
Recent Progress

in the Boolean Domain

Edited by Bernd Steinbach

September 25, 2013

Contents v

Contents

List of Figures . x

List of Tables. xiv

Preface . xvii

Foreword . xxiii

Introduction . xxvii

I Exceptionally Complex Boolean Problems 1

1 Boolean Rectangle Problem . 3
1.1 The Problem to Solve and its Properties 3

1.1.1 Motivation and Selection of the Problem 3
1.1.2 The Problem in Context of Graph Theory . . . 5
1.1.3 Rectangle-free Grids 9
1.1.4 Estimation of the Complexity 12

1.2 Search Space Restriction 14
1.2.1 Basic Approach: Complete Evaluation 14
1.2.2 Utilization of Rule Con�icts 20
1.2.3 Evaluation of Ordered Subspaces 24
1.2.4 Restricted Evaluation of Ordered Subspaces . . 26
1.2.5 Analysis of the Suggested Approaches 28

1.3 The Slot Principle . 31
1.3.1 Utilization of Row and Column Permutations . 31
1.3.2 The Head of Maximal Grids 34
1.3.3 The Body of Maximal Grids 38
1.3.4 Experimental Results 47

vi Contents

1.4 Restricted Enumeration 51
1.4.1 The Over�ow Principle 51
1.4.2 Strategies for Improvements 57
1.4.3 Applying Heuristics 58
1.4.4 Experimental Results 60

1.5 Permutation Classes 63
1.5.1 Potential of Improvements and Obstacles . . . 63
1.5.2 Sequential Evaluation of Permutation Classes . 65
1.5.3 Iterative Greedy Approach 66
1.5.4 Unique Representative of a Permutation Class 69
1.5.5 Direct Mapping to Representatives 73
1.5.6 Soft-Computing Results 82

2 Four-Colored Rectangle-Free Grids. 87
2.1 The Problem to Solve and its Complexity 87

2.1.1 Extension of the Application Domain 87
2.1.2 The Multiple-valued Problem 88
2.1.3 Multiple-valued Model 93
2.1.4 Boolean Model 94
2.1.5 Estimation of the Complexity 95

2.2 Basic Approaches and Results 98
2.2.1 Solving Boolean Equations 98
2.2.2 Utilization of Permutations 99
2.2.3 Exchange of Space and Time 101

2.3 Power and Limits of SAT-Solvers 105
2.3.1 Direct Solutions for Four-colored Grids 105
2.3.2 Restriction to a Single Color 106

2.4 Cyclic Color Assignments of Four-Colored Grids . . . 110
2.4.1 Sequential Assignment of a Single Color 110
2.4.2 Reusable Assignment for Four Colors 112

2.5 Four-Colored Rectangle-Free Grids of the Size 12× 21 121
2.5.1 Basic Consideration 121
2.5.2 Grid Heads of all Four Colors 127
2.5.3 Model Extension for a SAT-solver 137
2.5.4 Classes of Rectangle-free Grids G12,21 139

3 Theoretical and Practical Concepts 145
3.1 Perceptions in Learning Boolean Concepts 145

3.1.1 Boolean Concept Learning 145
3.1.2 Complexity of Boolean Concepts 148

Contents vii

3.1.3 Studying the Human Concept Learning 150
3.1.4 New Methodology for Human Learning 152
3.1.5 Research Methodology 157

3.2 Generalized Complexity of ALC Subsumption 158
3.2.1 Preliminaries 159
3.2.2 Interreducibilities 163
3.2.3 Main Results 165
3.2.4 Discussion of the Very Di�cult Problem 169

3.3 Using a Recon�gurable Computer 171
3.3.1 Why do we Need Algebraic Immunity? 171
3.3.2 Why do we Need a Recon�gurable Computer? 174
3.3.3 Background and Notation 175
3.3.4 Computation of Algebraic Immunity 178
3.3.5 Results and Comments 182

II Digital Circuits 187

4 Design . 189
4.1 Low-Power CMOS Design 189

4.1.1 Power Dissipation 189
4.1.2 Power Consumption Models 191
4.1.3 Power Optimization 199
4.1.4 Low-Power Design Application 206
4.1.5 How Low Can Power Go? 211

