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Background
Cuckoo search (CS) is a population based meta-heuristic algorithm that was developed 
by Yang et al. (2007). CS (Garg 2015a, d) and other meta-heuristic algorithms such as 
ant colony optimization (ACO) (Dorigo 1992), artificial bee colony (Garg et  al. 2013; 
Garg 2014; Karaboga and Basturk 2007), particle swarm optimization (PSO) (Garg and 
Sharma 2013; Kennedy and Eberhart 1995), bacterial foraging (Passino 2002), bat algo-
rithm (Yang 2010a), bee colony optimization (BCO) (Teodorovic and DellOrco 2005), 
wolf search (Tang et  al. 2012), cat swarm (Chu et  al. 2006), firefly algorithm (Yang 
2010b), fish swarm/school (Li et  al. 2002), genetic algorithm (GA) (Garg 2015a), etc., 
have been applied to solve global optimization problems. These algorithms have been 
widely used to solve unconstrained and constrained problems and their applications. 
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Cuckoo search algorithm is a promising metaheuristic population based method. It has 
been applied to solve many real life problems. In this paper, we propose a new cuckoo 
search algorithm by combining the cuckoo search algorithm with the Nelder–Mead 
method in order to solve the integer and minimax optimization problems. We call the 
proposed algorithm by hybrid cuckoo search and Nelder–Mead method (HCSNM). 
HCSNM starts the search by applying the standard cuckoo search for number of itera-
tions then the best obtained solution is passing to the Nelder–Mead algorithm as an 
intensification process in order to accelerate the search and overcome the slow conver-
gence of the standard cuckoo search algorithm. The proposed algorithm is balancing 
between the global exploration of the Cuckoo search algorithm and the deep exploita-
tion of the Nelder–Mead method. We test HCSNM algorithm on seven integer pro-
gramming problems and ten minimax problems and compare against eight algorithms 
for solving integer programming problems and seven algorithms for solving minimax 
problems. The experiments results show the efficiency of the proposed algorithm and 
its ability to solve integer and minimax optimization problems in reasonable time.
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However, few works have been applied to solve minimax and integer programming 
problems via these algorithms.

A wide variety of real life problems in logistics, economics, social science, politics, 
game theory, and engineering can be formulated as integer optimization and minimax 
problems. The combinatorial problems, like the knapsack-capital budgeting problem, 
warehouse location problem, traveling salesman problem, decreasing costs and machin-
ery selection problem, network and graph problems, such as maximum flow problems, 
set covering problems, matching problems, weighted matching problems, spanning trees 
problems, very large scale integration (LSI) circuits design problems, robot path plan-
ning problems, and many scheduling problems can also be solved as integer optimiza-
tion and minimax problems (see, e.g., Chen et al. 2010; Du and Pardalos 2013; Hoffman 
and Padberg 1993; Little et al. 1963; Mitra 1973; Nemhauser et al. 1989; Zuhe et al. 1990).

Branch and bound (BB) is one of the most famous exact integer programming algo-
rithm. However, BB suffers from high complexity, since it explores a hundred of nodes 
in a big tree structure when it solves a large scale problems. Recently, there are some 
efforts to apply some of swarm intelligence algorithms to solve integer programming 
problems such as ant colony algorithm (Jovanovic and Tuba 2011, 2013), artificial bee 
colony algorithm (Bacanin and Tuba 2012; Tuba et al. 2012), particle swarm optimiza-
tion algorithm (Petalas et al. 2007), cuckoo search algorithm (Tuba et al. 2011) and firefly 
algorithm (Brown et al. 2007).

The minimax problem, as well as all other problems containing max (or min) opera-
tors, is considered to be difficult because max function is not differentiable. So many 
unconstrained optimization algorithms with the use of derivatives can not be applied to 
solve the non-differentiable unconstrained optimization problem directly.

There are several different approaches that have been taken to solve minimax problem. 
Many researchers have derived algorithms for the solution to minimax problem by solv-
ing an equivalent differentiable program with many constraints (see, e.g., Liuzzi et  al. 
2006; Polak 2012; Polak et al. 2003; Yang 2010b and the references therein), which may 
not be efficient in computing.

Some swarm intelligence (SI) algorithms have been applied to solve minimax prob-
lems such as PSO (Petalas et  al. 2007). The main drawback of applying swarm intelli-
gence algorithms for solving minimax and integer programming problems is the slow 
convergence and the expensive computation time for these algorithms.

Recent studies illustrate that CS is potentially far more efficient than PSO, GAs, and 
other algorithms. For example, in Yang et al. (2007), the authors showed that CS algo-
rithm could outperform is very promising the existing algorithms such as GA and PSO. 
Also, CS algorithm has shown good performance both on benchmark unconstrained 
functions and applications (Gandomi et al. 2013; Yang and Deb 2013). Also, the authors 
in Singh and Abhay Singh (2014) compared latest metaheuristic algorithms such as 
Krill Herd algorithm (Gandomi and Alavi 2012), firefly algorithm and CS algorithm and 
found that CS algorithm is superior for both unimodal and multimodal test function in 
terms of optimization fitness and time processing.

Moreover, the CS algorithm has a few number of parameters and easy to implement 
which is not found on other meta-heuristics algorithms such as GA and PSO. Due to 
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these advantage of the CS algorithm, many researchers have applied it on their work 
for various applications such as Garg et al. (2014), Garg (2015b, c, d). The CS algorithm 
is combined with other methods such as Nelder–Mead method to solve various prob-
lems (Chang et al. 2015; Jovanovic et al. 2014).

The aim of this work is to propose a new hybrid cuckoo search algorithm with a 
Nelder–Mead method in order to overcome the slow convergence of the standard 
cuckoo search. The Nelder–Mead method accelerates the search of the proposed algo-
rithm and increases the convergence of the proposed algorithm. The proposed algorithm 
is called hybrid cuckoo search with Nelder–Mead (HCSNM). In HCSNM algorithm, we 
combine the cuckoo search with a Nelder Mead method in order to accelerate the search 
and avoid running the algorithm with more iterations without any improvements.

