(Translated by https://www.hiragana.jp/)
Hydrogen Traps in Tungsten: A Review | Physics of Metals and Metallography Skip to main content
Log in

Hydrogen Traps in Tungsten: A Review

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Tungsten is currently the most promising material for plasma-facing in FRs. The accumulation of radioactive tritium in tungsten is caused by presence of hydrogen traps in this metal. The paper analyzes the literature data on the parameters of hydrogen traps in tungsten. The review results can predict the accumulation of tritium in tungsten cladding of fusion reactors, ensuring their radiation safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. V. Philipps, P. Mertens, G. F. Matthews, H. Maier, P. Edwards, A. Loving, V. Riccardo, H. Greuner, R. Neu, A. Schmidt, M. Rubel, C. Ruset, E. Villedieu, and JET-EFDA contributors, “Overview of the JET ITER-like Wall Project,” Fusion Eng. Des. 85, 1581–1586 (2010). https://doi.org/10.1016/j.fusengdes.2010.04.048

    Article  CAS  Google Scholar 

  2. M. Missirlian, M. Firdaouss, M. Richou, C. Hernandez, L. Gargiulo, J. Bucalossi, C. Brun, Y. Corre, E. Delmas, H. Greuner, B. Guillermin, J. Gunn, J.‑C. C. Hatchressian, R. Jalageas, Q. Li, M. Lipa, M. Lozano, G. Luo, C. Pocheau, H. Roche, E. Tsitrone, N. Vignal, W. Wang, A. Saille, and B. Zago, “Manufacturing, testing and installation of the full tungsten actively cooled ITER-like divertor in the WEST tokamak,” Fusion Eng. Des. 193, 113683 (2022). https://doi.org/10.1016/j.fusengdes.2023.113683

    Article  CAS  Google Scholar 

  3. T. Hirai, F. Escourbiac, V. Barabash, A. Durocher, A. Fedosov, L. Ferrand, T. Jokinen, V. Komarov, M. Merola, S. Carpentier-Chouchana, N. Arkhipov, V. Kuznetcov, A. Volodin, S. Suzuki, K. Ezato, Y. Seki, B. Riccardi, M. Bednarek, and P. Gavila, “Status of technology R&D for the ITER tungsten divertor monoblock,” J. Nucl. Mater. 463, 1248–1251 (2015). https://doi.org/10.1016/j.jnucmat.2014.12.027

    Article  CAS  Google Scholar 

  4. V. N. Mikhailov, V. A. Evtikhin, I. E. Lyublinskii, A. V. Vertkov, and A. N. Chumanov, Lithium in Thermonuclear Space Energy of the 21st Century (Energoatomizdat, Moscow, 1999).

    Google Scholar 

  5. G. Alefeld and J. Völkl, Hydrogen in Metals I: Basic Properties, Topics in Applied Physics, Vol. 28 (Berlin, 1978).

  6. A. A. Pisarev, Hydrogen Permeability through Metals: A Study Guide (Mosk. Inzh.-Fiz. Inst., Moscow, 2008).

    Google Scholar 

  7. Yu. P. Cherdantsev, I. P. Chernov, and Yu. I. Tyurin, Methods of Investigation of Metal-Hydrogen Systems (Tomsk. Politekh. Univ., Tomsk, 2008).

    Google Scholar 

  8. B. M. Andreev, E. P. Magomedbekov, and M. B. Rozenkevich, “Heterogeneous Tritium Isotope Exchange Reactions,” (1999).

  9. R. A. Causet and T. J. Venhaus, “The use of tungsten in fusion reactors: A review of the hydrogen retention and migration properties,” Phys. Scr. T94, 9 (2001). https://doi.org/10.1238/physica.topical.094a00009

    Article  Google Scholar 

  10. Y. Hatano, M. Shimada, V. Kh. Alimov, J. Shi, M. Hara, T. Nozaki, Y. Oya, M. Kobayashi, K. Okuno, T. Oda, G. Cao, N. Yoshida, N. Futagami, K. Sugiyama, J. Roth, B. Tyburska-Püschel, J. Dorner, I. Takagi, M. Hatakeyama, H. Kurishita, and M. A. Sokolov, “Trapping of hydrogen isotopes in radiation defects formed in tungsten by neutron and ion irradiations,” J. Nucl. Mater. 438, S114–S119 (1010). https://doi.org/10.1016/j.jnucmat.2013.01.018

  11. M. I. Kobayashi, M. Shimada, C. N. Taylor, Yu. Nobuta, Yu. Hatano, and Ya. Oya, “Numerical analysis of deuterium migration behaviors in tungsten damaged by fast neutron by means of gas absorption method,” Fusion Eng. Des. 168, 112635 (2021). https://doi.org/10.1016/j.fusengdes.2021.112635

    Article  CAS  Google Scholar 

  12. A. A. van Gorkum and E. V. Kornelsen, “Quantitative thermal desorption spectrometry of ionically implanted inert gases—I. Fundamental aspects,” Vacuum 31, 89–98 (1981). https://doi.org/10.1016/s0042-207x(81)80165-0

    Article  Google Scholar 

  13. E. V. Kornelsen and A. A. van Gorkum, “Quantitative thermal desorption spectrometry of ionically implanted inert gases—II. Technical requirements,” Vacuum 31, 99–111 (1981). https://doi.org/10.1016/s0042-207x(81)80166-2

    Article  Google Scholar 

  14. S. M. Myers, P. M. Richards, W. R. Wampler, and F. Besenbacher, “Ion-beam studies of hydrogen-metal interactions,” J. Nucl. Mater. 165, 9–64 (1989). https://doi.org/10.1016/0022-3115(89)90502-3

    Article  CAS  Google Scholar 

  15. O. V. Ogorodnikova, B. Tyburska, V. Kh. Alimov, and K. Ertl, “The influence of radiation damage on the plasma-induced deuterium retention in self-implanted tungsten,” J. Nucl. Mater. 415, S661–S666 (2018). https://doi.org/10.1016/j.jnucmat.2010.12.012

    Article  CAS  Google Scholar 

  16. V. S. Efimov, Yu. M. Gasparyan, and A. A. Pisarev, “Investigation of a fine structure of deuterium thermal desorption spectra from tungsten,” J. Surf. Invest. X‑ray, Synchrotron Neutron Tech. 7, 472–478 (2013). https://doi.org/10.1134/s1027451013030051

    Article  CAS  Google Scholar 

  17. A. Rusinov, Y. U. Gasparyan, N. Trifonov, A. Pisarev, S. Lindig, and M. Sakamoto, “Investigation of hydrogen-defect interaction in tungsten by the probe fluence method,” J. Nucl. Mater. 415, S645–S648 (2011). https://doi.org/10.1016/j.jnucmat.2010.10.069

    Article  CAS  Google Scholar 

  18. I. N. Bekman, Higher Mathematics: Mathematical Apparatus of Diffusion: Textbook for Universities, 2nd ed. (Yurait, Moscow, 2023).

