
A hybrid cuckoo search algorithm
with Nelder Mead method for solving global
optimization problems
Ahmed F. Ali1,2 and Mohamed A. Tawhid2,3*

Background
Cuckoo search (CS) is a population based meta-heuristic algorithm that was developed
by Yang et al. (2007). CS (Garg 2015a, d) and other meta-heuristic algorithms such as
ant colony optimization (ACO) (Dorigo 1992), artificial bee colony (Garg et al. 2013;
Garg 2014; Karaboga and Basturk 2007), particle swarm optimization (PSO) (Garg and
Sharma 2013; Kennedy and Eberhart 1995), bacterial foraging (Passino 2002), bat algo-
rithm (Yang 2010a), bee colony optimization (BCO) (Teodorovic and DellOrco 2005),
wolf search (Tang et al. 2012), cat swarm (Chu et al. 2006), firefly algorithm (Yang
2010b), fish swarm/school (Li et al. 2002), genetic algorithm (GA) (Garg 2015a), etc.,
have been applied to solve global optimization problems. These algorithms have been
widely used to solve unconstrained and constrained problems and their applications.

Abstract 

Cuckoo search algorithm is a promising metaheuristic population based method. It has
been applied to solve many real life problems. In this paper, we propose a new cuckoo
search algorithm by combining the cuckoo search algorithm with the Nelder–Mead
method in order to solve the integer and minimax optimization problems. We call the
proposed algorithm by hybrid cuckoo search and Nelder–Mead method (HCSNM).
HCSNM starts the search by applying the standard cuckoo search for number of itera-
tions then the best obtained solution is passing to the Nelder–Mead algorithm as an
intensification process in order to accelerate the search and overcome the slow conver-
gence of the standard cuckoo search algorithm. The proposed algorithm is balancing
between the global exploration of the Cuckoo search algorithm and the deep exploita-
tion of the Nelder–Mead method. We test HCSNM algorithm on seven integer pro-
gramming problems and ten minimax problems and compare against eight algorithms
for solving integer programming problems and seven algorithms for solving minimax
problems. The experiments results show the efficiency of the proposed algorithm and
its ability to solve integer and minimax optimization problems in reasonable time.

Keywords:  Cuckoo search algorithm, Nelder–Mead method, Integer programming
problems minimax problems

Open Access

© 2016 Ali and Tawhid. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Ali and Tawhid ﻿SpringerPlus (2016) 5:473
DOI 10.1186/s40064-016-2064-1

*Correspondence:
mtawhid@tru.ca
3 Department
of Mathematics
and Computer Science,
Faculty of Science, Alexandria
University, Moharam Bey,
Alexandria 21511, Egypt
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2064-1&domain=pdf

Page 2 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

However, few works have been applied to solve minimax and integer programming
problems via these algorithms.

A wide variety of real life problems in logistics, economics, social science, politics,
game theory, and engineering can be formulated as integer optimization and minimax
problems. The combinatorial problems, like the knapsack-capital budgeting problem,
warehouse location problem, traveling salesman problem, decreasing costs and machin-
ery selection problem, network and graph problems, such as maximum flow problems,
set covering problems, matching problems, weighted matching problems, spanning trees
problems, very large scale integration (LSI) circuits design problems, robot path plan-
ning problems, and many scheduling problems can also be solved as integer optimiza-
tion and minimax problems (see, e.g., Chen et al. 2010; Du and Pardalos 2013; Hoffman
and Padberg 1993; Little et al. 1963; Mitra 1973; Nemhauser et al. 1989; Zuhe et al. 1990).

Branch and bound (BB) is one of the most famous exact integer programming algo-
rithm. However, BB suffers from high complexity, since it explores a hundred of nodes
in a big tree structure when it solves a large scale problems. Recently, there are some
efforts to apply some of swarm intelligence algorithms to solve integer programming
problems such as ant colony algorithm (Jovanovic and Tuba 2011, 2013), artificial bee
colony algorithm (Bacanin and Tuba 2012; Tuba et al. 2012), particle swarm optimiza-
tion algorithm (Petalas et al. 2007), cuckoo search algorithm (Tuba et al. 2011) and firefly
algorithm (Brown et al. 2007).

The minimax problem, as well as all other problems containing max (or min) opera-
tors, is considered to be difficult because max function is not differentiable. So many
unconstrained optimization algorithms with the use of derivatives can not be applied to
solve the non-differentiable unconstrained optimization problem directly.

There are several different approaches that have been taken to solve minimax problem.
Many researchers have derived algorithms for the solution to minimax problem by solv-
ing an equivalent differentiable program with many constraints (see, e.g., Liuzzi et al.
2006; Polak 2012; Polak et al. 2003; Yang 2010b and the references therein), which may
not be efficient in computing.

Some swarm intelligence (SI) algorithms have been applied to solve minimax prob-
lems such as PSO (Petalas et al. 2007). The main drawback of applying swarm intelli-
gence algorithms for solving minimax and integer programming problems is the slow
convergence and the expensive computation time for these algorithms.

Recent studies illustrate that CS is potentially far more efficient than PSO, GAs, and
other algorithms. For example, in Yang et al. (2007), the authors showed that CS algo-
rithm could outperform is very promising the existing algorithms such as GA and PSO.
Also, CS algorithm has shown good performance both on benchmark unconstrained
functions and applications (Gandomi et al. 2013; Yang and Deb 2013). Also, the authors
in Singh and Abhay Singh (2014) compared latest metaheuristic algorithms such as
Krill Herd algorithm (Gandomi and Alavi 2012), firefly algorithm and CS algorithm and
found that CS algorithm is superior for both unimodal and multimodal test function in
terms of optimization fitness and time processing.

Moreover, the CS algorithm has a few number of parameters and easy to implement
which is not found on other meta-heuristics algorithms such as GA and PSO. Due to

Page 3 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

these advantage of the CS algorithm, many researchers have applied it on their work
for various applications such as Garg et al. (2014), Garg (2015b, c, d). The CS algorithm
is combined with other methods such as Nelder–Mead method to solve various prob-
lems (Chang et al. 2015; Jovanovic et al. 2014).

The aim of this work is to propose a new hybrid cuckoo search algorithm with a
Nelder–Mead method in order to overcome the slow convergence of the standard
cuckoo search. The Nelder–Mead method accelerates the search of the proposed algo-
rithm and increases the convergence of the proposed algorithm. The proposed algorithm
is called hybrid cuckoo search with Nelder–Mead (HCSNM). In HCSNM algorithm, we
combine the cuckoo search with a Nelder Mead method in order to accelerate the search
and avoid running the algorithm with more iterations without any improvements.

The main difference between our proposed algorithm and the other hybrid Cuckoo
search and Nelder–Mead algorithms is the way of applying the Nelder–Mead method.
The authors in Chang et al. (2015), Jovanovic et al. (2014) have invoked the Nelder–
Mead method in the cuckoo search algorithm instead of the levy Flight operator. The
drawback of this idea is the computation time because the calling for NM method at
each iteration in the Cuckoo search algorithm. However in our proposed algorithm we
run the standard CS algorithm for some iterations then we pass the best found solution
to the Nelder–Mead method to start from good Solution which help the NM method to
get the global minimum of the functions in reasonable time.

Also, we test the HCSNM algorithm on seven integer programming and ten minimax
benchmark problems. The experimental results show that the proposed HCSNM is a
promising algorithm and can obtain the optimal or near optimal solution for most of the
tested function in reasonable time.

