We now develop methods for proving GHL assertions

{p} p {Q} When P and Q are generalized dynamic logic

predicates. First, we state some axioms that are immediate

consequences of the definition of [p] Q.

Dynamic Logic Axioms:

1. {[p]Q} p {[p] Q}

2 ([P] Q) A - in(p) = Q A c-+in(p)

3. [fl] (PAQ) = ([P]P) A ([P]Q)

4. [P](P 3 Q) 3 ([P]P 3 [P]Q)

Since ajter(p) > N in(p), combining the second axiom

with the Locality Rule shows that the first axiom can also

be written as

{[PIQ} P {Q}
We also have the following obvious inference rule.

Tautology Rule:

We next formally state the relation between the ordinary

Hoare logic formula P {p} Q and the generalized dynamic

logic predicate [p] Q that we mentioned above.

Hoare Rule:

P {p} Q

P A at(p) o [p]Q

For our next rules, we need the concept of noninterference

that is often used but is seldom formalized. We assume

that a program state can be decomposed into separate com-

ponents, and say that a statement p does rtot interfere with

a predicate P if p does not change any state component

upon which the value of P depends. For example, p does

not interfere with the predicate at(u) > z > 0 unless ex-

ecuting p can change the value of z or the value of at(cr).

For simple languages, executing p can change the value of

at(a) only if u is p or the statement immediately following

p. More complicated languages may allow more exotic pos-

sibilities – for example, executing p might abort the process

containing a.

In general, noninterference can depend upon the state.

For example, the statement

number [i] := O

does not interfere with the predicate nwnber-[1] >0 if i #

1. We therfore define p -4 P (read “p does not interfere

with P“) to be the predicate that is true for a state s if any

atomic operation of p executed starting in state s does not

change any component of the state upon which the value

of P depends.

32

We also need the concept of one statement not interfering

with another, where p --4 u means that p does not change

any part of the state which influences the behavior of u. For

example, if p is the statement x := O and u is the statement

x := y, then p 4 u. However, the statement y := O does

interfere with u. To define this more precisely, we let s $ t

denote that executing the atomic operation a starting in

state s can yield state t.We then define p --+1u to be the

predicate that is true for a state s if the following condition

holds.

For any atomic operations a in p and /3 in

u, and any state s: if s -$ t,then executing

j’ starting in state t does the same thing as

executing it starting in state s.

Note that “doing the same thing” does not mean producing

the same state, since tcan retlect changes made by execut-

ing a that do not affect the behavior of o – for example, if

ais(.r:= 0)and/3is(y:= O).

Our definitions of the predicates p 4 P and p --4 u have

been quite informal. ThLy will suffice for our examples.

In a more formal approach, one would give axioms and

inference rules for deriving valid 4 relations for particular

programming and assertion languages. One such axiom

might be

(P+l P) A(P+l~) 3 P+I(PVQ)

We will not develop such a formalism, and will just use our

informal definitions t,o justify the -d relations needed for

the examples.

The concept of noninterference appears in the following

rules.

Noninterference Rules:

P>p+l P
1.

{P}p{P}

2.
p+l P

[p] P s P V [p] Jalse

3.
p+l P,p-+lu

p +[([u] P)

The validity of the first rule is clear. It is used repeatedly

when applying the Gries-Owicki method, being tacitly in-

voked whenever a verification condition is dismissed as be

ing “trivial”. The verification condition {P} p {P} is trivial

when p does not modify any of the variables or control

points that appear in 1’ - i.e., when p -4 P is a valid

predicate (true for all states). In the Gries-Owiclii method,

the number of verification conditions that arise in checking

noninterference is quadratic in the size of the program. The

method is practical only because most of these verifications

are trivial, so they follow from the first Noninterference

Rule.

The validity of the second rule follows from the observa-

tion that p --4P implies that if p terminates when executed

from state s, then the value of P for the final state equals

its value for s. Using the Dynamic Logic Axioms, one can

show that this rule is equivalent to the following:

2’.
p+l P

PA[p]Q - PA[p]PAQ

The validity of the third Noninterference Rule is dem-

onstrated as follows. The hypothesis p -+1 o implies that

executing any atomic operation of p cannot change the

behavior of u, so it cannot aflect whether or not a par-

ticular execution sequence reaches an exit point, and the

hypothesis p -4P implies that executing that atomic opera-

tion cannot change the value of P when an exit point is

reached. The conclusion then follows from the definition of

[0] P.