    Google Scholar 

  19. R. Frauenfelder, “Solution and diffusion of hydrogen in tungsten,” J. Vac. Sci. Technol. 6, 388–397 (1919). https://doi.org/10.1116/1.1492699

    Article  Google Scholar 

  20. A. A. Ganeev, A. R. Gubal, S. V. Potapov, N. N. Agafonova, and V. M. Nemets, “Mass spectrometric methods for the direct elemental and isotopic analysis of solid material,” Russ. Chem. Rev. 85, 427–444 (2016). https://doi.org/10.1070/rcr4504

    Article  CAS  Google Scholar 

  21. A. Hollingsworth, M. Yu. Lavrentiev, R. Watkins, A. C. Davies, S. Davies, R. Smith, D. R. Mason, A. Baron-Wiechec, Z. Kollo, J. Hess, I. Jepu, J. Likonen, K. Heinola, K. Mizohata, E. Meslin, M. Barthe, A. Widdowson, I. S. Grech, K. Abraham, E. Pender, A. Mcshee, Y. Martynova, M. Freisinger, and A. De Backer, “Comparative study of deuterium retention in irradiated Eurofer and Fe–Cr from a new ion implantation materials facility,” Nucl. Fusion 60, 016024 (2019). https://doi.org/10.1088/1741-4326/ab546e

    Article  CAS  Google Scholar 

  22. A. A. Haasz, M. Poon, R. G. Macaulay-Newcombe, and J. W. Davis, “Deuterium retention in single crystal tungsten,” J. Nucl. Mater. 290-293, 85–88 (2001). https://doi.org/10.1016/s0022-3115(00)00615-2

    Article  CAS  Google Scholar 

  23. J. P. Coad, J. Likonen, M. Rubel, E. Vainonen-Ahlgren, D. E. Hole, T. Sajavaara, T. Renvall, G. F. Matthews, and J. E. Contributors, “Overview of material re-deposition and fuel retention studies at JET with the Gas Box divertor,” Nucl. Fusion 46, 350–366 (2006). https://doi.org/10.1088/0029-5515/46/2/018

    Article  CAS  Google Scholar 

  24. J. Karhunen, A. Hakola, J. Likonen, A. Lissovski, M. Laan, and P. Paris, “Applicability of LIBS for in situ monitoring of deposition and retention on the ITER-like wall of JET—Comparison to SIMS,” J. Nucl. Mater. 463, 931–935 (2015). https://doi.org/10.1016/j.jnucmat.2014.10.028

    Article  CAS  Google Scholar 

  25. M. Mayer, V. Rohde, J. Likonen, E. Vainonen-Ahlgren, K. Krieger, X. Gong, J. Chen et al. (ASDEX Upgrade Team. Carbon), “Carbon erosion and deposition on the ASDEX Upgrade divertor tiles,” J. Nucl. Mater. 337–339, 119–123 (2005). https://doi.org/10.1016/j.jnucmat.2004.10.046

    Article  CAS  Google Scholar 

  26. F. Pavlyak, “Investigation of hydrogen sensitivity of SIMS method,” Surf. Interface Anal. 19, 232–236 (1992). https://doi.org/10.1002/sia.740190145

    Article  CAS  Google Scholar 

  27. M. Wilde and K. Fukutani, “Hydrogen detection near surfaces and shallow interfaces with resonant nuclear reaction analysis,” Surf. Sci. Rep. 69, 196–295 (2014). https://doi.org/10.1016/j.surfrep.2014.08.002

    Article  CAS  Google Scholar 

  28. M. Mayer, SIMNRA User’s Guide (1997).

    Google Scholar 

  29. V. Kh. Alimov, J. Roth, and M. Mayer, “Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers,” J. Nucl. Mater. 337–339, 619–623 (2005). https://doi.org/10.1016/j.jnucmat.2004.10.082

    Article  CAS  Google Scholar 

  30. R. A. Langley, S. T. Picraux, and F. L. Vook, “Depth distribution profiling of deuterium and 3He,” J. Nucl. Mater. 53, 257–261 (1974). https://doi.org/10.1016/0022-3115(74)90253-0

    Article  CAS  Google Scholar 

  31. V. Kh. Alimov, M. Mayer, and J. Roth, “Differential cross-section of the D(3He,p)4He nuclear reaction and depth profiling of deuterium up to large depths,” Nucl. Instrum. Methods Phys. Res., Sect. B 234, 169–175 (2005). https://doi.org/10.1016/j.nimb.2005.01.009

    Article  CAS  Google Scholar 

  32. A. Manhard, “Deuterium inventory in tungsten after plasma exposure: a microstructural survery,” PhD Thesis (Univ. Augsburg, Augsburg, Germany, 2012).

  33. G. M. Wright, D. G. Whyte, and B. Lipschultz, “Measurement of hydrogenic retention and release in molybdenum with the DIONISOS experiment,” J. Nucl. Mater. 390–391, 544–549 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.092

    Article  CAS  Google Scholar 

  34. V. Kh. Alimov, N. P. Bobyr, A. V. Spitsyn, and D. I. Cherkez, “Deuterium retention in radiation-damaged tungsten,” Vopr. At. Nauki Tekh. Ser.: Termoyadernyi Sintez 40 (4), 25–39 (2017). https://doi.org/10.21517/0202-3822-2017-40-4-25-39

    Article  Google Scholar 

  35. P. E. Lhuillier, T. Belhabib, P. Desgardin, B. Courtois, T. Sauvage, M. F. Barthe, A. L. Thomann, P. Brault, and Y. Tessier, “Helium retention and early stages of helium-vacancy complexes formation in low energy helium-implanted tungsten,” J. Nucl. Mater. 433, 305–313 (2013). https://doi.org/10.1016/j.jnucmat.2012.09.001