The outline of the paper is as follows. “Definition of the problems and an overview of
the applied algorithms” section presents the definitions of the integer programming and
the minimax problems and gives an overview of the Nelder–Mead method. “Overview
of cuckoo search algorithm” section summarizes the main concepts of cuckoo search
algorithm (CS). “The proposed HCSNM algorithm” section describes the main structure
of the proposed HCSNM algorithm. “Numerical experiments” section gives the experi-
mental results and details of implementation in solving integer programming and mini-
max problems. Finally, we end with some conclusions and future work in “Conclusion
and future work” section.

Definition of the problems and an overview of the applied algorithms
In this section, we present the definitions of the integer programming and the minimax
problems as follows.

The integer programming problem definition

An integer programming problem is a mathematical optimization problem in which all
of the variables are restricted to be integers. The unconstrained integer programming
problem can be defined as follows.

where Z is the set of integer variables, S is a not necessarily bounded set.

(1)minf (x), x ∈ S ⊆ Z
n
,

Page 4 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

Minimax problem definition

The general form of the minimax problem as reported in Yang (2010b) is defined by:

where

with fi(x) : S ⊂ R
n → R, i = 1, . . . ,m.

The nonlinear programming problems of the form:

can be transformed to minimax problems as follows:

where

It has been proved that for sufficiently large αi, the optimum point of the minimax prob-
lem, coincides with the optimum point of the nonlinear programming problem (Bandler
and Charalambous 1974).

Nelder Mead method

The Nelder–Mead algorithm (NM) is one of the most popular derivative-free nonlin-
ear optimization algorithms. Nelder and Mead (1965) proposed NM algorithm. It starts
with n+ 1 vertices (points) x1, x2, . . . , xn+1. The vertices are evaluated, ordered and
re-labeled in order to assign the best point and the worst point. In minimization opti-
mization problems, the x1 is considered as the best vertex or point if it has the mini-
mum value of the objective function, while the worst point xn+1 with the maximum
value of the objective function. At each iteration, new points are computed, along with
their function values, to form a new simplex. Four scalar parameters must be specified
to define a complete NM algorithm: coefficients of reflection ρ, expansion χ, contrac-
tion τ, and shrinkage φ where ρ > 0, χ > 1, 0 < τ < 1, and 0 < φ < 1. The main steps
of the NM algorithm are presented as shown below in Algorithm 1. The vertices are
ordered according to their fitness functions. The reflection process starts by comput-
ing the reflected point xr = x̄ + ρ(x̄ − x(n+1)), where x̄ is the average of all points except
the worst. If the reflected point xr is lower than the nth point f (xn) and greater than
the best point f (x1), then the reflected point is accepted and the iteration is termi-
nated. If the reflected point is better than the best point, then the algorithm starts the
expansion process by calculating the expanded point xe = x̄ + χ(xr − x̄). If xe is better
than the reflected point nth, the expanded point is accepted. Otherwise the reflected
point is accepted and the iteration will be terminated. If the reflected point xr is greater
than the nth point xn the algorithm starts a contraction process by applying an outside

(2)min F(x)

(3)F(x) = max fi(x), i = 1, . . . ,m

min F(x),

gi(x) ≥ 0, i = 2, . . . ,m,

(4)min max fi(x), i = 1, . . . ,m

(5)

f1(x) = F(x),

fi(x) = F(x)− αigi(x),

αi > 0, i = 2, . . . ,m

Page 5 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

xoc or inside contraction xic depending on the comparison between the values of the
reflected point xr and the nth point xn. If the contracted point xoc or xic is greater than
the reflected point xr, the shrink process is starting. In the shrink process, the points are
evaluated and the new vertices of simplex at the next iteration will be x′

2
, . . . , x′n+1

, where
x′ = x1 + φ(xi − x1), i = 2, . . . , n+ 1.

Overview of cuckoo search algorithm
In the following subsection, we summarize the main concepts and structure of the
cuckoo search algorithm.

Main concepts

Cuckoo search algorithm is a population based metaheuristic algorithm inspired from
the reproduction strategy of the cuckoo birds (Yang and Deb 2009). The cuckoo birds lay
their eggs in a communal nests and they may remove other eggs to increase the proba-
bility of hatching their own eggs (Payne and Karen Klitz 2005). This method of laying the
eggs in other nests is called obligate brood parasitism. Some host birds can discover the
eggs are not their own and throw these eggs away or abandon their nest and build a new
nest in a new place. Some kind of cuckoo birds can mimic the color and the pattern of
the eggs of a few host bird in order to reduce the probability of discovering the intruding
eggs. Since the cuckoo eggs are hatching earlier than the host bird eggs, the cuckoos laid
their eggs in a nest where the host bird just laid its own eggs. Once the eggs are hatching,
the cuckoo chick’s starts to propel the host eggs out the of the nest in order to increase
its share of food provided by its host bird.

Lévy flights

Recent studies show that the behavior of many animals when searching for foods have
the typical characteristics of Lévy Flights, see, e.g., Brown et al. (2007), Pavlyukevich
(2007) and Reynolds and Frye (2007). Lévy flight (Brown et al. 2007) is a random walk
in which the step-lengths are distributed according to a heavy-tailed probability distri-
bution. After a large number of steps, the distance from the origin of the random walk
tends to a stable distribution.

Page 6 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

Algorithm 1 The Nelder-Mead Algorithm
1. Let xi denote the list of vertices in the current simplex, i = 1, . . . , n+ 1.
2. Order. Order and re-label the n+1 vertices from lowest function value f(x1) to highest function
value f(xn+1) so that f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1).
3. Reflection. Compute the reflected point xr by
xr = x̄+ ρ(x̄− x(n+1)), where x̄ is the centroid of the n best points,
x̄ =

∑
(xi/n), i = 1, . . . , n.

if f(x1) ≤ f(xr) < f(xn) then
Replace xn+1 with the reflected point xr and go to Step 7.

end if
4. Expansion.
if f(xr) < f(x1) then

Compute the expanded point xe by xe = x̄+ χ(xr − x̄).
end if
if f(xe) < f(xr) then

Replace xn+1 with xe and go to Step 7.
else

Replace xn+1 with xr and go to Step 7.
end if
5. Contraction.
if f(xr) ≥ f(xn) then

Perform a contraction between x̄ and the best among xn+1 and xr.
end if
if f(xn) ≤ f(xr) < f(xn+1) then

Calculate xoc = x̄+ τ(xr − x̄) {Outside contract.}
end if
if f(xoc) ≤ f(xr) then

Replace xn+1 with xoc and go to Step 7.
else

Go to Step 6.
end if
if f(xr) ≥ f(x(n+1) then

Calculate xic = x̄+ τ(xn+1 − x̄). {Inside contract}
end if
if f(xic) ≥ f(x(n+1) then

Replace xn+1 with xic and go to Step 7.
else

Go to Step 6.
end if
6. Shrink. Evaluate the n new vertices
x′ = x1 + φ(xi − x1), i = 2, . . . , n+ 1.
Replace the vertices x2, . . . , xn+1 with the new vertices x′

2, . . . , x
′
n+1.

7. Stopping Condition. Order and re-label the vertices of the new simplex as x1, x2, . . . , xn+1 such
that f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1)
if f(xn+1)− f(x1) < ε then

Stop, where ε > 0 is a small predetermined tolerance.
else

Go to Step 3.
end if

Cuckoo search characteristic

The cuckoo search algorithm is based on the following three rules:

• • At a time, cuckoo randomly chooses a nest to lay an egg.
• • The best nests with high quality of eggs (solutions) will carry over to the next genera-

tions.
• • The number of available host nests is fixed. The probability of discovering an intrud-

ing egg by the host bird is pa ∈ [0, 1]. If the host bird discovers the intruding egg, it
throws the intruding egg away the nest or abandons the nest and starts to build a
new nest elsewhere.