The main difference between our proposed algorithm and the other hybrid Cuckoo 
search and Nelder–Mead algorithms is the way of applying the Nelder–Mead method. 
The authors in Chang et  al. (2015), Jovanovic et  al. (2014) have invoked the Nelder–
Mead method in the cuckoo search algorithm instead of the levy Flight operator. The 
drawback of this idea is the computation time because the calling for NM method at 
each iteration in the Cuckoo search algorithm. However in our proposed algorithm we 
run the standard CS algorithm for some iterations then we pass the best found solution 
to the Nelder–Mead method to start from good Solution which help the NM method to 
get the global minimum of the functions in reasonable time.

Also, we test the HCSNM algorithm on seven integer programming and ten minimax 
benchmark problems. The experimental results show that the proposed HCSNM is a 
promising algorithm and can obtain the optimal or near optimal solution for most of the 
tested function in reasonable time.

The outline of the paper is as follows. “Definition of the problems and an overview of 
the applied algorithms” section presents the definitions of the integer programming and 
the minimax problems and gives an overview of the Nelder–Mead method. “Overview 
of cuckoo search algorithm” section summarizes the main concepts of cuckoo search 
algorithm (CS). “The proposed HCSNM algorithm” section describes the main structure 
of the proposed HCSNM algorithm. “Numerical experiments” section gives the experi-
mental results and details of implementation in solving integer programming and mini-
max problems. Finally, we end with some conclusions and future work in “Conclusion 
and future work” section.

Definition of the problems and an overview of the applied algorithms
In this section, we present the definitions of the integer programming and the minimax 
problems as follows.

The integer programming problem definition

An integer programming problem is a mathematical optimization problem in which all 
of the variables are restricted to be integers. The unconstrained integer programming 
problem can be defined as follows.

where Z is the set of integer variables, S is a not necessarily bounded set.

(1)minf (x), x ∈ S ⊆ Z
n
,
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Minimax problem definition

The general form of the minimax problem as reported in Yang (2010b) is defined by:

where

with fi(x) : S ⊂ R
n → R, i = 1, . . . ,m.

The nonlinear programming problems of the form:

can be transformed to minimax problems as follows:

where

It has been proved that for sufficiently large αi, the optimum point of the minimax prob-
lem, coincides with the optimum point of the nonlinear programming problem (Bandler 
and Charalambous 1974).

Nelder Mead method

The Nelder–Mead algorithm (NM) is one of the most popular derivative-free nonlin-
ear optimization algorithms. Nelder and Mead (1965) proposed NM algorithm. It starts 
with n+ 1 vertices (points) x1, x2, . . . , xn+1. The vertices are evaluated, ordered and 
re-labeled in order to assign the best point and the worst point. In minimization opti-
mization problems, the x1 is considered as the best vertex or point if it has the mini-
mum value of the objective function, while the worst point xn+1 with the maximum 
value of the objective function. At each iteration, new points are computed, along with 
their function values, to form a new simplex. Four scalar parameters must be specified 
to define a complete NM algorithm: coefficients of reflection ρ, expansion χ, contrac-
tion τ, and shrinkage φ where ρ > 0, χ > 1, 0 < τ < 1, and 0 < φ < 1. The main steps 
of the NM algorithm are presented as shown below in Algorithm  1. The vertices are 
ordered according to their fitness functions. The reflection process starts by comput-
ing the reflected point xr = x̄ + ρ(x̄ − x(n+1)), where x̄ is the average of all points except 
the worst. If the reflected point xr is lower than the nth point f (xn) and greater than 
the best point f (x1), then the reflected point is accepted and the iteration is termi-
nated. If the reflected point is better than the best point, then the algorithm starts the 
expansion process by calculating the expanded point xe = x̄ + χ(xr − x̄). If xe is better 
than the reflected point nth, the expanded point is accepted. Otherwise the reflected 
point is accepted and the iteration will be terminated. If the reflected point xr is greater 
than the nth point xn the algorithm starts a contraction process by applying an outside 

(2)min F(x)

(3)F(x) = max fi(x), i = 1, . . . ,m

min F(x),

gi(x) ≥ 0, i = 2, . . . ,m,

(4)min max fi(x), i = 1, . . . ,m

(5)

f1(x) = F(x),

fi(x) = F(x)− αigi(x),

αi > 0, i = 2, . . . ,m
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xoc or inside contraction xic depending on the comparison between the values of the 
reflected point xr and the nth point xn. If the contracted point xoc or xic is greater than 
the reflected point xr, the shrink process is starting. In the shrink process, the points are 
evaluated and the new vertices of simplex at the next iteration will be x′

2
, . . . , x′n+1

, where 
x′ = x1 + φ(xi − x1), i = 2, . . . , n+ 1.

Overview of cuckoo search algorithm
In the following subsection, we summarize the main concepts and structure of the 
cuckoo search algorithm.

Main concepts 

Cuckoo search algorithm is a population based metaheuristic algorithm inspired from 
the reproduction strategy of the cuckoo birds (Yang and Deb 2009). The cuckoo birds lay 
their eggs in a communal nests and they may remove other eggs to increase the proba-
bility of hatching their own eggs (Payne and Karen Klitz 2005). This method of laying the 
eggs in other nests is called obligate brood parasitism. Some host birds can discover the 
eggs are not their own and throw these eggs away or abandon their nest and build a new 
nest in a new place. Some kind of cuckoo birds can mimic the color and the pattern of 
the eggs of a few host bird in order to reduce the probability of discovering the intruding 
eggs. Since the cuckoo eggs are hatching earlier than the host bird eggs, the cuckoos laid 
their eggs in a nest where the host bird just laid its own eggs. Once the eggs are hatching, 
the cuckoo chick’s starts to propel the host eggs out the of the nest in order to increase 
its share of food provided by its host bird.