    Article  CAS  Google Scholar 

  36. I. Takagi, S. Nomura, T. Minamimoto, M. Akiyoshi, T. Kobayashi, and T. Sasaki, “Hydrogen–deuterium exchange on plasma-exposed W and SS surface,” J. Nucl. Mater. 463, 1125–1128 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.037

    Article  CAS  Google Scholar 

  37. V. Kh. Alimov, B. Tyburska-Püschel, M. H. J. ‘t Hoen, J. Roth, Y. Hatano, K. Isobe, M. Matsuyama, and T. Yamanishi, “Hydrogen isotope exchange in tungsten irradiated sequentially with low-energy deuterium and protium ions,” Phys. Scr. T145, 014037 (2011). https://doi.org/10.1088/0031-8949/2011/t145/014037

    Article  Google Scholar 

  38. O. V. Ogorodnikova, L. Yu. Dubov, S. V. Stepanov, D. Terentyev, Yu. V. Funtikov, Yu. V. Shtotsky, V. S. Stolbunov, V. Efimov, and K. Gutorov, “Annealing of radiation-induced defects in tungsten: Positron annihilation spectroscopy study,” J. Nucl. Mater. 517, 148–151 (2019). https://doi.org/10.1016/j.jnucmat.2019.02.010

    Article  CAS  Google Scholar 

  39. F. A. Selim, “Positron annihilation spectroscopy of defects in nuclear and irradiated materials–A review,” Mater. Charact. 174, 110952 (2021). https://doi.org/10.1016/j.matchar.2021.110952

    Article  CAS  Google Scholar 

  40. A. Dupasquier and M. J. Manninen, Positrons in Solids, Topics in Current Physics, Vol. 12 (Springer, Berlin, 1979). https://doi.org/10.1007/978-3-642-81316-0

  41. M. Eldrup and B. N. Singh, “Studies of defects and defect agglomerates by positron annihilation spectroscopy,” J. Nucl. Mater. 251, 132–138 (1997). https://doi.org/10.1016/s0022-3115(97)00221-3

    Article  CAS  Google Scholar 

  42. Principles and Applications of Positron and Positronium Chemistry, Ed. by Y. C. Jean, P. E. Mallon, and D. M. Schrader (World Scientific, Singapore, 2003). https://doi.org/10.1142/9789812775610

    Book  Google Scholar 

  43. W. M. Shu, A. Kawasuso, Y. Miwa, E. Wakai, G. Luo, and T. Yamanishi, “Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315 K,” Phys. Scr. T128, 96–99 (2007). https://doi.org/10.1088/0031-8949/2007/t128/019

    Article  Google Scholar 

  44. H. Eleveld and A. Van Veen, “Void growth and thermal desorption of deuterium from voids in tungsten,” J. Nucl. Mater. 212–215, 1421–1425 (1994). https://doi.org/10.1016/0022-3115(94)91062-6

    Article  Google Scholar 

  45. A. Debelle, M. F. Barthe, and T. Sauvage, “First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy,” J. Nucl. Mater. 376, 216–221 (2008). https://doi.org/10.1016/j.jnucmat.2008.03.002

    Article  CAS  Google Scholar 

  46. S. Zhu, Yo. Xu, Z. Wang, Yo. Zheng, D. Zhou, E. Du, D. Yuan, M. Fukuda, M. Mihara, K. Matsuta, and T. Minamisono, “Positron annihilation lifetime spectroscopy on heavy ion irradiated stainless steels and tungsten,” J. Nucl. Mater. 343, 330–332 (2005). https://doi.org/10.1016/j.jnucmat.2004.11.024

    Article  CAS  Google Scholar 

  47. F. Liu, Yu. Xu, H. Zhou, X. Li, Yi. Song, C. Zhang, Q. Li, C. He, and G.-N. Luo, “Defect production and deuterium retention in quasi-homogeneously damaged tungsten,” Nucl. Instrum. Methods Phys. Res., Sect. B 351, 23–26 (2015). https://doi.org/10.1016/j.nimb.2015.03.080

    Article  CAS  Google Scholar 

  48. M. Zibrov, W. Egger, J. Heikinheimo, M. Mayer, and F. Tuomisto, “Vacancy cluster growth and thermal recovery in hydrogen-irradiated tungsten,” J. Nucl. Mater. 531, 152017 (2020). https://doi.org/10.1016/j.jnucmat.2020.152017

    Article  CAS  Google Scholar 

  49. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists (Springer, New York, 1981). https://doi.org/10.1007/978-1-4613-0491-3

    Book  Google Scholar 

  50. S. R. Falsafi, H. Rostamabadi, E. Assadpour, and S. M. Jafari, “Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM,” Adv. Colloid Interface Sci. 280, 102166 (2020). https://doi.org/10.1016/j.cis.2020.102166

    Article  CAS  PubMed  Google Scholar 

  51. A. Manhard, G. Matern, and M. Balden, “A step-by-step analysis of the polishing process for tungsten specimens,” Pract. Metallogr. 50, 5–16 (2013). https://doi.org/10.3139/147.110215

    Article  CAS  Google Scholar 

  52. A. V. Golubeva, V. A. Kurnaev, M. Mayer, and J. Roth, “Deuterium capture in plasma-sprayed tungsten,”, No. 2, 18–25 (2007).

  53. Y. U. Gasparyan, M. Rasinski, M. Mayer, A. Pisarev, and J. Roth, “Deuterium ion-driven permeation and bulk retention in tungsten,” J. Nucl. Mater. 417, 540–544 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.119

    Article  CAS  Google Scholar 

  54. Yu. M. Gasparyan, “Capture and outgassing of deuterium during ionic introduction into tungsten,” Candidate’s Dissertation in Physics and Mathematics (National Research Nuclear Univ. MEPhI, Moscow, 2009).

  55. Umanskii Ya S, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-Ray and Electron Microscopy (Metallurgiya, Moscow, 1982).