4.2 Permuting Variables to Improve Iterative Re-Synthesis 213
4.2.1 Iterative Logic Synthesis 213
4.2.2 Randomness in Logic Synthesis 214
4.2.3 The In�uence of the Source File Structure . . . 215
4.2.4 The Proposed Method 220
4.2.5 Experimental Results 223
4.2.6 Convergence Analysis 228
4.2.7 Advantages of Re-Synthesis with Permutations 228

4.3 Beads and Shapes of Decision Diagrams 231
4.3.1 Three Concepts 231
4.3.2 Beads, Functions, and Decision Diagrams . . . 232
4.3.3 Beads and Decision Diagrams 235
4.3.4 Word-level Decision Diagrams 240
4.3.5 Beads and Classi�cation in Terms of WDDs . . 242
4.3.6 Approaches for Classi�cation 246

viii Contents

4.4 Polynomial Expansion of Symmetric Functions 247
4.4.1 Polynomials of Boolean Functions 247
4.4.2 Main De�nitions 248
4.4.3 Transeunt Triangle Method 250
4.4.4 Matrix Method to Generate γ(F) and µ(F) . . 255
4.4.5 E�ciency of the Matrix Method 262

4.5 Weighted Don't Cares 263
4.5.1 Don't Care Conditions in Logic Synthesis . . . 263
4.5.2 Weighted Don't Cares 264
4.5.3 Application . 266
4.5.4 Weighted BOOM: a Synthesis Tool 269
4.5.5 Experimental Results 273
4.5.6 Solutions Count Analysis 275
4.5.7 Future Applications 277

4.6 Assignments of Incompletely Speci�ed Functions . . . 278
4.6.1 Incompletely Speci�ed Boolean Functions . . . 278
4.6.2 Decision Diagrams for ISFs 279
4.6.3 Assignment of Unspeci�ed Values 282
4.6.4 Implementation and Experimental Results . . . 285

4.7 On State Machine Decomposition of Petri Nets 288
4.7.1 Petri Nets as Model of Concurrent Controllers 288
4.7.2 Petri Nets: Main De�nitions 289
4.7.3 Conditions of SM-coverability of Petri Nets . . 291
4.7.4 Calculation of SM-decompositions of Petri Nets 297
4.7.5 Evaluation of the Results 300

5 Test . 303
5.1 Fault Diagnosis with Structurally Synthesized BDDs . 303

5.1.1 From Functional BDDs to Structural BDDs . . 303
5.1.2 Structurally Synthesized BDDs 306
5.1.3 Fault Diagnosis in the Case of Multiple Faults 312
5.1.4 Fault Masking in Digital Circuits 317
5.1.5 Topological View on Fault Masking 321
5.1.6 Test Groups and Hierarchical Fault Diagnosis . 327
5.1.7 Experimental Data 329
5.1.8 General Comments About Proposed Methods . 330

5.2 Blind Testing of Polynomials by Linear Checks 332
5.2.1 Functional Testing by Linear Checks 332
5.2.2 Walsh Spectrum of Polynomials 335
5.2.3 Spectral Testing of a Polynomial 337

Contents ix

5.2.4 Universal Linear Checks 340
5.2.5 Complexity of Universal Linear Checks 343

III Towards Future Technologies 347

6 Reversible and Quantum Circuits . 349
6.1 The Computational Power of the Square Root of NOT . 349

6.1.1 Reversible Computing ⇔ Quantum Computing 349
6.1.2 One-qubit Circuits 350
6.1.3 Two-qubits Circuits 350
6.1.4 Many-qubits Circuits 357
6.1.5 Increased Computational Power 358

6.2 To�oli Gates with Multiple Mixed Control Signals . . 359
6.2.1 Evolution of To�oli Gates Until Present Days . 359
6.2.2 To�oli Gates with 3 Mixed Control Signals . . 361
6.2.3 To�oli Gates with n > 3 Mixed Control Inputs 365

6.3 Reducing Quantum Cost of Pairs of To�oli Gates . . . 369
6.3.1 Reversible Circuits Synthesis 369
6.3.2 Background . 370
6.3.3 NCVW Quantum Circuits 372
6.3.4 Optimal Circuit Synthesis 374
6.3.5 Experimental Results and Applications 375