Lévy flights

Recent studies show that the behavior of many animals when searching for foods have 
the typical characteristics of Lévy Flights, see, e.g., Brown et  al. (2007), Pavlyukevich 
(2007) and Reynolds and Frye (2007). Lévy flight (Brown et al. 2007) is a random walk 
in which the step-lengths are distributed according to a heavy-tailed probability distri-
bution. After a large number of steps, the distance from the origin of the random walk 
tends to a stable distribution.
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Algorithm 1 The Nelder-Mead Algorithm
1. Let xi denote the list of vertices in the current simplex, i = 1, . . . , n+ 1.
2. Order. Order and re-label the n+1 vertices from lowest function value f(x1) to highest function
value f(xn+1) so that f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1).
3. Reflection. Compute the reflected point xr by
xr = x̄+ ρ(x̄− x(n+1)), where x̄ is the centroid of the n best points,
x̄ =

∑
(xi/n), i = 1, . . . , n.

if f(x1) ≤ f(xr) < f(xn) then
Replace xn+1 with the reflected point xr and go to Step 7.

end if
4. Expansion.
if f(xr) < f(x1) then

Compute the expanded point xe by xe = x̄+ χ(xr − x̄).
end if
if f(xe) < f(xr) then

Replace xn+1 with xe and go to Step 7.
else

Replace xn+1 with xr and go to Step 7.
end if
5. Contraction.
if f(xr) ≥ f(xn) then

Perform a contraction between x̄ and the best among xn+1 and xr.
end if
if f(xn) ≤ f(xr) < f(xn+1) then

Calculate xoc = x̄+ τ(xr − x̄) {Outside contract.}
end if
if f(xoc) ≤ f(xr) then

Replace xn+1 with xoc and go to Step 7.
else

Go to Step 6.
end if
if f(xr) ≥ f(x(n+1) then

Calculate xic = x̄+ τ(xn+1 − x̄). {Inside contract}
end if
if f(xic) ≥ f(x(n+1) then

Replace xn+1 with xic and go to Step 7.
else

Go to Step 6.
end if
6. Shrink. Evaluate the n new vertices
x′ = x1 + φ(xi − x1), i = 2, . . . , n+ 1.
Replace the vertices x2, . . . , xn+1 with the new vertices x′

2, . . . , x
′
n+1.

7. Stopping Condition. Order and re-label the vertices of the new simplex as x1, x2, . . . , xn+1 such
that f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1)
if f(xn+1)− f(x1) < ε then

Stop, where ε > 0 is a small predetermined tolerance.
else

Go to Step 3.
end if

Cuckoo search characteristic

The cuckoo search algorithm is based on the following three rules:

• • At a time, cuckoo randomly chooses a nest to lay an egg.
• • The best nests with high quality of eggs (solutions) will carry over to the next genera-

tions.
• • The number of available host nests is fixed. The probability of discovering an intrud-

ing egg by the host bird is pa ∈ [0, 1]. If the host bird discovers the intruding egg, it 
throws the intruding egg away the nest or abandons the nest and starts to build a 
new nest elsewhere.

Cuckoo search algorithm

We present in details the main steps of the Cuckoo search algorithm as shown in 
Algorithm 2.
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• •

Algorithm 2 Cuckoo search algorithm
1: Set the initial value of the host nest size n, probability pa ∈ [0, 1] and maximum number of

iterations Maxitr.
2: Set t := 0. {Counter initialization}
3: for (i = 1 : i ≤ n) do
4: Generate initial population of n host x(t)

i . {n is the population size}
5: Evaluate the fitness function f(x(t)

i ).
6: end for
7: repeat
8: Randomly generate a new solution (Cuckoo) x

(t+1)
i by Lévy flight.

9: Evaluate the fitness function of a solution x
(t+1)
i f(x(t+1)

i )
10: Randomly choose a nest xj among n solutions.

11: if (f(x(t+1)
i ) > f(x(t)

j )) then

12: Replace the solution xj with the solution x
(t+1)
i

13: end if
14: Abandon a fraction pa of worse nests.
15: Build new nests at new locations using Lévy flight a fraction pa of worse nests
16: Keep the best solutions (nests with quality solutions)
17: Rank the solutions and find the current best solution
18: Set t = t+ 1.
19: until (t ≥ Maxitr). {Termination criteria are satisfied}
20: Produce the best solution.

Step 1 The standard cuckoo search algorithm starts with the initial values of popula-
tion size n, probability pa ∈ [0, 1], maximum number of iterations Maxitr and the 
initial iteration counter t (Lines 1–2).

• • Step 2 The initial population n is randomly generated and each solution xi in the pop-
ulation is evaluated by calculating its fitness function f (xi) (Lines 3–6).

• • Step 3 The following steps are repeated until the termination criterion is satisfied.

Step 3.1 A new solution is randomly generated using a Lévy flight as follows. 

  �where ⊕ denotes entry-wise multiplication, α is the step size, and Lévy (�) is the Lévy 
distribution (Lines 8–9).
Step 3.2 If its objective function is better than the objective function of the selected 
random solution, then the new solution is replaced with a random selected solu-
tion (Lines 10–13).
Step 3.3 A fraction (1− pa) of the solutions is randomly selected, abandoned and 
replaced by new solutions generated via using local random walks as follows. 

  �where xtj  and xtk are two different solutions randomly selected and γ is a random 
number (Lines 14–15).
Step 3.4 The solutions are ranked according to their objective values, then the best 
solution is assigned. The iteration counter increases (Lines 16–18).