    Google Scholar 

  56. L. Reimer, Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, Springer Series in Optical Sciences, Vol. 36 (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-662-14824-2

  57. B. I. Khripunov, V. S. Koidan, A. I. Ryazanov, V. M. Gureev, S. N. Kornienko, S. T. Latushkin, A. M. Muksunov, E. V. Semenov, V. G. Stolyarova, and V. N. Unezhev, “Radiation-damaged tungsten: Production and study in a steady-state plasma flux,” Phys. At. Nucl. 81, 1015–1023 (2017). https://doi.org/10.1134/s1063778818070049

    Article  CAS  Google Scholar 

  58. M. Zibrov, M. Balden, M. Dickmann, A. Dubinko, W. Egger, M. Mayer, D. Terentyev, and M. Wirtz, “Deuterium trapping by deformation-induced defects in tungsten,” Nucl. Fusion 59, 106056 (2019). https://doi.org/10.1088/1741-4326/ab3c7e

    Article  CAS  Google Scholar 

  59. W. Chrominski, L. Ciupinski, P. Bazarnik, S. Markelj, and T. Schwarz-Selinger, “TEM investigation of the influence of dose rate on radiation damage and deuterium retention in tungsten,” Mater. Charact. 154, 1–6 (2019). https://doi.org/10.1016/j.matchar.2019.05.028

    Article  CAS  Google Scholar 

  60. M. Pečovnik, “The influence of hydrogen isotopes on the behaviour of crystal lattice defects in tungsten,” PhD Dissertation (Univerza v Ljubljani, Ljubljana, 2021).

  61. P. Wang, Q. Cao, J. Hou, X. Kong, L. Chen, and Z. M. Xie, “Implantation and desorption of H isotopes in W revisited by object kinetic Monte Carlo simulation,” J. Nucl. Mater. 561, 153576 (2022). https://doi.org/10.1016/j.jnucmat.2022.153576

    Article  CAS  Google Scholar 

  62. C. S. Becquart, C. Domain, U. Sarkar, A. Debacker, and M. Hou, “Microstructural evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model,” J. Nucl. Mater. 403, 75–88 (2010). https://doi.org/10.1016/j.jnucmat.2010.06.003

    Article  CAS  Google Scholar 

  63. F. Jiménez and C. J. Ortiz, “A GPU-based parallel object kinetic Monte Carlo algorithm for the evolution of defects in irradiated materials,” Comput. Mater. Sci. 113, 178–186 (2016). https://doi.org/10.1016/j.commatsci.2015.11.011

    Article  Google Scholar 

  64. A. McNabb and P. K. Foster, “A new analysis of the diffusion of hydrogen in iron and ferritic steels,” Trans. Met. Soc. AIME 227, 618–627 (1963).

    CAS  Google Scholar 

  65. S. M. Myers, W. R. Wampler, and F. Besenbacher, “Trapping and surface recombination of ion-implanted deuterium in stainless steel,” J. Appl. Phys. 56, 1561–1571 (1984). https://doi.org/10.1063/1.334165

    Article  CAS  Google Scholar 

  66. G. R. Longhurst, TMAP7 User Manual (Idaho Natl. Lab. (INL), 2008). https://doi.org/10.2172/952013

  67. B. J. Merrill, M. Shimada, and P. W. Humrickhouse, “Simulating tritium retention in tungsten with a multiple trap model in the TMAP code,” J. Plasma Fusion Res. SERIES 10, 71–75 (2013).

    Google Scholar 

  68. M. J. Simmonds, “Investigating fusion relevant plasma material interactions: Analyzing hydrogenic isotope retention in heavy-ion damaged tungsten,” PhD Dissertation (Univ. of California, San Diego, Calif., 2018).

  69. Yu. M. Gasparyan, O. V. Ogorodnikova, V. S. Efimov, A. Mednikov, E. D. Marenkov, A. A. Pisarev, S. Markelj, and I. Čadež, “Thermal desorption from self-damaged tungsten exposed to deuterium atoms,” J. Nucl. Mater. 463, 1013–1016 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.022

    Article  CAS  Google Scholar 

  70. J. Guterl, R. D. Smirnov, S. I. Krasheninnikov, M. Zibrov, and A. A. Pisarev, “Theoretical analysis of deuterium retention in tungsten plasma-facing components induced by various traps via thermal desorption spectroscopy,” Nucl. Fusion 55, 093017 (2015). https://doi.org/10.1088/0029-5515/55/9/093017

    Article  CAS  Google Scholar 

  71. Ya. Oya, X. Li, M. Sato, K. Yuyama, L. Zhang, S. Kondo, T. Hinoki, Yu. Hatano, H. Watanabe, N. Yoshida, and T. Chikada, “Thermal desorption behavior of deuterium for 6 MeV Fe ion irradiated W with various damage concentrations,” J. Nucl. Mater. 461, 336–340 (2015). https://doi.org/10.1016/j.jnucmat.2015.03.032

    Article  CAS  Google Scholar 

  72. M. A. Pick and K. Sonnenberg, “A model for atomic hydrogen-metal interactions—Application to recycling, recombination and permeation,” J. Nucl. Mater. 131, 208–220 (1985). https://doi.org/10.1016/0022-3115(85)90459-3

    Article  CAS  Google Scholar 

  73. O. V. Ogorodnikova, J. Roth, and M. Mayer, “Deuterium retention in tungsten in dependence of the surface conditions,” J. Nucl. Mater. 313316, 469–477 (2003). https://doi.org/10.1016/s0022-3115(02)01375-2

    Article  Google Scholar 

  74. A. Hu and A. Hassanein, “Modeling hydrogen isotope behavior in fusion plasma-facing components,” J. Nucl. Mater. 446, 56–62 (2014). https://doi.org/10.1016/j.jnucmat.2013.11.033

    Article  CAS  Google Scholar 

  75. A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers,” ACM Trans. Math. Software 31, 363–396 (2005). https://doi.org/10.1145/1089014.1089020

    Article  Google Scholar 

  76. T. Ahlgren, K. Heinola, K. Vörtler, and J. Keinonen, “Simulation of irradiation induced deuterium trapping in tungsten,” J. Nucl. Mater. 427, 152–161 (2012). https://doi.org/10.1016/j.jnucmat.2012.04.031

    Article  CAS  Google Scholar 

  77. P. Grigorev, D. Matveev, A. Bakaeva, D. Terentyev, E. E. Zhurkin, G. Van Oost, and J.-M. Noterdaeme, “Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure,” J. Nucl. Mater. 481, 181–189 (2016). https://doi.org/10.1016/j.jnucmat.2016.09.019

    Article  CAS  Google Scholar 

  78. C. Sang, X. Bonnin, M. Warrier, A. Rai, R. Schneider, J. Sun, and D. Wang, “Modelling of hydrogen isotope inventory in mixed materials including porous deposited layers in fusion devices,” Nucl. Fusion 52, 043003 (2012). https://doi.org/10.1088/0029-5515/52/4/043003