[Jsing the Noninterference Rules, we can prove the non-

interference condition {[a] P} p {[a] P} when p does not

interfere with rr and P. However, one may want to prove

such a GHl, formula under the weaker hypothesis that p

leaves P invariant - that is, when {P} p {P} holds. To infer

{[a] P} p {[a] P) under the hypothesis {P} p {P}, we need

a stronger hypothesis than p +1 c, A counterexample is

provided by the following choices of p, u and P:

p: (X:=u)

C7: (Z:=o)

P: (at(p) > v > 7) A (after(P) 2 z > 7)

In this case, both p 4 u and u + p as well as {P} p {P}

hold, but {[o] P} p {[o] P} does not hold because

[u] P A at(a) s

(at(p) ~ y > 7) A (N at(p) ~ 0> 7) A at(u),

so executing p in a state with at(p), at(a) and y > 7 all

true changes the value of “[IT]P from true to false.

The inference rules that we want require some new defi-

nitions. For atomic operations a and ,6, we say that a right

commutes with @ if the following condition is satisfied:

For any states s and t:if s $ tand t~ u, then

there is a state 1’ such that s I ? and ~ S u.

In other words, if s ~ t ~ u then we can “move the a
P

action to the right of the /3 action”, obtaining s + $ ~ u.

The semaphore operation (P(s)) right commutes with the

semaphore operation (V(s)), but (V(s)) does not right

commute with (P(s)).

For arbitrary statements p and u, we say that p right

commutes with u if every atomic operation of p right com-

mutes with every atomic operation of u. They are said

simply to commute if each right commutes with the other.

A sufficient condition for p and u to commute is that neither

33

accesses or changes any state component accessed or changed

by the other. (Note that this is stronger than the condi-

tion that neither interferes with the other.) However, this

condition is not necessary, since the two atomic operations

(z := z + 1) and (z:= z +2) commute.

The concept of right-commutativity is introduced for the

following rule:

Right-Cornmutativity Rule:

{P V in(u)} p {P V in(u)}, p right commutes with u

{[a] P} p {[u] P}

The validity of this rule is demonstrated as follows. By

definition of the CHL assertion {Q} p {Q}, to prove

{[a] P} p {[a] F’} it suffices to show that for any atomic

operation a of p and any states s and t such that s S t:

if [o] P is false for t,then it is false for s. By definition, -

[o] P is false for t if there exists a (possibly null) sequence

of states ti and atomic operations ,b’; of a such that

and, in state tn,P is false and control is not in u. (If

= in(a) holds for t,then n = O and to= t.)In other

words, =(P V in(o)) holds for tn. By right-commutativity,

we can move the a action to the right of the ,f3i actions to

obtain

sf. Wk(...5tn_,3tn’

Since -(P V in(a)) holds for t.,the hypothesis

4, Examples

In annotating a program, we let [p] {Q} be an abbrevia-

tion for { [p] Q) p {Q}. Returning to the trivial example

of Figure 1, to prove that z = 1 and y = 1 when it ter-

minates, we use lhe annotation of Figure 5. Applying the

Decomposition Principle and the Locality and Conjunction

Rules of GHL, verifying the GHL formula corresponding to

this annotation is reduced to verifying the following condi-

tit,ns.

1. {[U](Z = 1)} z := 1 {z= 1}

2. at(a) n [a] (z = 1)

3. {[fJ](rJ== 1)} y := 1 {y= 1}

4. at(b) ~ [b](y = 1)

5. {[t)] (y= 1)} z:= 1 {[b] (y= 1)}

6. {[a](.r = 1)} y:= 1 {[a] (z= 1)}

C{jnditions 1 and 3 follow from Dynamic Logic Axiom I,

conditions 2 and 4 follow from the Hoare Rule, and condi-

tions 5 and 6 follow from the first Noninterference Rule.

observe that in applying the Noninterference Rule, we

are making the tacit assumption that neither of the two

assignment statements modifies any variables used in the

other. For example, the following implementation of the

statement x := x+1 is disallowed, even though it would be

a perfectly valid implementation in a sequential program.

(z := y+l); (2 := z–rJ)

{P V in(a)} p {P V in(a)}

implies that N(P V in(o)) must hold for dn_l, which implies

that [a] P is false for s, proving the validity of the rule.