• • Step 4 The operation is repeated until the termination criteria are satisfied (Line 19).
• • Step 6 Produce the best found solution so far (Line 20).

The proposed HCSNM algorithm
The steps of the proposed HCSNM algorithm are the same steps of the standard CS 
algorithm till line 19 in Algorithm 2 then we apply the NM method in Algorithm 1 as 

(6)xt+1
i = xti + α ⊕ Lévy(�),

(7)xt+1
i = xti + γ

(
xtj − xtk

)
,
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an intensification process in order to refine the best obtained solution from the previous 
stage in the standard CS algorithm.

Numerical experiments
In order to investigate the efficiency of the HCSNM, we present the general performance 
of it with different benchmark functions and compare the results of the proposed algo-
rithm against variant of particle swarm optimization algorithms. We program HCSNM 
via MATLAB and take the results of the comparative algorithms from their original 
papers. In the following subsections, we report the parameter setting of the proposed 
algorithm with more details and the properties of the applied test functions. Also we 
present the performance analysis of the proposed algorithm with the comparative results 
between it and the other algorithms.

Parameter setting

In Table 1, we summarize the parameters of the HCSNM algorithm with their assigned 
values.

Parameter values are selected either based on the common settings in the literature or 
determined through our preliminary numerical experiments.

• • Population size n The experimental tests show that the best population size is n = 20 , 
we applied the proposed algorithm with different population size in order to test the 
efficiency of the selected population size number. Figure 1 shows that the best popu-
lation size is n = 20, while increasing this number to n = 25 will increase the func-
tion evaluation without a big improvement in the function values.

• • A fraction of worse nests pa In order to increase the diversification ability of the pro-
posed algorithm, the worst solutions are discarded and the new solutions are ran-
domly generated to replace the worst solutions. The number of the discarded solu-
tions depends on the value of a fraction of worse nests pa. The common pa value is 
0.25.

• • Maximum number of iterations Maxitr The main termination criterion in standard 
cuckoo search algorithm is the number of iterations. In the proposed algorithm, we 
run the standard CS algorithm 3d iterations, then the best found solution is passed to 
the NM method. The effect of the maximum number of iteration is shown in Table 2. 
Table 2 shows that function values of six random selected functions (three integer 
functions and three minmax function). The results in Table 2 shows that there is no 
big different in the function value after applying 3d and 4d iterations which indicates 
that the number of iteration 3d is the best selection in term of function evaluation

Table 1  Parameter setting

Parameters Definitions Values

n Population size 20

pa A fraction of worse nests 0.25

Maxitr Maximum number of iterations 3d

Nelite No. of best solution for final intensification 1
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• • Number of best solution for NM method Nelite In the final stage of the algorithm, the 
best obtained solution from the cuckoo search is refined by the NM method. The 
number of the refined solutions Nelite is set to 1.

Integer programming optimization test problems

We test do the efficiency of the HCSNM algorithm by applying the algorithm on seven 
benchmark integer programming problems (FI1 − FI7) as shown in Table 3. In Table 4, 
we list the properties of the benchmark functions (function number, dimension of the 
problem, problem bound and the global optimal of each problem). Now we define the 
test functions as follows. The solutions are rounded to the nearest integer for function 
evaluation purposes and they are consider as real numbers for all other operations.

The efficiency of the proposed HCSNM algorithm with integer programming problems

In this subsection, we verify the importance of invoking the NM method in the final 
stage as a final intensification process. In Table  5, the results show the mean evalua-
tion function values of the standard cuckoo search, the NM method and the proposed 
HCSNM algorithm, respectively. We apply the same termination criterion for all algo-
rithms, which terminates the search when all algorithms reach to the optimal solution 

Table 2  The effect of maximum number of iteration before applying Nelder–Mead method

Function d 2d 3d 4d

FI1 117.60 18.26 2.46 2.04

FI2 2379.15 350.54 179.85 175.14

FI7 870.11 1.014 0.0095 0.0042

FM3 454.79 −39.14 −41.92 −41.93

FM6 15.73 6.15 1.19 1.15

FM10 459.25 1.05 0.114 0.114
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within an error of 10−4 before the 20,000 function evaluation value. We report the aver-
age function evaluation over 50 runs and give the best results in italicised text. The ini-
tial solution in the NM method is randomly generated. In Table 5, the results show that 
invoking the NM method in the final stage enhances the general performance of the 

Table 3  Integer programming optimization testproblems

Test problem Problem definition

Problem 1 (Rudolph 1994) FI1(x) = �x�1 = |x1| + · · · + |xn|

Problem 2 (Rudolph 1994)

FI2(x) = xT x =
�
x1 . . . xn

�




x1
.
.
.

xn





Problem 3 (GlankwahmdeeL 
et al. 1979)

FI3(x) =
�
15 27 36 18 12

�

x + x
T





35 − 20 − 10 32 − 10

−20 40 − 6 − 31 32

−10 − 6 11 − 6 − 10

32 − 31 − 6 38 − 20

−10 32 − 10 − 20 31



x

Problem 4 (GlankwahmdeeL 
et al. 1979)

FI4(x) = (9x21 + 2x22 − 11)2 + (3x1 + 4x22 − 7)2

Problem 5 (GlankwahmdeeL 
et al. 1979)

FI5(x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4

Problem 6 (Rao 1994) FI6(x) = 2x21 + 3x22 + 4x1x2 − 6x1 − 3x2

Problem 7 (GlankwahmdeeL 
et al. 1979)

FI7(x) = −3803.84− 138.08x1 − 232.92x2 + 123.08x
2

1

+ 203.64x
2

2 + 182.25x1x2

Table 4  The properties of the Integer programming test functions

Function Dimension (d) Bound Optimal

FI1 5 [−100 100] 0

FI2 5 [−100 100] 0

FI3 5 [−100 100] −737

FI4 2 [−100 100] 0

FI5 4 [−100 100] 0

FI6 2 [−100 100] −6

FI7 2 [−100 100] −3833.12

Table 5  The efficiency of  invoking the Nelder–Mead method in  the final stage of  SSSO 
algorithm for FI1 − FI7 integer programming problems

Function Standard CS NM method HCSNM

FI1 11,880.15 1988.35 638.3

FI2 7176.23 678.15 232.64

FI3 6400.25 819.45 1668.1

FI4 4920.35 266.14 174.04

FI5 7540.38 872.46 884.48

FI6 4875.35 254.15 155.89

FI7 3660.45 245.47 210.3
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proposed algorithm and can accelerate the search to reach to the optimal solution or 
near optimal solution.