    Article  CAS  Google Scholar 

  79. Z. Wang, C. Sang, and D. Wang, “Modelling of deuterium retention and outgassing in self-damaged tungsten under low-energy atomic D flux irradiation: The effects of surface processes,” J. Nucl. Mater. 540, 152390 (2020). https://doi.org/10.1016/j.jnucmat.2020.152390

    Article  CAS  Google Scholar 

  80. M. Oberkofler, M. Reinelt, and C. H. Linsmeier, “Retention and release mechanisms of deuterium implanted into beryllium,” Nucl. Instrum. Methods Phys. Res., Sect. B 269, 1266–1270 (2011). https://doi.org/10.1016/j.nimb.2010.11.058

    Article  CAS  Google Scholar 

  81. D. Matveev, M. Wensing, S. Möller, A. Kreter, S. Brezinsek, and C. Linsmeier, “Hydrogen outgassing following plasma exposure,” (EUROFUSION WPPFC-CP(16), 2016), p. 14877.

  82. L. Buzi, G. De Temmerman, B. Unterberg, M. Reinhart, T. Dittmar, D. Matveev, C. H. Linsmeier, U. Breuer, A. Kreter, and G. Van Oost, “Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention,” J. Nucl. Mater. 463, 320–324 (2015). https://doi.org/10.1016/j.jnucmat.2014.12.006

    Article  CAS  Google Scholar 

  83. R. Piechoczek, M. Reinelt, M. Oberkofler, A. Allouche, and C. H. Linsmeier, “Deuterium trapping and release in Be(0001), Be(11–20) and polycrystalline beryllium,” J. Nucl. Mater. 438, S1072–S1075 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.235

    Article  CAS  Google Scholar 

  84. E. A. Hodille, X. Bonnin, R. Bisson, T. Angot, C. S. Becquart, J. M. Layet, and C. Grisolia, “Macroscopic rate equation modeling of trapping/detrapping of hydrogen isotopes in tungsten materials,” J. Nucl. Mater. 467, 424–431 (2015). https://doi.org/10.1016/j.jnucmat.2015.06.041

    Article  CAS  Google Scholar 

  85. E. A. Hodille, Y. Ferro, N. Fernandez, C. S. Becquart, T. Angot, J. M. Layet, R. Bisson, and C. Grisolia, “Study of hydrogen isotopes behavior in tungsten by a multi trapping macroscopic rate equation model,” Phys. Scr. T167, 014011 (2016). https://doi.org/10.1088/0031-8949/2016/t167/014011

    Article  Google Scholar 

  86. E. A. Hodille, S. Markelj, M. Pecovnik, M. Ajmalghan, Z. A. Piazza, Y. Ferro, T. Schwarz-Selinger, and C. Grisolia, “Kinetic model for hydrogen absorption in tungsten with coverage dependent surface mechanisms,” Nucl. Fusion 60, 106011 (2020). https://doi.org/10.1088/1741-4326/aba454

    Article  CAS  Google Scholar 

  87. M. Pečovnik, T. Schwarz-Selinger, and S. Markelj, “Experiments and modelling of multiple sequential MeV ion irradiations and deuterium exposures in tungsten,” J. Nucl. Mater. 550, 152947 (2021). https://doi.org/10.1016/j.jnucmat.2021.152947

    Article  CAS  Google Scholar 

  88. R. Delaporte-Mathurin, E. A. Hodille, J. Mougenot, Ya. Charles, and C. Grisolia, “Finite element analysis of hydrogen retention in ITER plasma facing components using FESTIM,” Nucl. Mater. Energy 21, 100709 (2019). https://doi.org/10.1016/j.nme.2019.100709

    Article  Google Scholar 

  89. S. Benannoune, Y. Charles, J. Mougenot, M. Gaspérini, and G. De Temmerman, “Numerical simulation by finite element modelling of diffusion and transient hydrogen trapping processes in plasma facing components,” Nucl. Mater. Energy 19, 42–46 (2019). https://doi.org/10.1016/j.nme.2019.01.023

    Article  Google Scholar 

  90. ABAQUS User Subroutines Reference Manual (Simulia, Dassault Système, 2011).

  91. K. Schmid, V. Rieger, and A. Manhard, “Comparison of hydrogen retention in W and W/Ta alloys,” J. Nucl. Mater. 426, 247–253 (2012). https://doi.org/10.1016/j.jnucmat.2012.04.003

    Article  CAS  Google Scholar 

  92. K. Schmid, “Diffusion-trapping modelling of hydrogen recycling in tungsten under ELM-like heat loads,” Phys. Scr. T167, 014025 (2016). https://doi.org/10.1088/0031-8949/t167/1/014025

    Article  Google Scholar 

  93. K. Schmid, U. Von Toussaint, and T. Schwarz-Selinger, “Transport of hydrogen in metals with occupancy dependent trap energies,” J. Appl. Phys. 116 (2014). https://doi.org/10.1063/1.4896580

  94. K. Schmid and M. Zibrov, “On the use of recombination rate coefficients in hydrogen transport calculations,” Nucl. Fusion 61, 086008 (2021). https://doi.org/10.1088/1741-4326/ac07b2

    Article  CAS  Google Scholar 

  95. H. E. Kissinger, “Variation of peak temperature with heating rate in differential thermal analysis,” J. Res. Natl. Bureau Standards 57, 217–221 (1956). https://doi.org/10.6028/jres.057.026

    Article  CAS  Google Scholar 

  96. M. Zibrov, S. Ryabtsev, Y. U. Gasparyan, and A. Pisarev, “Experimental determination of the deuterium binding energy with vacancies in tungsten,” J. Nucl. Mater. 477, 292–297 (2016). https://doi.org/10.1016/j.jnucmat.2016.04.052

    Article  CAS  Google Scholar 

  97. F. Wei, M. Enomoto, and K. Tsuzaki, “Applicability of the Kissinger’s formula and comparison with the McNabb–Foster model in simulation of thermal desorption spectrum,” Comput. Mater. Sci. 51, 322–330 (2012). https://doi.org/10.1016/j.commatsci.2011.07.009

    Article  CAS  Google Scholar 

  98. L. Cheng, M. Enomoto, and F.-G. Wei, “Further assessment of the Kissinger formula in simulation of thermal desorption spectrum of hydrogen,” ISIJ Int. 53, 250–256 (2013). https://doi.org/10.2355/isijinternational.53.250