Cuckoo search algorithm

We present in details the main steps of the Cuckoo search algorithm as shown in
Algorithm 2.

Page 7 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

• •

Algorithm 2 Cuckoo search algorithm
1: Set the initial value of the host nest size n, probability pa ∈ [0, 1] and maximum number of

iterations Maxitr.
2: Set t := 0. {Counter initialization}
3: for (i = 1 : i ≤ n) do
4: Generate initial population of n host x(t)

i . {n is the population size}
5: Evaluate the fitness function f(x(t)

i).
6: end for
7: repeat
8: Randomly generate a new solution (Cuckoo) x

(t+1)
i by Lévy flight.

9: Evaluate the fitness function of a solution x
(t+1)
i f(x(t+1)

i)
10: Randomly choose a nest xj among n solutions.

11: if (f(x(t+1)
i) > f(x(t)

j)) then

12: Replace the solution xj with the solution x
(t+1)
i

13: end if
14: Abandon a fraction pa of worse nests.
15: Build new nests at new locations using Lévy flight a fraction pa of worse nests
16: Keep the best solutions (nests with quality solutions)
17: Rank the solutions and find the current best solution
18: Set t = t+ 1.
19: until (t ≥ Maxitr). {Termination criteria are satisfied}
20: Produce the best solution.

Step 1 The standard cuckoo search algorithm starts with the initial values of popula-
tion size n, probability pa ∈ [0, 1], maximum number of iterations Maxitr and the
initial iteration counter t (Lines 1–2).

• • Step 2 The initial population n is randomly generated and each solution xi in the pop-
ulation is evaluated by calculating its fitness function f (xi) (Lines 3–6).

• • Step 3 The following steps are repeated until the termination criterion is satisfied.

Step 3.1 A new solution is randomly generated using a Lévy flight as follows.

 �where ⊕ denotes entry-wise multiplication, α is the step size, and Lévy (�) is the Lévy
distribution (Lines 8–9).
Step 3.2 If its objective function is better than the objective function of the selected
random solution, then the new solution is replaced with a random selected solu-
tion (Lines 10–13).
Step 3.3 A fraction (1− pa) of the solutions is randomly selected, abandoned and
replaced by new solutions generated via using local random walks as follows.

 �where xtj and xtk are two different solutions randomly selected and γ is a random
number (Lines 14–15).
Step 3.4 The solutions are ranked according to their objective values, then the best
solution is assigned. The iteration counter increases (Lines 16–18).

• • Step 4 The operation is repeated until the termination criteria are satisfied (Line 19).
• • Step 6 Produce the best found solution so far (Line 20).

The proposed HCSNM algorithm
The steps of the proposed HCSNM algorithm are the same steps of the standard CS
algorithm till line 19 in Algorithm 2 then we apply the NM method in Algorithm 1 as

(6)xt+1
i = xti + α ⊕ Lévy(�),

(7)xt+1
i = xti + γ

(
xtj − xtk

)
,

Page 8 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

an intensification process in order to refine the best obtained solution from the previous
stage in the standard CS algorithm.

Numerical experiments
In order to investigate the efficiency of the HCSNM, we present the general performance
of it with different benchmark functions and compare the results of the proposed algo-
rithm against variant of particle swarm optimization algorithms. We program HCSNM
via MATLAB and take the results of the comparative algorithms from their original
papers. In the following subsections, we report the parameter setting of the proposed
algorithm with more details and the properties of the applied test functions. Also we
present the performance analysis of the proposed algorithm with the comparative results
between it and the other algorithms.

Parameter setting

In Table 1, we summarize the parameters of the HCSNM algorithm with their assigned
values.

Parameter values are selected either based on the common settings in the literature or
determined through our preliminary numerical experiments.

• • Population size n The experimental tests show that the best population size is n = 20 ,
we applied the proposed algorithm with different population size in order to test the
efficiency of the selected population size number. Figure 1 shows that the best popu-
lation size is n = 20, while increasing this number to n = 25 will increase the func-
tion evaluation without a big improvement in the function values.

• • A fraction of worse nests pa In order to increase the diversification ability of the pro-
posed algorithm, the worst solutions are discarded and the new solutions are ran-
domly generated to replace the worst solutions. The number of the discarded solu-
tions depends on the value of a fraction of worse nests pa. The common pa value is
0.25.

• • Maximum number of iterations Maxitr The main termination criterion in standard
cuckoo search algorithm is the number of iterations. In the proposed algorithm, we
run the standard CS algorithm 3d iterations, then the best found solution is passed to
the NM method. The effect of the maximum number of iteration is shown in Table 2.
Table 2 shows that function values of six random selected functions (three integer
functions and three minmax function). The results in Table 2 shows that there is no
big different in the function value after applying 3d and 4d iterations which indicates
that the number of iteration 3d is the best selection in term of function evaluation

Table 1  Parameter setting

Parameters Definitions Values

n Population size 20

pa A fraction of worse nests 0.25

Maxitr Maximum number of iterations 3d

Nelite No. of best solution for final intensification 1

Page 9 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

• • Number of best solution for NM method Nelite In the final stage of the algorithm, the
best obtained solution from the cuckoo search is refined by the NM method. The
number of the refined solutions Nelite is set to 1.

Integer programming optimization test problems

We test do the efficiency of the HCSNM algorithm by applying the algorithm on seven
benchmark integer programming problems (FI1 − FI7) as shown in Table 3. In Table 4,
we list the properties of the benchmark functions (function number, dimension of the
problem, problem bound and the global optimal of each problem). Now we define the
test functions as follows. The solutions are rounded to the nearest integer for function
evaluation purposes and they are consider as real numbers for all other operations.

The efficiency of the proposed HCSNM algorithm with integer programming problems

In this subsection, we verify the importance of invoking the NM method in the final
stage as a final intensification process. In Table 5, the results show the mean evalua-
tion function values of the standard cuckoo search, the NM method and the proposed
HCSNM algorithm, respectively. We apply the same termination criterion for all algo-
rithms, which terminates the search when all algorithms reach to the optimal solution

Table 2  The effect of maximum number of iteration before applying Nelder–Mead method

Function d 2d 3d 4d

FI1 117.60 18.26 2.46 2.04

FI2 2379.15 350.54 179.85 175.14

FI7 870.11 1.014 0.0095 0.0042

FM3 454.79 −39.14 −41.92 −41.93

FM6 15.73 6.15 1.19 1.15

FM10 459.25 1.05 0.114 0.114

0 2 4 6 8 10 12 14 16 18 20
−5000

0

5000

10000

15000

20000

Iterations

F
un

ct
io

n
va

lu
es

n=15
n=20
n=25

1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

7
x 10

4

Iterations

F
un

ct
io

n
va

lu
es

n=15
n=20
n=25

1 2 3 4 5 6 7 8
3

4

5

6

7

8

9

10

11

Iterations

F
un

ct
io

n
va

lu
es

n=15
n=20
n=25

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

Iterations

F
un

ct
io

n
va

lu
es

n=15
n=20
n=25

Fig. 1  The effects of the number of population size

Page 10 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

within an error of 10−4 before the 20,000 function evaluation value. We report the aver-
age function evaluation over 50 runs and give the best results in italicised text. The ini-
tial solution in the NM method is randomly generated. In Table 5, the results show that
invoking the NM method in the final stage enhances the general performance of the