Bibliography . 381

List of Authors . 413

Index of Authors . 419

Index . 421

x List of Figures

List of Figures

1.1 Two bipartite graphs 8
1.2 Grids of two bipartite graphs 10
1.3 Number of grid patterns ngp and all included rectangles

for quadratic grids . 13
1.4 Creating slots within a grid G4,5 33
1.5 Sequence of all maximal grid heads of G4,4 38
1.6 Enumeration of the body rows in the grid G6,8 42
1.7 Maximal rectangle-free grids G2,2 to G10,10 and G8,25 50
1.8 Paths of patterns taken by the Over�ow Algorithm . . 53
1.9 Absolute error ∆(p,m, n) 56
1.10 Relative runtime improvement 56
1.11 Rectangle-free incrementing ai+1 with respect to ai . . 57
1.12 Recipes for creating higher bit patterns 58
1.13 Last obtained optimum for G9,8 and G9,9 59
1.14 Con�gurations of �rst three rows 59
1.15 Maximal assignments of the value 1 to the grid G2,2 . 68
1.16 Decimal equivalent of a grid pattern 69
1.17 Maximal representatives of G2,2, G3,3, and G4,4 71
1.18 Maximal representatives of G5,5 71
1.19 Maximal representative of G6,6 71
1.20 Mapping of grid patterns onto a representative con-

trolled by checksums 74
1.21 Mapping of G6,6 ordered by unique intervals of rows . 75
1.22 Mapping of G6,6 ordered by unique intervals of rows

and columns . 76
1.23 De�nition of a new row interval of G6,6 77
1.24 De�nition of a new column interval of G6,6 78
1.25 Mapping of two grid patterns G6,6 of the same permu-

tation class onto the unique representative 79

List of Figures xi

2.1 Edge colorings of two complete bipartite graphs G1
3,4

and G2
3,4 using four colors 90

2.2 Selected four-colored grids G2,2 100
2.3 Four-colored rectangle-free grid G15,15 107
2.4 Rectangle-free grid G18,18 where one fourth of all posi-

tions is colored with a single color 111
2.5 Cyclic quadruples in the grid G4,4 112
2.6 Cyclic reusable single color solution of the grid G18,18 115
2.7 Cyclic reusable coloring of grid G18,18 116
2.8 Cyclic four-colored rectangle-free grid G18,18 117
2.9 Cyclic quadruples in the grid G5,5 119
2.10 Assignment of color 1 tokens to the grid G12,6 122
2.11 Grid G12,3 of disjoint assignments of color 1 tokens to

four rows in three columns 123
2.12 Assignment of 3 color 1 tokens to the body of the grid

G12,19 using the Latin square 1 125
2.13 All four reduced Latin squares 0, . . . , 3 of the size 4× 4 126
2.14 Rectangle-free grid G12,21 that contains 63 tokens of

one color . 127
2.15 Rectangle-free grid G12,6 that merges the heads of two

colors . 128
2.16 Steps to construct a rectangle-free grid head G12,6 of

all four colors . 129
2.17 Alternative assignments to construct a rectangle-free

grid G12,6 that merges the heads of all four colors . . . 131
2.18 Alternative assignments of color 1 tokens and consecu-

tive tokens of the 3 other colors to the grid G12,6 . . . 134
2.19 Rectangle-free grid G12,6 of all four colors 137
2.20 Four-colored rectangle-free grids G12,21 140
2.21 Number of permutation classes of grids G12,21 for the

grid head of Figure 2.19 (b) 142
2.22 Number of permutation classes of grids G12,21 for the

