

Presented by: Andy Bayramian

Lawrence Livermore National Laboratory

High Energy Class Diode Pumped Solid State Lasers Workshop

September 12, 2012

Granlibakken Conference Center, Lake Tahoe, CA

Lawrence Livermore National Laboratory • Laser Inertial Fusion Energy

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

LIFE is a modular laser system which allows realistic reliability specifications, affecting plant availability by <1%

Modular, truck-shippable, swappable beamlines enable practical power plant supply chain high availability laser LIFE

NIF capability in a very small box: LIFE high average power laser architecture attributes

Provides efficiency (~18%) at high repetition rate (16 Hz)

- High brightness efficiency diode pump arrays
- · Helium gas-cooled amplifiers
- High efficiency harmonic conversion using pulse splitting

Will be built with existing materials

- Glass slabs: thermal birefringence compensated by architecture
- DKDP Pockels cell: polarization switching minimizes heat load

Designed for high availability operation

- Robustness: Low 3ω fluence operation
- Headroom in beamline power to meet operational availability
- Optics preparation to mitigate damage

Suitable for remote (off-site) manufacturing

- Modular beamlines permit hot-swapping
- Separation of laser manufacturing & power generation operations

The NIF laser provides the single-shot baseline

Laser diodes and helium gas cooling enable a NIF-like architecture to meet LIFE driver requirements

3 W/cm² cooling (average)

These technologies have been developed as part of the Mercury HAPL Project

LIFE combines the NIF architecture with high efficiency, high average power technology

The entire 1ω beamline can be packaged into a box which is 31 m³ while providing 130 kW average power

LLNL average power lasers have been proving grounds for several key LIFE technologies

Efficiency-cost tradeoffs: Nd vs. Yb gain media

The LIFE laser will achieve high efficiency, optimized at ~18% to balance economic and performance terms

Diode power conditioning has been made practical for the footprint and efficiency needed for Beam-in-a-Box

- Smart Pulser
 - "A more compact and efficient diode pulser"
 - High average power (12.5 kW)
 - High current (1000A)
 - High efficiency (90%) (95% efficiency possible with double size pulser
 - Low volume diode pulser (713 cm3)
 - Benefit: 10X average power, 10X decreased volume
- Licensing
 - This technology is currently being developed by a commercial company

These pulsers are now being used in the lab for diode laser testing

- Once characterized, these early bar analogs similar to those needed for LIFE will undergo Mshot to Gshot lifetests
- Mshot testing underway now

Diode technology will meet Beam-in-a-Box cost targets

Each beam box includes ~130 MW of polarization combined diode pumps

Amplifier heads employ gas-cooled glass slabs to remove heat longitudinally mitigating thermal lensing

This amplifier design was prototyped and thermal / gas cooling codes benchmarked on the Mercury laser system

LIFE

Thermally induced depolarization in isotropic media (Nd:glass) can be minimized with polarization rotation

The materials chosen for the LIFE laser are based on today's availability to meet schedule

HEM Sapphire & EFG Sapphire waveplates

LIFE requires a 25 x 25 cm² aperture quartz rotator, however, quartz is not yet available in this size

- Quartz crystals can produce a 15 x 15 cm aperture today (Sawyer Corporation)
- Bonding of 4 parts together will yield a full size optic.
- We are doing our first test bonds in collaboration with Precision Photonics Corporation
- Polished parts bonded with CADB (Chemically Activated Direct Bonding)

Validation experiments on quartz rotator material indicate potential to meet LIFE beamline requirements

First characterization of a bonded quartz rotator shows promise

- Transmitted wavefront (<lambda/14 without MRF correction) & rotation (>99.9%) are reasonable for this first demo
- Raster scan damage testing was carried out at SPICA Inc. on three different samples using a 1064 nm 3 ns Nd:YAG laser system.
- First initiation sights were observed at 16 J/cm², 16 J/cm² and 49 J/cm² respectively.
- An additional test for 10⁵ shots was successfully carried out at 10 J/cm² (nominal LIFE operational point for the rotator).

A cylindrical spatial filter can mitigate many issues associate with high average power / intensity

- Spatial filters are essential for high energy laser systems
 - Reset high frequency B-integral effects
 - Provide gain isolation
 - Improve laser beam quality
- High intensity in spatial filters is an issue
 - Exceeds pinhole melt / vaporization threshold
 - Pinholes degrade over time
 - Vaporized material can coat telescope optics

The calculated intensity profile on the cylindrical filter appears acceptable with real aberration files

Cylindrical filter experiments are proceeding well

 Slit filter substrates manufactured using NIF high damage threshold substrate, finishing, and cleaning procedures.

Raster scan test results:

- Successful ramp from
 0 300 J/cm² in dry air (RH 5%)
- Successful ramp from 0 300 J/cm² in vacuum (mtorr)
 - Single damage spot at 150 J/cm² in vacuum – no other damage
- Lifetime testing underway to demonstrate 10⁵ shots – so far 3.6x10⁴ shots no damage

PROP Model with New Optics Aberration Files: Results at Converter Input

Mean 1₀ fluence: 6.25 J/cm² Peak 1₀ fluence: 6.99 J/cm² Contrast: 2.23%

- More realistic aberrations using NIF optics database with no scaling
- Filtering of files to remove interferometer defects
- Wavefront improved slightly compared to original model

LIFE

Detailed propagation simulation (based on measured NIF optics aberrations) shows excellent performance

3ω optical damage can be mitigated using existing NIF technologies and fluence scaling

NIF capability in a very small box: LIFE high average power laser architecture attributes

Provides efficiency (~18%) at high repetition rate (16 Hz)

- High Brightness efficiency diode pump arrays
- Helium gas-cooled amplifiers
- High efficiency harmonic conversion using pulse splitting

Will be built with existing materials

- Glass slabs: thermal birefringence compensated by architecture
- DKDP Pockels cell: polarization switching minimizes heat load

Designed for high availability operation

- Robustness: Low 3ω fluence operation
- Headroom in beamline power to meet operational availability
- Optics preparation to mitigate damage

Suitable for remote (off-site) manufacturing

- Modular beamlines permit hot-swapping
- Separation of laser manufacturing & power generation operations

LIFE laser/laser materials team

Bob Deri Andy Bayramian Glenn Beer Chuck Boley Jeff Bude Amber Bullington Diana Chen Al Erlandson Steve Fulkerson Glenn Huete Travis Lange Rod Lanning Mark Henesian Ken Manes Naresh Mehta Shahida Rana Margareta Rehak Sam Rodriguez Kathleen Schaffers Mary Spaeth Chris Stolz Tayyab Suratwala John Trendholme Steve Telford