The general performance of the HCSNM algorithm with integer programming problems

We apply the second experimental test to investigate the general performance of the 
proposed algorithm on the integer programming problems by plotting the values of 
function values versus the number of iterations as shown in Fig.  2 for four functions 
FI1, FI2, FI3 and FI5 (randomly picked). The solid line represents the standard cuckoo 
search algorithm, while the dotted line represents the performance of the NM method 
after applying he NM on the best obtained solution from the standard cuckoo search. 
We can conclude from Fig. 2 that invoking the NM method as an intensification pro-
cess in the final stage of the proposed algorithm can accelerate the search and obtain the 
optimal or near optimal solution in reasonable time.

HCSNM and other algorithms

We compare HCSNM with four benchmark algorithms (particle swarm optimization 
with its variants) in order to verify of the efficiency of the proposed algorithm. Before we 
give the comparison results of all algorithms, let us describe the comparative four algo-
rithms (Petalas et al. 2007).

• • RWMPSOg RWMPSOg is random walk memetic particle swarm optimization (with 
global variant), which combines the particle swarm optimization with random walk 
(as direction exploitation).

• • RWMPSOl RWMPSOl is random walk memetic particle swarm optimization (with 
local variant), which combines the particle swarm optimization with random walk 
(as direction exploitation).

• • PSOg PSOg is standard particle swarm optimization with global variant without local 
search method.
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Fig. 2  The general performance of the proposed HCSNM algorithm with integer problems
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• • PSOl PSOl is standard particle swarm optimization with local variant without local 
search method.

Comparison between RWMPSOg, RWMPSOl, PSOg, PSOl and HCSNM for integer programming 

problems

In this subsection, we give the comparison results between our HCSNM algorithm 
and the other algorithms in order to verify of the efficiency of our proposed algorithm. 
We test the five comparative algorithms on seven benchmark functions and report the 
results. We take the results of the comparative algorithms from their original paper (Pet-
alas et  al. 2007). In Table  6, we report the minimum (min), maximum (max), average 
(mean), standard deviation (SD) and success rate (%Suc) of the evaluation function val-
ues over 50 runs. The run is considered successful if the algorithm reaches to the global 
minimum of the solution within an error of 10−4 before the 20,000 function evaluation 
value. We report the best results between the comparative algorithms in italicised text. 
The results in Table  6 shows that the proposed HCSNM algorithm succeeds in six of 
seven function, where function FI6 is little bit better than the proposed algorithm, how-
ever the rate of success of the proposed algorithm is 100 % for all functions.

HCSNM and other meta‑heuristics and swarm intelligence algorithms for integer 

programming problems

We test the HCSNM algorithm with different meta-heuristics algorithms such as 
GA  (Holland 1975), PSO  (Kennedy and Eberhart 1995), firefly (FF) algorithm (Yang 
2010b) and grey wolf optimizer (GWO)  (Mirjalili et  al. 2014). In order to make a fair 
comparison we set the population size = 20 for all algorithms and the termination crite-
ria for all algorithm are the same which are the algorithm reaches to the global minimum 
of the solution within an error of 10−4 before the 20,000 function evaluation value. We 
applied the standard parameter setting for all compared meta-heuristics algorithms. In 
Table 7, we report the average (Avg) and SD of all algorithms over 50 runs.

HCSNM and the branch and bound method

We apply further investigation to verify of the powerful of the proposed algorithm with 
the integer programming problems, by comparing the HCSNM algorithm against the 
branch and bound (BB) method (Borchers and Mitchell 1991, 1994; Lawler and Wood 
1966; Manquinho et al. 1997).

Comparison between the BB method and HCSNM for integer programming problems

In Table 8, we show the comparison results between the BB method and the proposed 
HCSNM. We take the results of the BB method from its original paper (Laskari et  al. 
2002). In Laskari et  al. (2002), the BB algorithm transforms the initial integer prob-
lem programming problem to a continuous one. For the bounding, the BB uses the 
sequential quadratic programming method to solve the generated sub problems. While 
for branching, BB uses depth first traversal with backtracking. We report the average 
(Mean), SD and rate of success (Suc) over 30 runs. We report the best mean evaluation 
values between the two algorithms in italicised text. The results in Table 8 shows that 
the proposed algorithm results are better than the results of the BB method in six of 
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seven tested functions, while the rate of success is 100 % for all function in the proposed 
algorithm. The overall results in Table 8 shows that the proposed algorithm is faster and 
more efficient than the BB method for most cases.

Minimax optimization test problems

We consider another type of optimization test problems in order to investigate the effi-
ciency of the proposed algorithm, these functions are ten benchmark minimax functions 
as shown in Table 9. We report their properties in Table 10.