grid head of Figure 2.19 (c) 143

3.1 Post's lattice showing the complexity 160

4.1 NMOS transistor with terminal labels, voltages, and
currents . 191

4.2 CMOS inverter . 193
4.3 Power consumption waveforms 199

xii List of Figures

4.4 Architectural voltage scaling 200
4.5 Logic circuit with two paths 203
4.6 Bus-invert coding . 205
4.7 Switching activity dependence on architecture 210
4.8 Distribution of solutions 219
4.9 The iterative re-synthesis 223
4.10 The iterative re-synthesis with random permutations . 223
4.11 Area improvements . 225
4.12 Delay improvements 226
4.13 Convergence curves for the circuits alu4 and apex2 . . 229
4.14 BDDs for functions f1 and f2 in Example 4.7 234
4.15 BDDs for functions fAND, fOR, fEXOR and fe 237
4.16 BDDs for functions f1, f2, and f3 239
4.17 MTBDDs for functions f1, f2, f3, and f4 241
4.18 Binary matrix T10(π(F)) with π(F) = (00011110000) . 254
4.19 Matrices D2 and D4 256
4.20 Binary matrix T10(π(F)) with π(F) = (00110000100) . 261
4.21 The Boolean function f of the running example 268
4.22 The implicant generation progress in BOOM 270
4.23 Distribution of di�erent implicants 277
4.24 BDD∗ to explain the proposed method 280
4.25 Examples of compatible subdiagrams 281
4.26 Examples of conversions of subdiagrams 282
4.27 A very simple Petri net 291
4.28 A Petri net and its concurrency graph 291
4.29 A Petri net and SM-components covering it 292
4.30 A Petri net and its concurrency graph 293
4.31 A Petri net and its concurrency graph 294
4.32 A Petri net, its concurrency graph and SM-components

covering the net . 295

5.1 Combinational circuit 307
5.2 Structurally Synthesized BDD for a circuit 308
5.3 Topological view on testing of nodes on the SSBDD . 311
5.4 Combinational circuit 314
5.5 SSBDDs for diagnostic the experiment D(T1, T2) . . . 317
5.6 Four faults masking each other in a cycle 318
5.7 Breaking the fault masking cycle 320
5.8 Topological view: test pair � test group 324
5.9 Topological view on the fault masking mechanism . . . 326

List of Figures xiii

5.10 Hierarchical fault diagnosis 327
5.11 The architecture of a WbAH system 334

6.1 Number gS(n) of di�erent circuits built by a cascade of
building blocks . 354

6.2 Number gpS(n) of di�erent circuits, built by a cascade
of n or less building blocks 355

6.3 The Lie group U(4) . 357
6.4 Unitary matrix, symbol, and quantum realization of

the To�oli gate . 360
6.5 To�oli gates with one negated control input 360
6.6 OR-type To�oli gate 361
6.7 Analysis of the �rst element of W and W−1 362
6.8 Abstract representation of a conjunction of three con-

trol variables . 363
6.9 Extended To�oli circuit with 4 mixed control units and

without ancillary lines 366
6.10 NCV quantum circuit for 3×3 Peres gate 370
6.11 Graphical symbols for NCVW gates 372
6.12 Bloch sphere of quantum states and operations de�ned

by N, V/V+ and W/W+ matrices 373
6.13 Identity circuit whose right and left subcircuits are in-

verse of each other . 375
6.14 Reversible 4×4 circuits mapped to optimal NCVW quan-

tum circuits . 377
6.15 Optimal 5×5 NCV quantum circuits 378
6.16 Best NCVW and NCV quantum circuits for the pair of 4-bit

and 3-bit MCT gates . 379
6.17 Realization with reduced quantum cost of a To�oli gate

with 8 control signals 380

xiv List of Tables

List of Tables

1.1 maxrf(m,n) calculated by complete evaluation 18
1.2 Recursive generation of all grids G5,5 23
1.3 Iterative generation of grids G5,5 and G6,6 25
1.4 Restricted iterative generation of grids G6,6 and G7,7 . 29
1.5 Maximal numbers of values 1 in grids Gm,n 30
1.6 Grid heads of all quadratic grids 39
1.7 Early break of the recursion in Algorithm 1.7 45
1.8 maxrf(m,n) utilizing the slot principle 48
1.9 maxrf(m,n) of grids Gm,n calculated by Algorithms

1.5, 1.6, 1.7, and 1.8 49
1.10 Number of assignments modulo permutations 51
1.11 Time estimation to compute maxrf(m,n) 52
1.12 Number of solutions and runtime 60
1.13 Comparison of relative runtime for the grid G10,10 . . 61
1.14 Runtime by utilizing z(m,n) for estimation 61
1.15 Maximal number of patterns of permutation classes . . 64
1.16 Iterative greedy approach and direct mapping 83

2.1 Unknown four-colorable rectangle-free grids 92
2.2 Encoding of four colors x by two Boolean variables a

and b . 94
2.3 Solutions of the Boolean equation (2.9) 99
2.4 Selected solutions of the Boolean equation (2.9) 100
2.5 Four-colored rectangle-free grid patterns using Algo-

rithm 2.2 . 104
2.6 Time to solve quadratic four-colored grids using di�er-

ent SAT-solvers . 106
2.7 Knowledge transfer for grids G18,18 118
2.8 Knowledge transfer for grids G17,17 120