    Article  CAS  Google Scholar 

  99. M. S. Zibrov, A. S. Shubina, Yu. M. Gasparyan, and A. A. Pisarev, “On the possibility of determination of the hydrogen binding energies with defects from thermal desorption measurements with different heating rates,” Vopr. At. Nauki Tekh. Ser.: Termoyadernyi Sintez 38 (1), 32–41 (2015). https://doi.org/10.21517/0202-3822-2015-38-1-32-41

    Article  Google Scholar 

  100. R. A. Oriani, “The diffusion and trapping of hydrogen in steel,” Acta Metall. 18, 147–157 (1970). https://doi.org/10.1016/0001-6160(70)90078-7

    Article  CAS  Google Scholar 

  101. T. A. Shishkova, A. V. Golubeva, and M. B. Rozenkevich, “Isotope effect in the interaction between hydrogen and fusion reactor materials,” Russ. J. Phys. Chem. A 97, 2079–2098 (2023). https://doi.org/10.1134/s0036024423100205

    Article  CAS  Google Scholar 

  102. F. Liu, H. Zhou, X.-Ch. Li, Yu. Xu, Z. An, H. Mao, W. Xing, Q. Hou, and G.-N. Luo, “Deuterium gas-driven permeation and subsequent retention in rolled tungsten foils,” J. Nucl. Mater. 455, 248–252 (2014). https://doi.org/10.1016/j.jnucmat.2014.06.005

    Article  CAS  Google Scholar 

  103. X. Ye, G. Li, C. Liang, B. Ma, X. Xiang, Z. Zheng, M. Ni, and C. Chen, “Determination of the detrapping energy of tritium in tungsten,” J. Nucl. Mater. 544, 152662 (2021). https://doi.org/10.1016/j.jnucmat.2020.152662

    Article  CAS  Google Scholar 

  104. X. Ye, W. Wang, Q. Pan, C. Jiang, Yi. Wang, X. Chen, J. Wu, and C. Chen, “Comparison of deuterium retention in tungsten exposed to deuterium plasma and gas,” Nucl. Mater. Energy 24, 100775 (2020). https://doi.org/10.1016/j.nme.2020.100775

    Article  Google Scholar 

  105. M. Poon, A. A. Haasz, and J. W. Davis, “Modelling deuterium release during thermal desorption of D+-irradiated tungsten,” J. Nucl. Mater. 374, 390–402 (2008). https://doi.org/10.1016/j.jnucmat.2007.09.028

    Article  CAS  Google Scholar 

  106. J. P. Roszell, J. W. Davis, and A. A. Haasz, “Temperature dependence of deuterium retention mechanisms in tungsten,” J. Nucl. Mater. 429, 48–54 (2012). https://doi.org/10.1016/j.jnucmat.2012.05.018

    Article  CAS  Google Scholar 

  107. R. A. Anderl, D. F. Holland, G. R. Longhurst, R. J. Pawelko, C. L. Trybus, and C. H. Sellers, “Deuterium transport and trapping in polycrystalline tungsten,” Fusion Technol. 21, 745–752 (1992). https://doi.org/10.13182/fst92-a29837

    Article  CAS  Google Scholar 

  108. O. V. Ogorodnikova, J. Roth, and M. Mayer, “Ion-driven deuterium retention in tungsten,” J. Appl. Phys. 103, 34902 (2008). https://doi.org/10.1063/1.2828139

    Article  CAS  Google Scholar 

  109. H. Nakamura, T. Hayashi, Ya. Iwai, and M. Nishi, “The effect of annealing on the transient deuterium permeation characteristics of tungsten,” Fusion Technol. 39, 894–898 (2001). https://doi.org/10.13182/fst01-a11963353

    Article  CAS  Google Scholar 

  110. O. V. Ogorodnikova, K. Sugiyama, T. Schwarz-Selinger, T. Dürbeck, and M. Balden, “Ion-induced deuterium retention in tungsten coatings on carbon substrate,” J. Nucl. Mater. 419, 194–200 (2011). https://doi.org/10.1016/j.jnucmat.2011.07.023

    Article  CAS  Google Scholar 

  111. M. Liu, W. Guo, L. Cheng, J. Wang, S. Wang, H. Yin, T. Wang, Yu. Huang, Yu. Yuan, T. Schwarz-Selinger, G. D. Temmerman, X.-Zh. Cao, G.-N. Luo, and G.‑H. Lu, “Blister-dominated retention mechanism in tungsten exposed to high-fluence deuterium plasma,” Nucl. Fusion 60, 126034 (2020). https://doi.org/10.1088/1741-4326/abb600

    Article  CAS  Google Scholar 

  112. H. Eleveld and A. Van Veen, “Deuterium interaction with impurities in tungsten studied with TDS,” J. Nucl. Mater. 191194, 433–438 (1992). https://doi.org/10.1016/s0022-3115(09)80082-2

    Article  Google Scholar 

  113. S. Ryabtsev, Y. U. Gasparyan, M. Zibrov, A. Shubina, and A. Pisarev, “Deuterium thermal desorption from vacancy clusters in tungsten,” Nucl. Instrum. Methods Phys. Res., Sect. B 382, 101–104 (2016). https://doi.org/10.1016/j.nimb.2016.04.038

    Article  CAS  Google Scholar 

  114. Z. Harutyunyan, Yu. Gasparyan, S. Ryabtsev, V. Efimov, O. Ogorodnikova, A. Pisarev, and S. Kanashenko, “Deuterium trapping in the subsurface layer of tungsten pre-irradiated with helium ions,” J. Nucl. Mater. 548, 152848 (2021). https://doi.org/10.1016/j.jnucmat.2021.152848

    Article  CAS  Google Scholar 

  115. Sh.-Ya. Qin, S. Jin, D.-R. Zou, L. Cheng, X.-L. Shu, Q. Hou, and G.-H. Lu, “The effect of inert gas pre-irradiation on the retention of deuterium in tungsten: A TMAP investigation combined with first-principles method,” Fusion Eng. Des. 121, 342–347 (2017). https://doi.org/10.1016/j.fusengdes.2017.04.120