Table 3  Integer programming optimization testproblems

Test problem Problem definition

Problem 1 (Rudolph 1994) FI1(x) = �x�1 = |x1| + · · · + |xn|

Problem 2 (Rudolph 1994)

FI2(x) = xT x =
�
x1 . . . xn

�




x1
.
.
.

xn





Problem 3 (GlankwahmdeeL
et al. 1979)

FI3(x) =
�
15 27 36 18 12

�

x + x
T





35 − 20 − 10 32 − 10

−20 40 − 6 − 31 32

−10 − 6 11 − 6 − 10

32 − 31 − 6 38 − 20

−10 32 − 10 − 20 31



x

Problem 4 (GlankwahmdeeL
et al. 1979)

FI4(x) = (9x21 + 2x22 − 11)2 + (3x1 + 4x22 − 7)2

Problem 5 (GlankwahmdeeL
et al. 1979)

FI5(x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4

Problem 6 (Rao 1994) FI6(x) = 2x21 + 3x22 + 4x1x2 − 6x1 − 3x2

Problem 7 (GlankwahmdeeL
et al. 1979)

FI7(x) = −3803.84− 138.08x1 − 232.92x2 + 123.08x
2

1

+ 203.64x
2

2 + 182.25x1x2

Table 4  The properties of the Integer programming test functions

Function Dimension (d) Bound Optimal

FI1 5 [−100 100] 0

FI2 5 [−100 100] 0

FI3 5 [−100 100] −737

FI4 2 [−100 100] 0

FI5 4 [−100 100] 0

FI6 2 [−100 100] −6

FI7 2 [−100 100] −3833.12

Table 5  The efficiency of invoking the Nelder–Mead method in the final stage of SSSO
algorithm for FI1 − FI7 integer programming problems

Function Standard CS NM method HCSNM

FI1 11,880.15 1988.35 638.3

FI2 7176.23 678.15 232.64

FI3 6400.25 819.45 1668.1

FI4 4920.35 266.14 174.04

FI5 7540.38 872.46 884.48

FI6 4875.35 254.15 155.89

FI7 3660.45 245.47 210.3

Page 11 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

proposed algorithm and can accelerate the search to reach to the optimal solution or
near optimal solution.

The general performance of the HCSNM algorithm with integer programming problems

We apply the second experimental test to investigate the general performance of the
proposed algorithm on the integer programming problems by plotting the values of
function values versus the number of iterations as shown in Fig. 2 for four functions
FI1, FI2, FI3 and FI5 (randomly picked). The solid line represents the standard cuckoo
search algorithm, while the dotted line represents the performance of the NM method
after applying he NM on the best obtained solution from the standard cuckoo search.
We can conclude from Fig. 2 that invoking the NM method as an intensification pro-
cess in the final stage of the proposed algorithm can accelerate the search and obtain the
optimal or near optimal solution in reasonable time.

HCSNM and other algorithms

We compare HCSNM with four benchmark algorithms (particle swarm optimization
with its variants) in order to verify of the efficiency of the proposed algorithm. Before we
give the comparison results of all algorithms, let us describe the comparative four algo-
rithms (Petalas et al. 2007).

• • RWMPSOg RWMPSOg is random walk memetic particle swarm optimization (with
global variant), which combines the particle swarm optimization with random walk
(as direction exploitation).

• • RWMPSOl RWMPSOl is random walk memetic particle swarm optimization (with
local variant), which combines the particle swarm optimization with random walk
(as direction exploitation).

• • PSOg PSOg is standard particle swarm optimization with global variant without local
search method.

0 5 10 15 20 25
0

20

40

60

80

100

Iterations

F
un

ct
io

n
va

lu
es

Standard Cuckoo search
Nelder−Mead method

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000

Iterations

F
un

ct
io

n
va

lu
es

Standard Cuckoo search
Nelder−Mead method

0 10 20 30 40 50 60
−2

0

2

4

6

8

10
x 10

4

Iterations

F
un

ct
io

n
va

lu
es

Standard Cuckoo search
Nelder−Mead method

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Iterations

F
un

ct
io

n
va

lu
es

Standard Cuckoo search
Nelder−Mead method

Fig. 2  The general performance of the proposed HCSNM algorithm with integer problems

Page 12 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

• • PSOl PSOl is standard particle swarm optimization with local variant without local
search method.

Comparison between RWMPSOg, RWMPSOl, PSOg, PSOl and HCSNM for integer programming

problems

In this subsection, we give the comparison results between our HCSNM algorithm
and the other algorithms in order to verify of the efficiency of our proposed algorithm.
We test the five comparative algorithms on seven benchmark functions and report the
results. We take the results of the comparative algorithms from their original paper (Pet-
alas et al. 2007). In Table 6, we report the minimum (min), maximum (max), average
(mean), standard deviation (SD) and success rate (%Suc) of the evaluation function val-
ues over 50 runs. The run is considered successful if the algorithm reaches to the global
minimum of the solution within an error of 10−4 before the 20,000 function evaluation
value. We report the best results between the comparative algorithms in italicised text.
The results in Table 6 shows that the proposed HCSNM algorithm succeeds in six of
seven function, where function FI6 is little bit better than the proposed algorithm, how-
ever the rate of success of the proposed algorithm is 100 % for all functions.

HCSNM and other meta‑heuristics and swarm intelligence algorithms for integer

programming problems

We test the HCSNM algorithm with different meta-heuristics algorithms such as
GA (Holland 1975), PSO (Kennedy and Eberhart 1995), firefly (FF) algorithm (Yang
2010b) and grey wolf optimizer (GWO) (Mirjalili et al. 2014). In order to make a fair
comparison we set the population size = 20 for all algorithms and the termination crite-
ria for all algorithm are the same which are the algorithm reaches to the global minimum
of the solution within an error of 10−4 before the 20,000 function evaluation value. We
applied the standard parameter setting for all compared meta-heuristics algorithms. In
Table 7, we report the average (Avg) and SD of all algorithms over 50 runs.

HCSNM and the branch and bound method

We apply further investigation to verify of the powerful of the proposed algorithm with
the integer programming problems, by comparing the HCSNM algorithm against the
branch and bound (BB) method (Borchers and Mitchell 1991, 1994; Lawler and Wood
1966; Manquinho et al. 1997).

Comparison between the BB method and HCSNM for integer programming problems

In Table 8, we show the comparison results between the BB method and the proposed
HCSNM. We take the results of the BB method from its original paper (Laskari et al.
2002). In Laskari et al. (2002), the BB algorithm transforms the initial integer prob-
lem programming problem to a continuous one. For the bounding, the BB uses the
sequential quadratic programming method to solve the generated sub problems. While
for branching, BB uses depth first traversal with backtracking. We report the average
(Mean), SD and rate of success (Suc) over 30 runs. We report the best mean evaluation
values between the two algorithms in italicised text. The results in Table 8 shows that
the proposed algorithm results are better than the results of the BB method in six of

Page 13 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

seven tested functions, while the rate of success is 100 % for all function in the proposed
algorithm. The overall results in Table 8 shows that the proposed algorithm is faster and
more efficient than the BB method for most cases.

Minimax optimization test problems

We consider another type of optimization test problems in order to investigate the effi-
ciency of the proposed algorithm, these functions are ten benchmark minimax functions
as shown in Table 9. We report their properties in Table 10.