List of Tables xv

2.9 Alternative assignments in four-token columns of the
grid head . 133

3.1 All clones and bases relevant for the classi�cation . . . 161
3.2 Functions that annihilate the 3-variable majority func-

tion f and their degree 176
3.3 Functions that annihilate the complement of the 3-

variable majority function 177
3.4 Boolean functions that annihilate the 3-variable major-

ity function . 180
3.5 Comparison of the computation times for enumerating

the AI of n-variable functions 183
3.6 Comparing the brute force method with the row eche-

lon method on 4-variable functions 184
3.7 The number of n-variable functions distributed accord-

ing to algebraic immunity for 2 ≤ n ≤ 6 185
3.8 Frequency and resources used to realize the AI compu-

tation on the SRC-6's Xilinx XC2VP100 FPGA 186

4.1 Taxonomy of sources of power consumption 198
4.2 The in�uence of permutation of variables � permuted

inputs . 218
4.3 The in�uence of permutation of variables � permuted

outputs . 220
4.4 The in�uence of permutation of variables � permuted

inputs & outputs . 221
4.5 The in�uence of permutation of variables and nodes �

commercial tools . 222
4.6 Summary statistics � LUTs 227
4.7 Summary statistics � levels 227
4.8 Sets of beads for functions in Example 4.8 236
4.9 Sets of beads for functions in Example 4.9 237
4.10 Sets of beads for functions in Example 4.10 238
4.11 Sets of integer beads for functions in Example 4.12 . . 241
4.12 LP-representative functions for n = 3 243
4.13 Walsh spectra of LP-representative functions 243
4.14 Sets of integer beads for Wash spectra 244
4.15 Comparison between wBOOM and BOOM 274
4.16 Numbers of solutions 276
4.17 Subfunctions for subdiagrams 281

xvi List of Tables

4.18 Code converters . 286
4.19 Randomly generated functions 286
4.20 Benchmark functions 287
4.21 The results of experiments 301

5.1 5-valued algebra for calculating Boolean di�erentials . 314
5.2 Diagnostic process with 5 passed test patterns 315
5.3 Test patterns for selected faults 318
5.4 Test pairs for testing signal paths 319
5.5 Partial test group which detects all the four faults . . 321
5.6 Full test group for testing an SSBDD path 323
5.7 Diagnostic processes for a circuit 328
5.8 Experimental data of generating test groups 330
5.9 Complexity of BCH based linear checks 345

6.1 Number of circuits built from di�erent generator sets . 353
6.2 Relationship between 3 input control values and acti-

vated/inhibited U -gates 364
6.3 Relationship between 4 input control values and acti-

vated/inhibited U -gates 367
6.4 Eight-value logic for NCVW quantum operations 373
6.5 Database for optimal 4× 4 quantum circuits 376
6.6 Database for optimal 5× 5 quantum circuits 376

Preface

Boolean logic and algebra are cornerstones of computing and other
digital systems, and are thus fundamental to both theory and prac-
tice in Computer Science, Engineering, and many other disciplines.
Understanding and developing Boolean concepts and techniques are
critical in an increasingly digital world. This book presents recent
progress through a variety of contributions by thirty-one authors from
the international Boolean domain research community.

The �rst section of this book addresses exceptionally complex Boolean
problems. The reader may well ask �What is an exceptionally complex
Boolean problem?� The answer is that there are many and they are
diverse. Some are theoretical � some are extremely practical. While
every problem has its own de�ning features, they also have many
aspects in common, most notably the huge computational challenges
they can pose.

The �rst challenge considered is identi�ed as the Boolean Rectangle
Problem. Like many extremely complex Boolean problems, this prob-
lem is easy to state, easy to understand, and easy to tell when you
have a solution. It is �nding a solution that is the challenge.