When applying the Right-Commutativity Rule, p and u

will be in different processes, so {in(o)} p {in(u)} will hold

(assuming p cannot abort the execution of u). Hence, the

hypothesis {P V in(o)} p {P V in(u)} follows from {P} p {P}

and the Disjunction Rule.

our last inference rule is the following.

Comnwtativity Rule:

jJ and a commute

[PI ([4 p) = [4 (b] p)

Its validity is proved by using commut ativity to show that

if [p] ([u] P) is false for a state, then [a] ([p] P) is also false,

and vice-versu. The details are left to the reader. We

will not use these commutativity rules in our examples,

but we expect them to be useful for reasoning about some

programs.

cobegin

a: [x:=1] {z=l}

o

b: [y:=l] {y=l}

coend{z=l Ay=l}

I Figure 5. .4nnotation of a Trivial Example I
1 1

Comparing these six verification conditions with the ones

for the version in Figure 3, we see that they are the same

except for tbe two extra conditions that are immediate

consequences of the Dynamic Logic Axiom 1. We used the

Noninterference Rule instead of replacing the nonatomic

statements by atomic ones. The same thing will happen

for any program in which nonatomic operations can be

replaced by equivalent atomic ones – our method allows

us to apply essentially the same reasoning used for the

atomic version directly to the original program. Although

the actual verification conditions are the same, we find it

more elegant to reason about the given program instead of

changing it.

34

declare number array 1..2 of integers initially O

declare choosing array 1..2 of booleans initially fobe

cobegin

process 1: repeat forever

noncritical section;

ut,: [chooning[l] := true] {Cl} ;

{Cl) dl,: nurnber[l] := 1 + rmmber[2];

{C, } dt,: [number[l] := maximum(l, number[l])]

{CIA W’,};

{Wl } bk,: choo~ing[l] := fde;

{ii’, } WI,: [while choosing[2] do od] {.X, Z};

{X,, } w!2,: [while O < number[2] ~ rmmber[l]

dood] {1 <2};

{1 + 2} c91: critical section;

e.z,: number[l] := O

end repeat

0

proce88 2: repeat forever

nom-ritical dection;

8t2: [choo,$ing~2] := true] {(72};

{C,) all,: nwnber[2] := l+number[l];

{Ca} d2,:[nrm,ber[2] :=maximum(l, number[2])]

{c, A W,);

{W’, } bk,: choo~ing~2] := fabe;

{~)} wl,: [while choo8ing[l] do od] {X,l } ;

{X,, } w2,: [while O .< numbcr[l] $ number[2]

dood] {2 <1};

{2 < 1) C9:: critical section;

e.rz: nurriber[2] := O

end repeat

coend

Figure 6. Annotation of the Two-Process

Bakery Algorithm

We now consider the nontrivial example of the two-proc-

ess bakery algorithm. The algorithm and the annotation

used to prove the mutual exclusion property are given in

Figure 6. Notice that the original third statement of process

i, which appeared as statement dw; in the atomized version

of Figure 4, has been implemented as the the concatena-

tion of the two statements dli; dl?i to remove the error

mentioned in the introduction. We let dwi denote the con-

catenation of these two statements. In this annotation, the

definitions of C’i and Wi are the same as before, but X;i

and i -< j are redefined as follows.

Xij ~ 1~ A [(in(dwi) A C;) >

[drq] (number[i] s rwnber[j])]

i < j’ - Xij A [(~ in bakery A Wj) >

(nwnber[i] $ nurnber[j])]

where s’ in bakery z in(bki) V in(wli) V in(wf?i)

V in(C8i)

To prove the GHL formula corresponding to this annota-

tion, we apply the GHL rules to reduce the problem to

proving a number of individual verification conditions. The

ones corresponding to the sequential correctness conditions

of the Gries-Owicki method, obtained by considering the

annotation of each process separately, are proved using the

Dynamic Logic .&ioms, the Noninterference Rules and the

IIoare Rule. For example, we get the following correctness

conditions for statement WI ~:

{w, A [uJ1,] x,,} WI, {[wll]~-,,}

(Wl A at(wl l)) > [uJI,] X12

The first condition follows from Dynamic Logic Axiom 1,

the Corljunct.ion Rule and Noninterference Rule 1, since

w.f ~ --+1}V1. The second follows from the Hoare Rule, since

}V, {WI1) (W, A [(AAG) 3 B)])

holds for any predicates A and 1?.