Table 6  Experimental results (min, max, mean, standard deviation and rate of success)
of function evaluation for FI1 − FI7 test problems

Function Algorithm Min Max Mean SD Suc

FI1 RWMPSOg 17,160 74,699 27,176.3 8657 50

RWMPSOl 24,870 35,265 30,923.9 2405 50

PSOg 14,000 261,100 29,435.3 42,039 34

PSOl 27,400 35,800 31,252 1818 50

HCSNM 626 650 638.3 4.34 50

FI2 RWMPSOg 252 912 578.5 136.5 50

RWMPSOl 369 1931 773.9 285.5 50

PSOg 400 1000 606.4 119 50

PSOl 450 1470 830.2 206 50

HCSNM 208 238 232.64 4.28 50

FI3 RWMPSOg 361 41,593 6490.6 6913 50

RWMPSOl 5003 15,833 9292.6 2444 50

PSOg 2150 187,000 12,681 35,067 50

PSOl 4650 22,650 11,320 3803 50

HCSNM 1614 1701 1668.1 43.2 50

FI4 RWMPSOg 76 468 215 97.9 50

RWMPSOl 73 620 218.7 115.3 50

PSOg 100 620 369.6 113.2 50

PSOl 120 920 390 134.6 50

HCSNM 163 191 174.04 6.21 50

FI5 RWMPSOg 687 2439 1521.8 360.7 50

RWMPSOl 675 3863 2102.9 689.5 50

PSOg 680 3440 1499 513.1 43

PSOl 800 3880 2472.4 637.5 50

HCSNM 769 1045 884.48 56.24 50

FI6 RWMPSOg 40 238 110.9 48.6 50

RWMPSOl 40 235 112 48.7 50

PSOg 80 350 204.8 62 50

PSOl 70 520 256 107.5 50

HCSNM 139 175 155.89 5.16 50

FI7 RWMPSOg 72 620 242.7 132.2 50

RWMPSOl 70 573 248.9 134.4 50

PSOg 100 660 421.2 130.4 50

PSOl 100 820 466 165 50

HCSNM 119 243 210.3 6.39 50

Page 14 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

The efficiency of the proposed HCSNM algorithm with minimax problems

We apply another test to investigate the idea of invoking the NM method in the final
stage as a final intensification process with the standard Cuckoo search algorithm. In
Table 11, we show the mean evaluation function values of the standard cuckoo search
algorithm, the NM method and the proposed HCSNM algorithm, respectively. We apply

Table 7  HCSNM and other meta-heuristics algorithms for FI1 − FI7 integer programming
problems

Italic values indicate the best values

Function GA PSO FF GWO HCSNM

FI1

 Avg 1640.23 20,000 1617.13 860.45 613.48

 SD 425.18 0.00 114.77 43.66 21.18

FI2

 Avg 1140.15 17,540.17 834.15 880.25 799.23

 SD 345.25 1054.56 146.85 61.58 41.48

FI3

 Avg 4120.25 20,000 1225.17 4940.56 764.15

 SD 650.21 0.00 128.39 246.89 37.96

FI4

 Avg 1020.35 16,240.36 476.16 2840.45 205.48

 SD 452.56 1484.96 31.29 152.35 39.61

FI5

 Avg 1140.75 13,120.45 1315.53 1620.65 792.56

 SD 245.78 1711.83 113.01 111.66 53.32

FI6

 Avg 1040.45 1340.14 345.71 3660.25 294.53

 SD 115.48 265.21 35.52 431.25 33.90

FI7

 Avg 1060.75 1220.46 675.48 1120.15 222.35

 SD 154.89 177.19 36.36 167.54 33.55

Table 8  Experimental results (mean, standard deviation and rate of success) of function
evaluation between BB and HCSNM for FI1 − FI7 test problems

Function Algorithm Mean SD Suc

 FI1 BB 1167.83 659.8 30

HCSNM 638.26 4.41 30

FI2 BB 139.7 102.6 30

HCSNM 230.86 4.68 30

FI3 BB 4185.5 32.8 30

HCSNM 1670.5 39.90 30

FI4 BB 316.9 125.4 30

HCSNM 173.73 5.57 30

FI5 BB 2754 1030.1 30

HCSNM 898.3 66.54 30

FI6 BB 211 15 30

HCSNM 150.63 3.10 30

FI7 BB 358.6 14.7 30

HCSNM 211.1 5.20 30

Page 15 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

for all algorithms the same termination criterion, which terminates the search when
both algorithms reach to the optimal solution within an error of 10−4 before the 20,000
function evaluation value. We report the average function evaluation over 100 runs and
the best results in italicised text. Also we show in Table 11 that invoking the NM method
in the final stage in the proposed algorithm enhance the general performance of it and
can accelerate the search to reach to the optimal solution or near optimal solution faster
than the standard Cuckoo search algorithm and the NM method.

HCSNM and other algorithms

We compare HCSNM with three benchmark algorithms in order to verify of the effi-
ciency of the proposed algorithm with minimax problems. Let us give a brief description
about these comparative three algorithms.

• • HPS2 (Santo and Fernandes 2011) HPS2 is heuristic pattern search algorithm, which
is applied for solving bound constrained minimax problems by combining the Hook
and Jeeves (HJ) pattern and exploratory moves with a randomly generated approxi-
mate descent direction.

• • UPSOm (Parsopoulos and Vrahatis 2005) UPSOm is unified particle swarm Optimi-
zation algorithm, which combines the global and local variants of the standard PSO
and incorporates a stochastic parameter to imitate mutation in evolutionary algo-
rithms.

• • RWMPSOg (Petalas et al. 2007). RWMPSOg is random walk memetic particle swarm
optimization (with global variant), which combines the particle swarm optimization
with random walk (as direction exploitation).

Comparison between HPS2, UPSOm, RWMPSOg and HCSNM for minimax problems

In this subsection, we present the comparison results between our HCSNM algorithm
and the other algorithms in order to verify of the efficiency of the proposed algorithm.
We test the four comparative algorithms on ten benchmark functions, take the results
of the comparative algorithms from their original paper (Santo and Fernandes 2011)
and report the results. In Table 12, we report the average (Avg), sD and Success rate
(%Suc) over 100 runs. The mark (–) for FM8 in HPS2 algorithm and FM2, FM8 and FM9
in RWMPSOg algorithm in Table 12 means that the results of these algorithms for these
functions are not reported in their original paper. The run is considered successful if the
algorithm reaches the global minimum of the solution within an error of 10−4 before
the 20,000 function evaluation value. The results in Table 12, show that the proposed
HCSNM algorithm succeeds in most runs and obtains the objective value of each func-
tion faster than the other algorithms, except for functions FM3, FM6, FM9 and FM10 the
HPS2 results are better than the proposed algorithm. The dimensions for functions FM4 ,
FM6, F7, FM8 and FM9 is 7, 10, 2, 4 and 7 respectively, which increase the number of
function evaluations beyond 20,000 when applied the NM method. The rate of success
for these function can increase to 100 % if the function evaluation criterion bigger than
20,000.

