(Translated by https://www.hiragana.jp/)
Fatigue Resistance of the Sheets of Heat-Resistant Titanium Alloys | Physics of Metals and Metallography Skip to main content
Log in

Fatigue Resistance of the Sheets of Heat-Resistant Titanium Alloys

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The results of a study of the resistance to fatigue fracture of the sheets made of the heat-resistant titanium alloys VT18U (Ti–6.5Al–4.3Zr–2.4Sn–0.8Nb–0.7Mo–0.1Si, wt %), VT8 (Ti–6.4Al–3.4Mo–0.3Si, wt %), and VT25U (Ti–6.51Al–3.76Zr–1.71Sn–3.94Mo–0.5W–0.13Si, wt %) have been presented. Fatigue curves have been obtained in the initial state and in the oxidized one after isothermal annealing at a temperature of 560°C for 1000 h in air. It has been established that after annealing, the fatigue resistance of all oxidized alloys in the low-cycle region decreases by an order of magnitude. The fatigue limit of the oxidized alloys VT18U and VT25U does not change and is of about 320 MPa. The high-cycle fatigue limit of the VT8 alloy decreases from 300 MPa in the initial state to 230 MPa in the oxidized state. It has been established that after annealing, the phase composition of an oxide of 250 nm in thickness on the surface of the alloys is different and contains the phases of anatase and rutile for the VT18U and VT25U alloys and contains predominantly rutile for the VT8 alloys, which is why the fatigue limit of the oxidized alloys differs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. V. N. Moiseev, “Titanium in Russia,” Met. Sci. Heat Treat. 47, 371–376 (2005). https://doi.org/10.1007/s11041-005-0080-9

    Article  CAS  Google Scholar 

  2. T. V. Pavlova, O. S. Kashapov, and N. A. Nochovnaya, “Titanium alloys for gas turbine engines,” Vse Mater. Entsiklopedicheskii Sprav., No. 5, 8–14 (2012).

  3. V. G. Antashev, N. A. Nochovnaya, T. V. Pavlova, and V. I. Ivanov, “Titanium superalloys,” Vse Mater. Entsiklopedicheskii Sprav., No. 3, 7–8 (2007).

  4. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys: Composition, Structure, Properties: Handbook (VILS, Moscow, 2009) [in Russian].

    Google Scholar 

  5. M. S. Kalienko, M. O. Leder, A. V. Volkov, A. V. Berestov, and A. V. Zhelnina, “Investigation of structure and mechanical properties of sheets made of Ti alloys such as VT8, VT18U and VT25U in heat-treated state,” Tekhnol. Legkikh Splavov, No. 4, 37–41 (2017).

    Google Scholar 

  6. N. M. Pul’tsin, Interaction of Titanium with Gases (Metallurgiya, Moscow, 1969) [in Russian].

    Google Scholar 

  7. B. Geary, V. J. Bolam, S. L. Jenkins, and D. P. Davies, “High temperature titanium sheet for helicopter ex-haust applications,” in Ti’1995: Science and Tecnol. Proc. 8-th World Conf. of Titanium (1995), pp. 1638–1645.

  8. R. Gaddam, M.-L. Antti, and R. Pederson, “Influence of alpha-case layer on the low cycle fatigue properties of Ti–6Al–2Sn–4Zr–2Mo alloy,” Mater. Sci. Eng., A 599, 51–56 (2014). https://doi.org/10.1016/j.msea.2014.01.059

    Article  CAS  Google Scholar 

  9. J. E. King, “Role of oxides in fatigue crack propagation,” Mater. Sci. Technol. 6, 19–31 (1990). https://doi.org/10.1179/026708390790189416

    Article  CAS  Google Scholar 

  10. M. Hagiwara, T. Kitashima, and S. Emura, “Relationship between microstructures, facet morphologies at the high-cycle fatigue (HCF) crack initiation site, and HCF strength in Ti-6242S,” Mater. Sci. Eng., A 727, 43–50 (2018). https://doi.org/10.1016/j.msea.2018.04.043