The annotation of lprocess 1 contains the following predi-

cates:

(a)

(b)

(c)

(d)

(e)

(f)

[St,]c“,

C, A [d?,](Ci AWI)

w,

WI A [WI,] X“12

-X,Z A [w~,](l + 2)

1<2

To prove interference freedom, we must show that each of

the nine elementary statements of process 2 leaves these

six predicates invariant. This gives 54 verification condi-

tions to be checked – lplus the symmetrical 54 conditions to

show that process 1 leaves invariant the predicates in the

annotation of process 2. No statement of process 2 inter-

feres with predicates (a), (b) or (c), so the Noninterference

Rules imply that they are left invariant by process 2. The

only verification conditions that do not follow immediately

from the Noninterference Rules are that statements .dz,

df ~, d22 and ezz leave (d), (e) and (f) invariant. We con-

sider dl ~ and d?z together as the single statement dw2.

The corresponding GHL formulas that must be verified are

then:

(d)-st,: {WI A [wl,] X,,} $t, {W A [U,I1]XM}

(e)-s~,: {X,, A [w?,](1 + 2)} $f, {X,, A [w2,](1 + 2)}

(f)-St,: {1 < 2} St, {1 <2}

(d)-dw,: {C, A W’, A [wI,l X,,} dw, {W A [wI,]X,2}

(e)-dwz: {C, A X,2 A [wz,](l + 2)} dwj {X12 A [UJ21](1 < 2)}

(f)-dw,: {C, A (1 < 2)} dw, {1< 2}

(d)-,z2: {C2 A WI A [UIl,]~”12} W {~1 A [W1l]A-lZ]

(e)-ez,: {C, A X,, A [w2,](1 < i?)} ,2, {X,, A [w2,](1 + 2))

(f)-ez2: {1 < 2} ez, {1 < 2}

35

The reader will find it a good exercise in understanding

generalized dynamic logic predicates to convince himself of

the intuitive validity of these formulas. As is often the case,

proving things from basic axioms and inference rules can

be quite tiresome. We therefore prove only two of these

formukw. The proofs of the rest are similar, and are left to

the reader. The proof of the first formula is as follows.

(}1’, A [wI,] X,,) A in(st,)

= [wI,] (in(st,) A.~,,)

[by Noninterference Rule 2?, since W’, A ~“1, - ,%.”12]

= [wI,] (~~1 A in(st2))

[since in(st.z) A in(du,) = fake]

s (}~, A in(st,)) v ([wfl] fake)

[by the Tautulogy Rule]

(k~, A [wl,].~12) A after(stz)

- ~wl,] (after($t,) A .~l,)

- [wI,] (~~1 A at(dw,) A (C, o

[dw,] (rrwnber-[1] 6 nurnber[2])))

[since after(d,) e IIt(duf,)]

e [wl ,] (\V1 A at(dw,))

[since by the Hoare Rule,

at(du~) 3 [druj] (nurnber[l] ,< nurnber[2])]

- (~\’, Aa/ter(st2))v [wl,]fa/se

[by Noninterference Rule 2’, since al(dw,) a aftw(sfz)]

Applying the Locality and Disjunction Rules, we see that

it suffices to, verify

{WI A in(st,)} st2 {Wl A a~ter(st,)}

{[w.f1]jaL9e} st, {[roll] jahe},

both of which follow easily from the Noninterference Rules.

We verify condition (d)-dw2 as follows.

(C, A W, A [Wf1]~Y12) A in(dwz)

R [wl,](W, Ain(dW,)AC, A

[dro,] (nurrzber-[1]) $ rvarnber[2]))

Q (Wl A irr(dw,) A C, A [&rJ2] (nrunber[l] $

nurnber[2])) V [WI ~]Jalse

[by Noninterference Rule 2]

(CZAWI A[wl,].Y,z) Aafter(dw,)

s [z,l,](C,A}VIA a/ter(dw,))

[since offer(dwg) A in(dwa) = fake]

- (GA }i’, A after’(dw,)) V [wI,] fake

[by Noninterference Rule 2]

The proof now continues in the same way as in the proof

of condition (d) –stz.

5. Dkcussion

We have presented a method for assertional reasoning

about a program whose implementation in terms of atomic

operations is not specified. It is based upon a generaliza-

tion of dynamic logic. If making the program’s elementary

operations atomic produces an equivalent program, then

the verification steps are essentially the same as for the

usual method of reasoning about the “atomized” program.