Page 16 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

Table 9  Minimax optimization test problems

Test problem Problem defination

Problem 1 (Yang 2010b) FM1(x) = max fi(x), i = 1, 2, 3,

f1(x) = x21 + x42 ,

f2(x) = (2− x1)2 + (2− x2)
2,

f3(x) = 2exp(−x1 + x2)

Problem 2 (Yang 2010b) FM2(x) = max fi(x), i = 1, 2, 3,

f1(x) = x41 + x22

f2(x) = (2− x1)2 + (2− x2)
2,

f3(x) = 2exp(−x1 + x2)

Problem 3 (Yang 2010B) FM3(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4,

g2(x) = −x21 − x22 − x33 − x24 − x1 + x2 − x3 + x4 + 8,

g3(x) = −x21 − 2x22 − x23 − 2x4 + x1 + x4 + 10,

g4(x) = −x21 − x22 − x23 − 2x1 + x2 + x4 + 5

Problem 4 (Yang 2010B) FM4(x) = max fi(x) i = 1, . . . , 5

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2 + 10x65 + 7x26 + x47

− 4x6x7 − 10x6 − 8x7,

f2(x) = f1(x)+ 10(2x21 + 3x42 + x3 + 4x24 + 5x5 − 127),

f3(x) = f1(x)+ 10(7x1 + 3x2 + 10x23 + x4 − x5 − 282),

f4(x) = f1(x)+ 10(23x1 + x22 + 6x26 − 8x7 − 196),

f5(x) = f1(x)+ 10(4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7

Problem 5 (Schwefel 1995) FM5(x) = max fi(x), i = 1, 2,

f1(x) = |x1 + 2x2 − 7|,

f2(x) = |2x1 + x2 − 5|

Problem 6 (Schwefel 1995) FM6(x) = max fi(x),

fi(x) = |xi |, i = 1, . . . , 10

Problem 7 (Lukšan and Vlcek 2000) FM7(x) = max fi(x), i = 1, 2,

f1(x) = (x1 −

√
(x21 + x22)cos

√
x21 + x22)

2 + 0.005(x21 + x22)
2,

f2(x) = (x2 −

√
(x21 + x22)sin

√
x21 + x22)

2 + 0.005(x21 + x22)
2

Problem 8 (Lukšan and Vlcek 2000) FM8(x) = max fi(x), i = 1, . . . , 4,

f1(x) = (x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2 + 2x23 + x24

− 5(x1 − (x4 + 1)4)− 5(x2 − (x1− (x4 + 1)4)4)− 21x3 + 7x4,

f2(x) = f1(x)+ 10[(x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2 + x23 + x24

+ (x1 − (x4 + 1)4)− (x2 − (x1 − (x4 + 1)4)4)+ x3 − x4 − 8],

f3(x) = f1(x)+ 10[(x1 − (x4 + 1)4)2 + 2(x2 − (x1 − (x4 + 1)4)4)2

+ x23 + 2x24 − (x1 − (x4 + 1)4)− x4 − 10]

f4(x) = f1(x)+ 10[(x1 − (x4 + 1)4)2 + (x2 − (x1 − (x4 + 1)4)4)2

+ x23 + 2(x1 − (x4 + 1)4)− (x2 − (x1 − (x4 + 1)4)4)− x4 − 5]

Problem 9 (Lukšan and Vlcek 2000) FM9(x) = max fi(x), i = 1, . . . , 5,

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2

+ 10x65 + 7x26 + x47 − 4x6x7 − 10x6 − 8x7,

f2(x) = −2x21 − 2x43 − x3 − 4x24 − 5x5 + 127,

f3(x) = −7x1 − 3x2 − 10x23 − x4 + x5 + 282,

f4(x) = −23x1 − x22 − 6x26 + 8x7 + 196,

f5(x) = −4x21 − x22 + 3x1x2 − 2x23 − 5x6 + 11x7

Problem 10 (Lukšan and Vlcek 2000) FM10(x) = max |fi(x)|, i = 1, . . . , 21,

fi(x) = x1exp(x3ti)+ x2exp(x4ti)−
1

1+ti
,

ti = −0.5+ i−1
20

Page 17 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

HCSNM and other meta‑heuristics and swarm intelligence algorithms for minmax problems

Also we compare the proposed HCSNM algorithm against the same meta-heuristics and
swarm intelligence algorithms (SI) which described in “HCSNM and other meta-heu-
ristics and swarm intelligence algorithms for integer programming problems” for inte-
ger problems. The average (Avg) and SD of all algorithms are reported over 100 runs as
shown in Table 13.

The results in Table 13 shows that the proposed HCSNM algorithm is outperform the
other met-heuristics and swarm intelligence algorithm

HCSNM and SQP method

Another test for our proposed algorithm, we compare the HCSNM with another known
method which is called sequential quadratic programming method (SQP) (Boggs and
Tolle 1995; Fletcher 2013; Gill et al. 1981; Wilson et al. 1963).

We test the results of the two comparative algorithms on ten benchmark functions,
take the results of the SQP algorithm from paper (Laskari et al. 2002) and report the
results. In Table 14, we report the average (Avg), SD and success rate (%Suc) over 30
runs. The run is considered successful if the algorithm reaches the global minimum of
the solution within an error of 10−4 before the 20,000 function evaluation value. The

Table 10  Minimax test functions properties

Function Dimension (d) Desired error goal

FM1 2 1.95222245

FM2 2 2

FM3 4 −40.1

FM4 7 247

FM5 2 10−4

FM6 10 10−4

FM7 2 10−4

FM8 4 −40.1

FM9 7 680

FM10 4 0.1

Table 11  The efficiency of invoking the Nelder–Mead method in the final stage of HCSNM
for FM1 − FM10 minimax problems

Function Standard CS NM method HCSNM

FM1 5375.25 1280.35 705.62

FM2 6150.34 1286.47 624.24

FM3 3745.14 1437.24 906.28

FM4 11,455.17 19,147.15 3162.92

FM5 5845.14 1373.15 670.22

FM6 7895.14 18,245.48 4442.76

FM7 11,915.24 1936.12 1103.86

FM8 20,000 2852.15 2629.36

FM9 14,754.14 19,556.14 2724.78

FM10 6765.24 1815.26 977.56

Page 18 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

results in Table 14, show that the proposed HCSNM algorithm outperforms the SQP
algorithm in seven of ten functions, while the results of SQP algorithm are better than
our proposed algorithm for functions FM3, FM5 and FM6. We can conclude from this
comparison that the proposed HCSNM outperforms the SQP algorithm in most cases of
tested minimax problems.

Table 12  Evaluation function for the minimax problems FM1 − FM10

Italic values indicate the best values

Algorithm Problem Avg SD %Suc

HPS2 FM1 1848.7 2619.4 99

FM2 635.8 114.3 94

FM3 141.2 28.4 37

FM4 8948.4 5365.4 7

FM5 772.0 60.8 100

FM6 1809.1 2750.3 94

FM7 4114.7 1150.2 100

FM8 – – –

FM9 283.0 123.9 64

FM10 324.1 173.1 100

UPSOm FM1 1993.8 853.7 100

FM2 1775.6 241.9 100

FM3 1670.4 530.6 100

FM4 12,801.5 5072.1 100

FM5 1701.6 184.9 100

FM6 18,294.5 2389.4 100

FM7 3435.5 1487.6 100

FM8 6618.50 2597.54 100

FM9 2128.5 597.4 100

FM10 3332.5 1775.4 100

RWMPSOg FM1 2415.3 1244.2 100

FM2 – – –

FM3 3991.3 2545.2 100

FM4 7021.3 1241.4 100

FM5 2947.8 257.0 100

FM6 18,520.1 776.9 100

FM7 1308.8 505.5 100

FM8 – – –

FM9 – – –

FM10 4404.0 3308.9 100

HCSNM FM1 705.62 14.721 100

FM2 624.24 20.83 100

FM3 906.28 98.24 100

FM4 3162.92 218.29 90

FM5 670.22 11.07 100

FM6 4442.76 87.159 95

FM7 1103.86 125.36 95

FM8 2629.336 84.80 75

FM9 2724.78 227.24 95

FM10 977.56 176.82 100

Page 19 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

Conclusion and future work
In this paper, a new hybrid cuckoo search algorithm with NM method is proposed in
order to solve integer programming and minimax problems. The proposed algorithm is
called hybrid cuckoo search and Nelder–Mead algorithm (HCSNM). The NM algorithm
helps the proposed algorithm to overcome the slow convergence of the standard by
refining the best obtained solution from the cuckoo search instead of keeping the algo-
rithm running with more iterations without any improvements (or slow improvements)
in the results. In order to verify the robustness and the effectiveness of the proposed
algorithm, HCSNM has been applied on seven integer programming and ten minimax
problems. The experimental results show that the proposed algorithm is a promising
algorithm and has a powerful ability to solve integer programming and minimax prob-
lems faster than other algorithms in most cases.