Table 6  Experimental results (min, max, mean, standard deviation and  rate of  success) 
of function evaluation for FI1 − FI7 test problems

Function Algorithm Min Max Mean SD Suc

FI1 RWMPSOg 17,160 74,699 27,176.3 8657 50

RWMPSOl 24,870 35,265 30,923.9 2405 50

PSOg 14,000 261,100 29,435.3 42,039 34

PSOl 27,400 35,800 31,252 1818 50

HCSNM 626 650 638.3 4.34 50

FI2 RWMPSOg 252 912 578.5 136.5 50

RWMPSOl 369 1931 773.9 285.5 50

PSOg 400 1000 606.4 119 50

PSOl 450 1470 830.2 206 50

HCSNM 208 238 232.64 4.28 50

FI3 RWMPSOg 361 41,593 6490.6 6913 50

RWMPSOl 5003 15,833 9292.6 2444 50

PSOg 2150 187,000 12,681 35,067 50

PSOl 4650 22,650 11,320 3803 50

HCSNM 1614 1701 1668.1 43.2 50

FI4 RWMPSOg 76 468 215 97.9 50

RWMPSOl 73 620 218.7 115.3 50

PSOg 100 620 369.6 113.2 50

PSOl 120 920 390 134.6 50

HCSNM 163 191 174.04 6.21 50

FI5 RWMPSOg 687 2439 1521.8 360.7 50

RWMPSOl 675 3863 2102.9 689.5 50

PSOg 680 3440 1499 513.1 43

PSOl 800 3880 2472.4 637.5 50

HCSNM 769 1045 884.48 56.24 50

FI6 RWMPSOg 40 238 110.9 48.6 50

RWMPSOl 40 235 112 48.7 50

PSOg 80 350 204.8 62 50

PSOl 70 520 256 107.5 50

HCSNM 139 175 155.89 5.16 50

FI7 RWMPSOg 72 620 242.7 132.2 50

RWMPSOl 70 573 248.9 134.4 50

PSOg 100 660 421.2 130.4 50

PSOl 100 820 466 165 50

HCSNM 119 243 210.3 6.39 50
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The efficiency of the proposed HCSNM algorithm with minimax problems

We apply another test to investigate the idea of invoking the NM method in the final 
stage as a final intensification process with the standard Cuckoo search algorithm. In 
Table 11, we show the mean evaluation function values of the standard cuckoo search 
algorithm, the NM method and the proposed HCSNM algorithm, respectively. We apply 

Table 7  HCSNM and  other meta-heuristics algorithms for FI1 − FI7 integer programming 
problems

Italic values indicate the best values

Function GA PSO FF GWO HCSNM

FI1

 Avg 1640.23 20,000 1617.13 860.45 613.48

 SD 425.18 0.00 114.77 43.66 21.18

FI2

 Avg 1140.15 17,540.17 834.15 880.25 799.23

 SD 345.25 1054.56 146.85 61.58 41.48

FI3

 Avg 4120.25 20,000 1225.17 4940.56 764.15

 SD 650.21 0.00 128.39 246.89 37.96

FI4

 Avg 1020.35 16,240.36 476.16 2840.45 205.48

 SD 452.56 1484.96 31.29 152.35 39.61

FI5

 Avg 1140.75 13,120.45 1315.53 1620.65 792.56

 SD 245.78 1711.83 113.01 111.66 53.32

FI6

 Avg 1040.45 1340.14 345.71 3660.25 294.53

 SD 115.48 265.21 35.52 431.25 33.90

FI7

 Avg 1060.75 1220.46 675.48 1120.15 222.35

 SD 154.89 177.19 36.36 167.54 33.55

Table 8  Experimental results (mean, standard deviation and  rate of  success) of  function 
evaluation between BB and HCSNM for FI1 − FI7 test problems

Function Algorithm Mean SD Suc

 FI1 BB 1167.83 659.8 30

HCSNM 638.26 4.41 30

FI2 BB 139.7 102.6 30

HCSNM 230.86 4.68 30

FI3 BB 4185.5 32.8 30

HCSNM 1670.5 39.90 30

FI4 BB 316.9 125.4 30

HCSNM 173.73 5.57 30

FI5 BB 2754 1030.1 30

HCSNM 898.3 66.54 30

FI6 BB 211 15 30

HCSNM 150.63 3.10 30

FI7 BB 358.6 14.7 30

HCSNM 211.1 5.20 30
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for all algorithms the same termination criterion, which terminates the search when 
both algorithms reach to the optimal solution within an error of 10−4 before the 20,000 
function evaluation value. We report the average function evaluation over 100 runs and 
the best results in italicised text. Also we show in Table 11 that invoking the NM method 
in the final stage in the proposed algorithm enhance the general performance of it and 
can accelerate the search to reach to the optimal solution or near optimal solution faster 
than the standard Cuckoo search algorithm and the NM method.

HCSNM and other algorithms

We compare HCSNM with three benchmark algorithms in order to verify of the effi-
ciency of the proposed algorithm with minimax problems. Let us give a brief description 
about these comparative three algorithms.

• • HPS2 (Santo and Fernandes 2011) HPS2 is heuristic pattern search algorithm, which 
is applied for solving bound constrained minimax problems by combining the Hook 
and Jeeves (HJ) pattern and exploratory moves with a randomly generated approxi-
mate descent direction.

• • UPSOm (Parsopoulos and Vrahatis 2005) UPSOm is unified particle swarm Optimi-
zation algorithm, which combines the global and local variants of the standard PSO 
and incorporates a stochastic parameter to imitate mutation in evolutionary algo-
rithms.

• • RWMPSOg (Petalas et al. 2007). RWMPSOg is random walk memetic particle swarm 
optimization (with global variant), which combines the particle swarm optimization 
with random walk (as direction exploitation).