    Article  CAS  Google Scholar 

  116. Y. Oya, F. Sun, Y. Yamauchi, Y. Nobuta, M. Shimada, C. N. Taylor, W. R. Wampler, M. Nakata, L. M. Garrison, and Y. Hatano, “D retention and depth profile behavior for single crystal tungsten with high temperature neutron irradiation,” J. Nucl. Mater. 539, 152323 (2020). https://doi.org/10.1016/j.jnucmat.2020.152323

    Article  CAS  Google Scholar 

  117. M. Shimada, G. Cao, Y. Hatano, T. Oda, Y. Oya, M. Hara, and P. Calderoni, “The deuterium depth profile in neutron-irradiated tungsten exposed to plasma,” Phys. Scr. T145, 014051 (2011). https://doi.org/10.1088/0031-8949/2011/t145/014051

    Article  Google Scholar 

  118. E. A. Hodille, A. Založnik, S. Markelj, T. Schwarz-Selinger, C. S. Becquart, R. Bisson, and C. Grisolia, “Simulations of atomic deuterium exposure in self-damaged tungsten,” Nucl. Fusion 57, 056002 (2017). https://doi.org/10.1088/1741-4326/aa5aa5

    Article  CAS  Google Scholar 

  119. E. A. Hodille, S. Markelj, T. Schwarz-Selinger, A. Založnik, M. Pečovnik, M. Kelemen, and C. Grisolia, “Stabilization of defects by the presence of hydrogen in tungsten: Simultaneous W-ion damaging and D‑atom exposure,” Nucl. Fusion 59, 016011 (2018). https://doi.org/10.1088/1741-4326/aaec97

    Article  CAS  Google Scholar 

  120. J. R. Fransens, M. S. Abd El Keriem, and F. Pleiter, “Hydrogen-vacancy interaction in tungsten,” J. Phys.: Condens. Matter 3, 9871–9886 (1991). https://doi.org/10.1088/0953-8984/3/49/004

    Article  CAS  Google Scholar 

  121. O. V. Ogorodnikova, B. Tyburska, V. Kh. Alimov, and K. Ertl, “The influence of radiation damage on the plasma-induced deuterium retention in self-implanted tungsten,” J. Nucl. Mater. 415, S661–S666 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.012

    Article  CAS  Google Scholar 

  122. G. M. Wright, M. Mayer, K. Ertl, G. de Saint-Aubin, and J. Rapp, “TMAP7 simulations of deuterium trapping in pre-irradiated tungsten exposed to high-flux plasma,” J. Nucl. Mater. 415, S636–S640 (2011). https://doi.org/10.1016/j.jnucmat.2011.01.011

    Article  CAS  Google Scholar 

  123. M. H. J. Hoen, M. Mayer, A. W. Kleyn, H. Schut, and P. A. Zeijlmans van Emmichoven, “Reduced deuterium retention in self-damaged tungsten exposed to high-flux plasmas at high surface temperatures,” Nucl. Fusion 53, 43003 (2013).

    Article  Google Scholar 

  124. A. D. Quastel, J. W. Davis, A. A. Haasz, and R. G. Macaulay-Newcombe, “Effect of post-D+-irradiation time delay and pre-TDS heating on D retention in single crystal tungsten,” J. Nucl. Mater. 359, 8–16 (2006). https://doi.org/10.1016/j.jnucmat.2006.07.012

    Article  CAS  Google Scholar 

  125. H. Nakamura, T. Hayashi, M. Nishi, M. Arita, and K. Okuno, “Implantation driven permeation behavior of deuterium through pure tungsten,” Fusion Eng. Des. 55, 513–520 (2001). https://doi.org/10.1016/s0920-3796(01)00380-5

    Article  CAS  Google Scholar 

  126. M. Kobayashi, M. Shimada, C. N. Taylor, D. Buchenauer, R. Kolasinski, T. Koyanagi, Yu. Nobuta, Yu. Hatano, and Ya. Oya, “Influence of dynamic annealing of irradiation defects on the deuterium retention behaviors in tungsten irradiated with neutron,” Fusion Eng. Des. 146, 1624–1627 (2019). https://doi.org/10.1016/j.fusengdes.2019.03.003

    Article  CAS  Google Scholar 

  127. A. Založnik, S. Markelj, T. Schwarz-Selinger, Ł. Ciu-piński, J. Grzonka, P. Vavpetič, and P. Pelicon, “The influence of the annealing temperature on deuterium retention in self-damaged tungsten,” Phys. Scr. T167, 014031 (2016). https://doi.org/10.1088/0031-8949/t167/1/014031

    Article  Google Scholar 

  128. S. Markelj, A. Založnik, T. Schwarz-Selinger, O. V. Ogorodnikova, P. Vavpetič, P. Pelicon, and I. Čadež, “In situ NRA study of hydrogen isotope exchange in self-ion damaged tungsten exposed to neutral atoms,” J. Nucl. Mater. 469, 133–144 (2016). https://doi.org/10.1016/j.jnucmat.2015.11.039

    Article  CAS  Google Scholar 

  129. S. Krat, Y. U. Gasparyan, Y. A. Vasina, A. Davletiyarova, and A. Pisarev, “Tungsten-deuterium co-deposition: Experiment and analytical description,” Vacuum 149, 23–28 (2018). https://doi.org/10.1016/j.vacuum.2017.12.004

    Article  CAS  Google Scholar 

  130. K. Kremer, M. Brucker, W. Jacob, and T. Schwarz-Selinger, “Influence of thin surface oxide films on hydrogen isotope release from ion-irradiated tungsten,” Nucl. Mater. Energy 30, 101137 (2022). https://doi.org/10.1016/j.nme.2022.101137

    Article  CAS  Google Scholar 

  131. K. A. Moshkunov, K. Schmid, M. Mayer, V. A. Kurnaev, and Yu. M. Gasparyan, “Air exposure and sample storage time influence on hydrogen release from tungsten,” J. Nucl. Mater. 404, 174–177 (2010). https://doi.org/10.1016/j.jnucmat.2010.07.011

    Article  CAS  Google Scholar 

  132. Yu. V. Zaika, E. K. Kostikova, and Yu. S. Nechaev, “Peaks of hydrogen thermal desorption: Simulation and interpretation,” Tech. Phys. 66, 210–220 (2021). https://doi.org/10.1134/S1063784221020250