In the future work, we will focus on the following directions:

Table 13  HCSNM and other meta-heuristics algorithms for FM1 − FM10 minmax problems

Function GA PSO FF GWO HCSNM

FM1

 Avg 1080.45 3535.46 1125.61 2940.2 275.45

 SD 83.11 491.66 189.56 490.22 6.40

FM2

 Avg 1120.15 20,000 785.17 3740.14 260.53

 SD 65.14 0.00 31.94 712.19 21.60

FM3

 Avg 1270.65 2920.15 695.54 1120.25 262.15

 SD 95.26 269.48 50.03 417.04 15.68

FM4

 Avg 2220.45 9155.35 1788.26 4940.35 1704.28

 SD 488.45 649.12 118.09 313.60 36.63

FM5

 Avg 1040.84 5680.17 582.52 3520.45 265.54

 SD 55.89 937.44 86.77 946.36 12.01

FM6

 Avg 20,000 20,000 13,692.13 2080.35 1658.23

 SD 0.00 0.00 900.12 938.33 201.92

FM7

 Avg 1120.25 5643.65 2685.25 1020.45 177.23

 SD 65.89 4.3.22 610.07 219.90 12.72

FM8

 Avg 1280.35 20,000 7659.45 1620.46 1555.47

 SD 78.23 0.00 583.21 281.25 59.97

FM9

 Avg 20,000 6220.25 8147.45 3760.54 2732.15

 SD 0.00 727.44 1026.22 246.52 66.84

FM10

 Avg 1080.65 6680.19 748.17 1630.4 489.17

 SD 68.15 509.34 98.59 37.36 27.29

Page 20 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

• • Apply the proposed algorithms on solving constrained optimization and engineering
problems.

• • Modify our proposed algorithm to solve other combinatorial problems, large scale
integer programming and minimax problems.

Authors’ contributions
This work was carried out in collaboration among the authors. AFA is a postdoctoral fellow for the MAT. Both authors
read and approved the final manuscript

Author details
1 Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt.
2 Department of Mathematics and Statistics, Faculty of Science, Thompson Rivers University, 900 McGill Road, Kamloop,
BC V2C 0C8, Canada. 3 Department of Mathematics and Computer Science, Faculty of Science, Alexandria University,
Moharam Bey, Alexandria 21511, Egypt.

Acknowledgements
The research of the MAT is supported in part by the Natural Sciences and Engineering Research Council of Canada
(NSERC). The postdoctoral fellowship of the AFA is supported by NSERC.

Competing interests
Both authors declare that they have no competing interests.

Received: 21 August 2015 Accepted: 28 March 2016

References
Bacanin N, Tuba M (2012) Artificial bee colony (ABC) algorithm for constrained optimization improved with genetic

operators. Stud Inform Control 21(2):137–146
Bandler JW, Charalambous C (1974) Nonlinear programming using minimax techniques. J Optim Theory Appl

13(6):607–619
Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numer 4:1–51

Table 14  Experimental results (mean, standard deviation and rate of success) of function
evaluation between SQP and HCSNM for FM1 − FM10 test problems

Italic values indicate the best values

Function Algorithm Mean SD Suc

FM1 SQP 4044.5 8116.6 24

HCSNM 704 11.84 30

FM2 SQP 8035.7 9939.9 18

HCSNM 727.53 22.07 30

FM3 SQP 135.5 21.1 30

HCSNM 913.43 92.11 30

FM4 SQP 20,000 0.0 0.0

HCSNM 3112.46 211.47 27

FM5 SQP 140.6 38.5 30

HCSNM 669.23 12.42 30

FM6 SQP 611.6 200.6 30

HCSNM 4451.9 89.87 26

FM7 SQP 15,684.0 7302.0 10

HCSNM 1025.46 8.55 24

FM8 SQP 20,000 0.0 0.0

HCSNM 2629.93 91.58 22

FM9 SQP 20,000 0.0 0.0

HCSNM 2720.4 222.77 24

FM10 SQP 4886.5 8488.4 22

HCSNM 978.13 183.49 30

Page 21 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

Borchers B, Mitchell JE (1991) Using an interior point method in a branch and bound algorithm for integer programming.
Technical Report No. 195, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA

Borchers B, Mitchell JE (1994) An improved branch and bound algorithm for mixed integer nonlinear programs. Comput
Oper Res 21(4):359–367

Brown CT, Liebovitch LS, Glendon R (2007) Lévy flights in Dobe Ju/hoansi foraging patterns. Hum Ecol 35(1):129–138
Chang JY, Liao SH, Wu SL, Lin CT (2015) A hybrid of cuckoo search and simplex method for fuzzy neural network training.

In: IEEE 12th international conference on networking, sensing and control (ICNSC). IEEE, pp 13–16
Chen DS, Batson RG, Dang Y (2010) Applied integer programming: modeling and solution. Wiley, Hoboken
Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: PRICAI 2006: trends in artificial intelligence. Springer, Berlin, pp

854–858
Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy
Du DZ, Pardalos PM (eds) (2013) Minimax and applications, vol 4. Springer, Berlin
Fletcher R (2013) Practical methods of optimization. Wiley, Hoboken
Gandomi A, Yang X, Alavi A (2013) Cuckoo search algorithm: a meta-heuristic approach to structural optimization prob-

lem. Eng Comput 29:17–35
Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul

17(12):4831–4845
Garg H (2014) Solving structural engineering design optimization problems using an artificial bee colony algorithm. J Ind

Manag Optim 10(3):777–794
Garg H (2015a) A hybrid GA-GSA algorithm for optimizing the performance of an industrial system by utilizing uncertain

data. In: Vasant P (ed) Handbook of research on artificial intelligence techniques and algorithms, chap 20. IGI Global,
pp 625–659. doi:10.4018/978-1-4666-7258-1.ch020

Garg H (2015b) An efficient biogeography based optimization algorithm for solving reliability optimization problems.
Swarm Evolut Comput 24:1–10

Garg H (2015c) Multi-objective optimization problem of system reliability under intuitionistic fuzzy set environment
using Cuckoo Search algorithm. J Intell Fuzzy Syst 29(4):1653–1669

Garg H (2015d) An approach for solving constrained reliability-redundancy allocation problems using cuckoo search
algorithm. Beni-Suef Univ J Basic Appl Sci 4(1):14–25

Garg H, Sharma SP (2013) Multi-objective reliability-redundancy allocation problem using particle swarm optimization.
Comput Ind Eng 64(1):247–255

Garg H, Rani M, Sharma SP (2013) Predicting uncertain behavior of press unit in a paper industry using artificial bee
colony and fuzzy Lambda Tau methodology. Appl Soft Comput 13(4):1869–1881