Comparison between HPS2, UPSOm, RWMPSOg and HCSNM for minimax problems

In this subsection, we present the comparison results between our HCSNM algorithm 
and the other algorithms in order to verify of the efficiency of the proposed algorithm. 
We test the four comparative algorithms on ten benchmark functions, take the results 
of the comparative algorithms from their original paper (Santo and Fernandes 2011) 
and report the results. In Table  12, we report the average (Avg), sD and Success rate 
(%Suc) over 100 runs. The mark (–) for FM8 in HPS2 algorithm and FM2, FM8 and FM9 
in RWMPSOg algorithm in Table 12 means that the results of these algorithms for these 
functions are not reported in their original paper. The run is considered successful if the 
algorithm reaches the global minimum of the solution within an error of 10−4 before 
the 20,000 function evaluation value. The results in Table  12, show that the proposed 
HCSNM algorithm succeeds in most runs and obtains the objective value of each func-
tion faster than the other algorithms, except for functions FM3, FM6, FM9 and FM10 the 
HPS2 results are better than the proposed algorithm. The dimensions for functions FM4 , 
FM6, F7, FM8 and FM9 is 7, 10, 2, 4 and 7 respectively, which increase the number of 
function evaluations beyond 20,000 when applied the NM method. The rate of success 
for these function can increase to 100 % if the function evaluation criterion bigger than 
20,000.
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Table 9  Minimax optimization test problems

Test problem Problem defination

Problem 1 (Yang 2010b) FM1(x) = max fi(x), i = 1, 2, 3,

f1(x) = x21 + x42 ,

f2(x) = (2− x1)2 + (2− x2)
2,

f3(x) = 2exp(−x1 + x2)

Problem 2 (Yang 2010b) FM2(x) = max fi(x), i = 1, 2, 3,

f1(x) = x41 + x22

f2(x) = (2− x1)2 + (2− x2)
2,

f3(x) = 2exp(−x1 + x2)

Problem 3 (Yang 2010B) FM3(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4,

g2(x) = −x21 − x22 − x33 − x24 − x1 + x2 − x3 + x4 + 8,

g3(x) = −x21 − 2x22 − x23 − 2x4 + x1 + x4 + 10,

g4(x) = −x21 − x22 − x23 − 2x1 + x2 + x4 + 5

Problem 4 (Yang 2010B) FM4(x) = max fi(x) i = 1, . . . , 5

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + 10x65 + 7x26 + x47

− 4x6x7 − 10x6 − 8x7,

f2(x) = f1(x)+ 10(2x21 + 3x42 + x3 + 4x24 + 5x5 − 127),

f3(x) = f1(x)+ 10(7x1 + 3x2 + 10x23 + x4 − x5 − 282),

f4(x) = f1(x)+ 10(23x1 + x22 + 6x26 − 8x7 − 196),

f5(x) = f1(x)+ 10(4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7

Problem 5 (Schwefel 1995) FM5(x) = max fi(x), i = 1, 2,

f1(x) = |x1 + 2x2 − 7|,

f2(x) = |2x1 + x2 − 5|

Problem 6 (Schwefel 1995) FM6(x) = max fi(x),

fi(x) = |xi |, i = 1, . . . , 10

Problem 7 (Lukšan and Vlcek 2000) FM7(x) = max fi(x), i = 1, 2,

f1(x) = (x1 −

√
(x21 + x22 )cos

√
x21 + x22 )

2 + 0.005(x21 + x22 )
2,

f2(x) = (x2 −

√
(x21 + x22 )sin

√
x21 + x22 )

2 + 0.005(x21 + x22 )
2

Problem 8 (Lukšan and Vlcek 2000) FM8(x) = max fi(x), i = 1, . . . , 4,

f1(x) = (x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2 + 2x23 + x24

− 5(x1 − (x4 + 1)4)− 5(x2 − (x1− (x4 + 1)4)4)− 21x3 + 7x4,

f2(x) = f1(x)+ 10[(x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2 + x23 + x24

+ (x1 − (x4 + 1)4)− (x2 − (x1 − (x4 + 1)4)4)+ x3 − x4 − 8],

f3(x) = f1(x)+ 10[(x1 − (x4 + 1)4)2 + 2(x2 − (x1 − (x4 + 1)4)4)2

+ x23 + 2x24 − (x1 − (x4 + 1)4)− x4 − 10]

f4(x) = f1(x)+ 10[(x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2

+ x23 + 2(x1 − (x4 + 1)4)− (x2 − (x1 − (x4 + 1)4)4)− x4 − 5]

Problem 9 (Lukšan and Vlcek 2000) FM9(x) = max fi(x), i = 1, . . . , 5,

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2

+ 10x65 + 7x26 + x47 − 4x6x7 − 10x6 − 8x7,

f2(x) = −2x21 − 2x43 − x3 − 4x24 − 5x5 + 127,

f3(x) = −7x1 − 3x2 − 10x23 − x4 + x5 + 282,

f4(x) = −23x1 − x22 − 6x26 + 8x7 + 196,

f5(x) = −4x21 − x22 + 3x1x2 − 2x23 − 5x6 + 11x7

Problem 10 (Lukšan and Vlcek 2000) FM10(x) = max |fi(x)|, i = 1, . . . , 21,

fi(x) = x1exp(x3ti)+ x2exp(x4ti)−
1

1+ti
,

ti = −0.5+ i−1
20
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HCSNM and other meta‑heuristics and swarm intelligence algorithms for minmax problems

Also we compare the proposed HCSNM algorithm against the same meta-heuristics and 
swarm intelligence algorithms (SI) which described in “HCSNM and other meta-heu-
ristics and swarm intelligence algorithms for integer programming problems” for inte-
ger problems. The average (Avg) and SD of all algorithms are reported over 100 runs as 
shown in Table 13.

The results in Table 13 shows that the proposed HCSNM algorithm is outperform the 
other met-heuristics and swarm intelligence algorithm

HCSNM and SQP method

Another test for our proposed algorithm, we compare the HCSNM with another known 
method which is called sequential quadratic programming method (SQP) (Boggs and 
Tolle 1995; Fletcher 2013; Gill et al. 1981; Wilson et al. 1963).