In this ease, the advantages of our method are largely aes-

thet ic. lIowever, previous methods cannot be applied if

making the elementary operations atomic changes the pro-

gram, and our method is the first one to allow rigorous

assertional reasoning about such a program.

Our formal approach led us to discover a previously

unrecognized assumption required for the correctness of

the bakery algorithm - an algorithm we had studied very

carefully and verified in two different ways. The formal

proof is somewhat tedious, but tedium seems to be an

inevitable byproduct of formal rigor.

Although we have presented the logical foundation for

reasoning about programs with nonatomic elementary opera-

tions, we have not discussed how such operations can be

specified, In the n-process bakery algorithm, process r’

chooses its value of rrwnber[i] by the statement

nurnber[i] := 1 + maximum(nwnber[l], . . . , nurnber[n]).

For n > 2 we need the following additional assumption

about this statement,

If nurrzber[j] does not change during execution of

the statement, then nrwnber[i] is chosen to be greater

than nurnber[j] - regardless of the concurrent ac-

tivity of other processes.

Thus, the following is not a valid implementation if the two

instances of nurnber[k] represent separate fetches.

temp[i] := O ;

fork: =1 ton

do if nwnber[k] > ternp[i]

then ternp[i] := nurnber[k] od ;

nurnber[i] := 1 + ternp[i]

An obvious way of specifying this requirement assertionally

is to state that process k must leave invariant the predicate

[dwi] (number [i] > number[j]) for k # i, j. However, this

corsdicion ifi too strong tO b. met by any reascmsbIe non-

atomic implementation. For example, consider the state

reached when

1. Process 1 begins choosing nwnber[l] starting in a

state with nrwnber[2] = O and nwnber[3] = 17.

2. Process 1 reads number [2] and finds it equal to zero.

3. Process 2 sets nwnber[2] to 17.

36

At this point, before process 1 reads nrmtber[3],

[dwl] (number[l] > rzrmiber[2])

is true. IIowever, process 3 can make it false

number[3] tozero.

[11] S. Owicki and L. Lamport. Proving Liveness Proper-

ties of Concurrent Programs. ACM. Trans. Prog. Lang.

and Sys. J, 3 (July 1982), 455-495.

by setting [12] A. Pnueli. The Temporal Logic of Programs. Proc. of

the ltUh Symposium on the Foundations oj Computer

The correct specification states that there exists a predi- Sciersce, Nov. 1977, 46-57.

cate Pij such that:

(i) Pij I) [Ai] (nurnber[i] > rsumber[j]), and

(ii) Process k leaves f’ij invariant.

Intuitively, the predicate Pij asserts that when process i

is choosing number[i], if it has not yet read nurnber[j]

then it will choose a value of rtumber[i] greater than the

current value of nrmsber[j]. This illustrates the important

point that to specify a statement without describing its

atomic operations, one must write a second-order formula

of the form: “There exist state functions . . . such that“

The general problem of specifying concurrent programs is

discussed in [8].

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

E. A. Ashcroft. Proving Assertions About Parallel

Programs. J. Comput. Sys. Sci. 10 (Jan. 1975), 110-

135.

David Hare]. First-Order Dynamic Logic. Lecture

Notes in Computer Science, No. 68, Springer-Verlag,

Berlin, 1979.

C. A. R. Hoare. An Axiomatic Basis for Computer

Programming. Comm. ACM. 12, 10 (Oct. 1969), 576-

580.

R. M. Keller. Formal Verification of Parallel Programs.

Cornm. ACM. 19, 7 (July 1976), 371-384.

L. Lamport. A New Solution of Dijkstra’s Concurrent

Programming Problem. C’omm. ACM. 17, t3 (Aug.

1974), 453-455.

L. Lamport. Proving the Correctness of Multiprocess

Programs. IEEE Trans. on Sojt. Eng. SE-32,2 (Mar.

1977), 125-143.

L. Lamport. The ‘Hoare Logic’ of Concurrent Pro

grams. Acts Injor-matica 14 (1980), 21-37.

L. Lamport. Specifying Concurrent Program Modules.

To appear in ACA!. Trans. Prog. Lang. and Sys. 5, 1

(Jm. 1983).

L. Lamport and F.B. Schneider. The “Hoare Logic” of

CSP, and All That. To appear in ACM. Trans. Prog.

Lang. and Sys.

S. Owicki and D. Gries. An Axiomatic Proof Tech-

nique for Parallel Programs. Acts InJormatica 6, 4

(1976), 319-340.

37