Garg H, Rani M, Sharma SP (2014) An approach for analyzing the reliability of industrial systems using soft-computing
based technique. Expert Syst Appl 41(2):489–501

Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Publisher, London
GlankwahmdeeL A, Liebman JS, Hogg GL (1979) Unconstrained discrete nonlinear programming. Eng Optim 4(2):95–107
Hoffman KL, Padberg M (1993) Solving airline crew scheduling problems by branch-and-cut. Manag Sci 39(6):657–682
Holland JH (1975) Adaption in natural and artificial systems. The University of Michigan Press, Ann Arbor
Jovanovic R, Kais S, Alharbi FH (2014) Cuckoo search inspired hybridization of the Nelder–Mead simplex algorithm

applied to optimization of photovoltaic cells. arXiv preprint arXiv:1411.0217
Jovanovic R, Tuba M (2011) An ant colony optimization algorithm with improved pheromone correction strategy for the

minimum weight vertex cover problem. Appl Soft Comput 11(8):5360–5366
Jovanovic R, Tuba M (2013) Ant colony optimization algorithm with pheromone correction strategy for the minimum

connected dominating set problem. Comput Sci Inf Syst 10(1):133–149
Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony

(ABC) algorithm. J Glob Optim 39(3):459–471
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, vol 4.

IEEE, pp 1942–1948
Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. In: WCCI. IEEE, pp

1582–1587
Lawler EL, Wood DE (1966) Branch-and-bound methods: a survey. Oper Res 14(4):699–719
Li XL, Shao ZJ, Qian JX (2002) An optimizing method based on autonomous animats: fish-swarm algorithm. Syst Eng

Theory Pract 22(11):32–38
Little JD, Murty KG, Sweeney DW, Karel C (1963) An algorithm for the traveling salesman problem. Oper Res

11(6):972–989
Liuzzi G, Lucidi S, Sciandrone M (2006) A derivative-free algorithm for linearly constrained finite minimax problems. SIAM

J Optim 16(4):1054–1075
Lukšan L, Vlcek J (2000) Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical

report 798, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague
Manquinho VM, Silva JPM, Oliveira AL, Sakallah KA (1997) Branch and bound algorithms for highly constrained integer

programs. Technical Report, Cadence European Laboratories, Portugal
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
Mitra G (1973) Investigation of some branch and bound strategies for the solution of mixed integer linear programs.

Math Program 4(1):155–170
Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313
Nemhauser GL, Rinnooy Kan AHG, Todd MJ (1989) Handbooks in OR & MS, vol 1. Elsevier, Amsterdam
Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm optimization for tackling operations research problems. In:

Proceedings of the IEEE swarm intelligence symposium (SIS 2005). IEEE, pp 53–59
Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22(3):52–67
Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226(2):1830–1844
Payne RB, Karen Klitz K (2005) The Cuckoos (Bird families of the world). Oxford University Press, New York

http://dx.doi.org/10.4018/978-1-4666-7258-1.ch020
http://arxiv.org/abs/1411.0217

Page 22 of 22Ali and Tawhid ﻿SpringerPlus (2016) 5:473

Petalas YG, Parsopoulos KE, Vrahatis MN (2007) Memetic particle swarm optimization. Ann Oper Res 156(1):99–127
Polak E (ed) (2012) Optimization: algorithms and consistent approximations, vol 124. Springer, Berlin
Polak E, Royset JO, Womersley RS (2003) Algorithms with adaptive smoothing for finite minimax problems. J Optim

Theory Appl 119(3):459–484
Rao SS (1994) Engineering optimization—theory and practice. Wiley, New Delhi
Reynolds AM, Frye MA (2007) Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free

search. PLoS One 2(4):e354–e354
Rudolph G (1994) An evolutionary algorithm for integer programming. In: Davidor Y, Schwefel H-P, Männer R (eds) Parallel

Problem Solving from Nature—PPSN III. Springer, Berlin, pp 139–148
Santo IACPE, Fernandes EMGP (2011) Heuristic pattern search for bound constrained minimax problems. In: Murgante B,

Gervasi O, Iglesias A, Taniar D, Apduhan BO (eds) Computational science and its applications—ICCSA 2011. Springer,
Berlin, pp 174–184

Schwefel H-P (1995) Evolution and optimum seeking. Sixth-generation computer technology series. Wiley, New York‏, pp
325–366

Singh GP, Abhay Singh A (2014) Comparative study of Krill Herd, firefly and cuckoo search algorithms for unimodal and
multimodal optimization. Int J Intell Syst Appl 03:35–49

Tang R, Fong S, Yang XS, Deb S (2012) Wolf search algorithm with ephemeral memory. In: Seventh international confer-
ence on digital information management (ICDIM). IEEE, pp 165–172

Teodorovic D, DellOrco M (2005) Bee colony optimizationa cooperative learning approach to complex transportation
problems. In: Advanced OR and AI methods in transportation: Proceedings of the 16th MiniEURO conference and
10th meeting of EWGT, 13–16 September. Publishing House of the Polish Operational and System Research, Poznan,
pp 51–60

Tuba M, Subotic M, Stanarevic N (2011) Modified cuckoo search algorithm for unconstrained optimization problems. In:
Proceedings of the 5th European conference on European computing conference. World Scientific and Engineering
Academy and Society (WSEAS), pp 263–268

Tuba M, Bacanin N, Stanarevic N (2012) Adjusted artificial bee colony (ABC) algorithm for engineering problems. WSEAS
Trans Comput 11(4):111–120

Wilson RB (1963) A simplicial algorithm for concave programming. Doctoral dissertation, Graduate School of Business
Administration, George F. Baker Foundation, Harvard University

Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature & biologically inspired computing
(NaBIC 2009). IEEE, pp 210–214

Yang XS (2010a) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization
(NICSO 2010). Springer, Berlin, pp 65–74

Yang XS (2010b) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84
Yang XS, Deb S (2013) Multi-objective cuckoo search for design optimization. Comput Oper Res 40:1616–1624
Yang B, Chen Y, Zhao Z (2007) A hybrid evolutionary algorithm by combination of PSO and GA for unconstrained and

constrained optimization problems. In: IEEE international conference on control and automation (ICCA 2007). IEEE,
pp 166–170

Zuhe S, Neumaier A, Eiermann MC (1990) Solving minimax problems by interval methods. BIT Numer Math
30(4):742–751

	A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems
	Abstract
	Background
	Definition of the problems and an overview of the applied algorithms
	The integer programming problem definition
	Minimax problem definition
	Nelder Mead method

	Overview of cuckoo search algorithm
	Main concepts
	Lvy flights
	Cuckoo search characteristic
	Cuckoo search algorithm

	The proposed HCSNM algorithm
	Numerical experiments
	Parameter setting
	Integer programming optimization test problems
	The efficiency of the proposed HCSNM algorithm with integer programming problems
	The general performance of the HCSNM algorithm with integer programming problems
	HCSNM and other algorithms
	Comparison between RWMPSOg, RWMPSOl, PSOg, PSOl and HCSNM for integer programming problems
	HCSNM and other meta-heuristics and swarm intelligence algorithms for integer programming problems

	HCSNM and the branch and bound method
	Comparison between the BB method and HCSNM for integer programming problems

	Minimax optimization test problems
	The efficiency of the proposed HCSNM algorithm with minimax problems
	HCSNM and other algorithms
	Comparison between HPS2, UPSOm, RWMPSOg and HCSNM for minimax problems
	HCSNM and other meta-heuristics and swarm intelligence algorithms for minmax problems
	HCSNM and SQP method

	Conclusion and future work
	Authors’ contributions
	References