We test the results of the two comparative algorithms on ten benchmark functions, 
take the results of the SQP algorithm from paper (Laskari et  al. 2002) and report the 
results. In Table  14, we report the average (Avg), SD and success rate (%Suc) over 30 
runs. The run is considered successful if the algorithm reaches the global minimum of 
the solution within an error of 10−4 before the 20,000 function evaluation value. The 

Table 10  Minimax test functions properties

Function Dimension (d) Desired error goal

FM1 2 1.95222245

FM2 2 2

FM3 4 −40.1

FM4 7 247

FM5 2 10−4

FM6 10 10−4

FM7 2 10−4

FM8 4 −40.1

FM9 7 680

FM10 4 0.1

Table 11  The efficiency of invoking the Nelder–Mead method in the final stage of HCSNM 
for FM1 − FM10 minimax problems

Function Standard CS NM method HCSNM

FM1 5375.25 1280.35 705.62

FM2 6150.34 1286.47 624.24

FM3 3745.14 1437.24 906.28

FM4 11,455.17 19,147.15 3162.92

FM5 5845.14 1373.15 670.22

FM6 7895.14 18,245.48 4442.76

FM7 11,915.24 1936.12 1103.86

FM8 20,000 2852.15 2629.36

FM9 14,754.14 19,556.14 2724.78

FM10 6765.24 1815.26 977.56
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results in Table  14, show that the proposed HCSNM algorithm outperforms the SQP 
algorithm in seven of ten functions, while the results of SQP algorithm are better than 
our proposed algorithm for functions FM3, FM5 and FM6. We can conclude from this 
comparison that the proposed HCSNM outperforms the SQP algorithm in most cases of 
tested minimax problems.

Table 12  Evaluation function for the minimax problems FM1 − FM10

Italic values indicate the best values

Algorithm Problem Avg SD %Suc

HPS2 FM1 1848.7 2619.4 99

FM2 635.8 114.3 94

FM3 141.2 28.4 37

FM4 8948.4 5365.4 7

FM5 772.0 60.8 100

FM6 1809.1 2750.3 94

FM7 4114.7 1150.2 100

FM8 – – –

FM9 283.0 123.9 64

FM10 324.1 173.1 100

UPSOm FM1 1993.8 853.7 100

FM2 1775.6 241.9 100

FM3 1670.4 530.6 100

FM4 12,801.5 5072.1 100

FM5 1701.6 184.9 100

FM6 18,294.5 2389.4 100

FM7 3435.5 1487.6 100

FM8 6618.50 2597.54 100

FM9 2128.5 597.4 100

FM10 3332.5 1775.4 100

RWMPSOg FM1 2415.3 1244.2 100

FM2 – – –

FM3 3991.3 2545.2 100

FM4 7021.3 1241.4 100

FM5 2947.8 257.0 100

FM6 18,520.1 776.9 100

FM7 1308.8 505.5 100

FM8 – – –

FM9 – – –

FM10 4404.0 3308.9 100

HCSNM FM1 705.62 14.721 100

FM2 624.24 20.83 100

FM3 906.28 98.24 100

FM4 3162.92 218.29 90

FM5 670.22 11.07 100

FM6 4442.76 87.159 95

FM7 1103.86 125.36 95

FM8 2629.336 84.80 75

FM9 2724.78 227.24 95

FM10 977.56 176.82 100
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Conclusion and future work
In this paper, a new hybrid cuckoo search algorithm with NM method is proposed in 
order to solve integer programming and minimax problems. The proposed algorithm is 
called hybrid cuckoo search and Nelder–Mead algorithm (HCSNM). The NM algorithm 
helps the proposed algorithm to overcome the slow convergence of the standard by 
refining the best obtained solution from the cuckoo search instead of keeping the algo-
rithm running with more iterations without any improvements (or slow improvements) 
in the results. In order to verify the robustness and the effectiveness of the proposed 
algorithm, HCSNM has been applied on seven integer programming and ten minimax 
problems. The experimental results show that the proposed algorithm is a promising 
algorithm and has a powerful ability to solve integer programming and minimax prob-
lems faster than other algorithms in most cases.

In the future work, we will focus on the following directions:

Table 13  HCSNM and other meta-heuristics algorithms for FM1 − FM10 minmax problems

Function GA PSO FF GWO HCSNM

FM1

 Avg 1080.45 3535.46 1125.61 2940.2 275.45

 SD 83.11 491.66 189.56 490.22 6.40

FM2

 Avg 1120.15 20,000 785.17 3740.14 260.53

 SD 65.14 0.00 31.94 712.19 21.60

FM3

 Avg 1270.65 2920.15 695.54 1120.25 262.15

 SD 95.26 269.48 50.03 417.04 15.68

FM4

 Avg 2220.45 9155.35 1788.26 4940.35 1704.28

 SD 488.45 649.12 118.09 313.60 36.63

FM5

 Avg 1040.84 5680.17 582.52 3520.45 265.54

 SD 55.89 937.44 86.77 946.36 12.01

FM6

 Avg 20,000 20,000 13,692.13 2080.35 1658.23

 SD 0.00 0.00 900.12 938.33 201.92

FM7

 Avg 1120.25 5643.65 2685.25 1020.45 177.23

 SD 65.89 4.3.22 610.07 219.90 12.72

FM8

 Avg 1280.35 20,000 7659.45 1620.46 1555.47

 SD 78.23 0.00 583.21 281.25 59.97

FM9

 Avg 20,000 6220.25 8147.45 3760.54 2732.15

 SD 0.00 727.44 1026.22 246.52 66.84

FM10

 Avg 1080.65 6680.19 748.17 1630.4 489.17

 SD 68.15 509.34 98.59 37.36 27.29
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• • Apply the proposed algorithms on solving constrained optimization and engineering 
problems.

• • Modify our proposed algorithm to solve other combinatorial problems, large scale 
integer programming and minimax problems.
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