    Article  CAS  Google Scholar 

  11. P. J. Ashton, T.-S. Jun, Z. Zhang, T. B. Britton, A. M. Harte, S. B. Leen, and F. P. E. Dunne, “The effect of the beta phase on the micromechanical response of dual-phase titanium alloys,” Int. J. Fatigue 100, 377–387 (2017). https://doi.org/10.1016/j.ijfatigue.2017.03.020

    Article  CAS  Google Scholar 

  12. A. Leoni, I. Apachitei, A. C. Riemslag, L. E. Fratila-Apachitei, and J. Duszczyk, “In vitro fatigue behavior of surface oxidized Ti35Zr10Nb biomedical alloy,” Mater. Sci. Eng., C 31, 1779–1783 (2011). https://doi.org/10.1016/j.msec.2011.08.010

    Article  CAS  Google Scholar 

  13. I. Apachitei, B. Lonyuk, L. E. Fratila-Apachitei, J. Zhou, and J. Duszczyk, “Fatigue response of porous coated titanium biomedical alloys,” Scr. Mater. 61, 113–116 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.017

    Article  CAS  Google Scholar 

  14. I. Apachitei, A. Leoni, A. C. Riemslag, L. E. Fratila-Apachitei, and J. Duszczyk, “Enhanced fatigue performance of porous coated Ti6Al4V biomedical alloy,” Appl. Surf. Sci. 257, 6941–6944 (2011). https://doi.org/10.1016/j.apsusc.2011.03.038

    Article  CAS  Google Scholar 

  15. M. Y. P. Costa, M. L. R. Venditti, M. O. H. Cioffi, H. J. C. Voorwald, V. A. Guimarães, and R. Ruas, “Fatigue behavior of PVD coated Ti–6Al–4V alloy,” Int. J. Fatigue 33, 759–765 (2011). https://doi.org/10.1016/j.ijfatigue.2010.11.007

    Article  Google Scholar 

  16. Ya. Bai, T. Guo, J. Wang, J. Gao, K. Gao, and X. Pang, “Stress-sensitive fatigue crack initiation mechanisms of coated titanium alloy,” Acta Mater. 217, 117179 (2021). https://doi.org/10.1016/j.actamat.2021.117179

    Article  CAS  Google Scholar 

  17. Ya.-Yu. Bai, J. Gao, T. Guo, K.-W. Gao, A. A. Volinsky, and X.-L. Pang, “Review of the fatigue behavior of hard coating-ductile substrate systems,” Int. J. Miner., Metall. Mater. 28, 46–55 (2021). https://doi.org/10.1007/s12613-020-2203-0

    Article  Google Scholar 

  18. A. A. Gribb and J. F. Banfield, “Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2,” Am. Mineral. 82, 717–728 (1997). https://doi.org/10.2138/am-1997-7-809

    Article  CAS  Google Scholar 

  19. I. Jouanny, S. Labdi, P. Aubert, C. Buscema, O. Maciejak, M.-H. Berger, V. Guipont, and M. Jeandin, “Structural and mechanical properties of titanium oxide thin films for biomedical application,” Thin Solid Films 518, 3212–3217 (2010). https://doi.org/10.1016/j.tsf.2009.09.046

    Article  CAS  Google Scholar 

  20. O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, and D. Glöß, “Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 538–543 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.115

    Article  CAS  Google Scholar 

  21. J. Lin, B. Wang, W. D. Sproul, Yi. Ou, and I. Dahan, “Anatase and rutile TiO2 films deposited by arc-free deep oscillation magnetron sputtering,” J. Phys. D: Appl. Phys. 46, 084008 (2013). https://doi.org/10.1088/0022-3727/46/8/084008

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the Program of Development of the Ural Federal University in accordance with the strategic academic leadership program “Prioritet (priority)–2030.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kalienko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalienko, M.S., Popov, A.A., Volkov, A.V. et al. Fatigue Resistance of the Sheets of Heat-Resistant Titanium Alloys. Phys. Metals Metallogr. 125, 332–339 (2024). https://doi.org/10.1134/S0031918X23603141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23603141

Keywords:

Navigation