    Article  CAS  Google Scholar 

  133. J. Roth, E. Tsitrone, T. Loarer, V. Philipps, S. Brezinsek, A. Loarte, G. F. Counsell, R. P. Doerner, K. Schmid, O. V. Ogorodnikova, and R. A. Causey, “Tritium inventory in ITER plasma-facing materials and tritium removal procedures,” Plasma Phys. Controlled Fusion 50, 103001 (2008). https://doi.org/10.1088/0741-3335/50/10/103001

    Article  CAS  Google Scholar 

  134. J. H. You, E. Visca, T. Barrett, B. Böswirth, F. Crescenzi, F. Domptail, M. Fursdon, F. Gallay, B.‑E. Ghidersa, H. Greuner, M. Li, A. V. Müller, J. Reiser, M. Richou, S. Roccella, and C. H. Vorpahl, “European divertor target concepts for DEMO: Design rationales and high heat flux performance,” Nucl. Mater. Energy 16, 1–11 (2018). https://doi.org/10.1016/j.nme.2018.05.012

    Article  Google Scholar 

  135. R. Villari, V. Barabash, F. Escourbiac, L. Ferrand, T. Hirai, V. Komarov, M. Loughlin, M. Merola, F. Moro, L. Petrizzi, S. Podda, E. Polunovsky, and G. Brolatti, “Nuclear analysis of the ITER full-tungsten divertor,” Fusion Eng. Des. 88, 2006–2010 (2006). https://doi.org/10.1016/j.fusengdes.2013.02.156

    Article  CAS  Google Scholar 

  136. J. Roth, E. Tsitrone, A. Loarte, T. H. Loarer, G. Counsell, R. Neu, V. Philipps, S. Brezinsek, M. Lehnen, P. Coad, C. H. Grisolia, K. Schmid, K. Krieger, A. Kallenbach, B. Lipschultz, R. Doerner, R. Causey, V. Alimov, W. Shu, O. Ogorodnikova, A. Kirschner, G. Federici, A. Kukushkin, and EFDA PWI Task Force, ITER PWI Team, Fusion for Energy, ITPA SOL/DIV, “Recent analysis of key plasma wall interactions issues for ITER,” J. Nucl. Mater. 390-391, 1–9 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.037

    Article  CAS  Google Scholar 

  137. O. V. Ogorodnikova and K. Sugiyama, “Effect of radiation-induced damage on deuterium retention in tungsten, tungsten coatings and Eurofer,” J. Nucl. Mater. 442, 518–527 (2013). https://doi.org/10.1016/j.jnucmat.2013.07.024

    Article  CAS  Google Scholar 

  138. V. P. Budaev, “Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review),” Phys. At. Nucl. 79, 1137–1162 (2016). https://doi.org/10.1134/S106377881607005X

    Article  CAS  Google Scholar 

  139. G.-H. Lu, H.-B. Zhou, and C. S. Becquart, “A review of modelling and simulation of hydrogen behaviour in tungsten at different scales,” Nucl. Fusion 54, 086001 (2014). https://doi.org/10.1088/0029-5515/54/8/086001

    Article  CAS  Google Scholar 

  140. L. Gao, M. Wilde, A. Manhard, U. Von Toussaint, and W. Jacob, “Hydrogen atom-ion synergy in surface lattice modification at sub-threshold energy,” Acta Mater. 201, 55–62 (2020). https://doi.org/10.1016/j.actamat.2020.09.065

    Article  CAS  Google Scholar 

  141. L. Gao, W. Jacob, U. Von Toussaint, A. Manhard, M. Balden, K. Schmid, and T. Schwarz-Selinger, “Deuterium supersaturation in low-energy plasma-loaded tungsten surfaces,” Nucl. Fusion 57, 016026 (2016). https://doi.org/10.1088/0029-5515/57/1/016026

    Article  CAS  Google Scholar 

  142. A. Založnik, S. Markelj, T. Schwarz-Selinger, and K. Schmid, “Deuterium atom loading of self-damaged tungsten at different sample temperatures,” J. Nucl. Mater. 496, 1–8 (2017). https://doi.org/10.1016/j.jnucmat.2017.09.003

    Article  CAS  Google Scholar 

  143. V. K. Alimov and J. Roth, “Hydrogen isotope retention in plasma-facing materials: Review of recent experimental results,” Phys. Scr. T128, 6–13 (2007). https://doi.org/10.1088/0031-8949/2007/t128/002

    Article  Google Scholar 

  144. V. Kh. Alimov, Y. Hatano, K. Sugiyama, J. Roth, B. Tyburska-Püschel, J. Dorner, J. Shi, M. Matsuyama, K. Isobe, and T. Yamanishi, “The effect of displacement damage on deuterium retention in tungsten exposed to D neutrals and D2 gas,” J. Nucl. Mater. 438, S959–S962 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.208

    Article  CAS  Google Scholar 

  145. V. Kh. Alimov, Y. Hatano, B. Tyburska-Püschel, K. Sugiyama, I. Takagi, Y. Furuta, J. Dorner, M. Fußeder, K. Isobe, T. Yamanishi, and M. Matsuyama, “Deuterium retention in tungsten damaged with W ions to various damage levels,” J. Nucl. Mater. 441, 280–285 (2009). https://doi.org/10.1016/j.jnucmat.2013.06.005

    Article  CAS  Google Scholar 

  146. Z. R. Arutyunyan, “Effect of helium on the capture of deuterium ions in tungsten and tungsten alloys W Cr-Y,” Candidate’s Dissertation in Physics and Mathematics (National Research Nuclear Univ. MEPhI, Moscow, 2022).

  147. T. Muroga, Y. Hatano, D. Clark, and Y. Katoh, “Characterization and qualification of neutron radiation effects–Summary of Japan-USA joint projects for 40 years,” J. Nucl. Mater. 560, 153494 (2022). https://doi.org/10.1016/j.jnucmat.2021.153494

    Article  CAS  Google Scholar 

  148. M. Pečovnik, S. Markelj, A. Založnik, and T. Schwarz-Selinger, “Influence of grain size on deuterium transport and retention in self-damaged tungsten,” J. Nucl. Mater. 513, 198–208 (2019). https://doi.org/10.1016/j.jnucmat.2018.10.026

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out as part of the state assignment of National Research Center Kurchatov Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Persianova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persianova, A.P., Golubeva, A.V. Hydrogen Traps in Tungsten: A Review. Phys. Metals Metallogr. 125, 278–306 (2024). https://doi.org/10.1134/S0031918X23602895

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23602895

Keywords:

Navigation