The discussion of this problem takes the reader through the descrip-
tion of the problem, its analysis, its formulation in the Boolean do-
main and from there on to several solutions. While the discussion
focuses on a particular problem, the reader will gain a very good gen-
eral understanding of how problems of this nature can be addressed
and how they can be cast into the Boolean domain in order to be
solved subsequently by sophisticated and powerful tools such as the
Boolean minimizer used in this instance. The discussion of the prob-
lem continues with a very insightful comparison of exact and heuristic
approaches followed by a study of the role of permutation classes in
solving such problems.

xviii Preface

Building on the above, the discussion continues to show how the
techniques developed in the Boolean domain can be extended to the
multiple-valued domain. The presentation again focuses on a single
problem, Rectangle-free Four-colored Grids, but as before, the pre-
sentation provides broad general insights. The reader is encouraged
to consider which techniques transfer easily from the Boolean to the
multiple-valued domain and where novel ides must be injected. The
discussion is interesting both in terms of how to approach solving the
problem at hand and similar problems, and also as an illustration
of the use of modern SAT-solvers. Satis�ability (SAT) is a central
concept in the theoretical analysis of computation, and it is of great
interest and value to see the application of a SAT-solver as a powerful
tool for solving an extremely complex Boolean problem. The reader
will bene�t greatly from this demonstration of another powerful solu-
tion technique.

The contribution on Perception in Learning Boolean Concepts ap-
proaches the issue of complexity from a very di�erent point of view.
Rather than considering complexity in the mathematical or computa-
tional sense, the work examines complexity, complexity of Boolean
concepts in particular, through a consideration of human concept
learning and understanding. This alternate view provides a very
di�erent insight into the understanding of the Boolean domain and
will aid readers in broadening their conceptual understanding of the
Boolean domain.

The use of logic in computation is a broad area with many diverse ap-
proaches and viewpoints. This is demonstrated in the presentation on
Generalized Complexity of ALC Subsumption. The discussion con-
siders a variety of concepts from a rather theoretical point of view
but also points to the practical implications of those concepts. It also
presents yet another view of an extremely complex Boolean problem
in terms of algorithmic constructions for the subsumption problem.

The �nal presentation on exceptionally complex Boolean problems
considers encryption and cryptanalysis. The discussion is of consider-
able interest due to the obvious practical importance of the problem.
Readers, even those familiar with the-state-of-the-art for encryption
methods, will bene�t from the presentation on the concept of algebraic
immunity and its computation. The approach presented is also of con-

xix

siderable interest in its use of a recon�gurable computer. The reader
should consider this approach as another tool in the computational
toolbox for the Boolean domain.

The second section of this book begins with a discussion of low-power
CMOS design. CMOS is currently the dominant technology for dig-
ital systems and this contribution is of particular signi�cance given
the ever-growing demand for low-power devices. After an overview
of CMOS design, a number of techniques for power reduction are de-
scribed. This discussion ends with the key question, �how low can
power go?� � an interesting query on its own and also a perfect lead
into the discussion of reversibility in the �nal section of the book.

Design and test of digital devices and systems have been longtime a
major motivation for research in the Boolean domain. The combina-
tional logic design contributions in this book treat a variety of topics:
the shape of binary decision diagrams; polynomial expansion of sym-
metric Boolean functions; and the issue of dealing with the don't-care
assignment problem for incompletely speci�ed Boolean functions. The
�nal logic design contribution concerns state machine decomposition
of Petri nets. Individually, these contributions provide insight and
techniques speci�c to the particular problem at hand. Collectively
they show the breadth of issues still open in this area as well as the
connection of theoretical and practical concepts.

Testing is the subject of the next two contributions. The �rst concerns
Boolean fault diagnosis with structurally synthesized BDDs. This con-
tribution shows how binary decision diagrams, which are used in quite
di�erent contexts in earlier parts of the book, can be adapted to ad-
dress a signi�cantly di�erent problem in a unique way. The second
testing contribution considers techniques in built-in self-test. After
reviewing spectral techniques for testing, the discussion centers upon
testing of polynomials by linear checks. The reader will gain an ap-
preciation of the relationship between the spectral and the Boolean
domains and how fairly formal techniques in the �rst domain are ap-
plied to a very practical application in the second.

The �nal section of this book addresses topics concerning the con-
nection between two important emerging technologies: reversible and
quantum logic circuits. A reversible logic circuit is one where there is

xx Preface

a one-to-one correspondence between the input and output patterns,
hence the function performed by the circuit is invertible. A major
motivation for the study of reversible circuits is that they potentially
lead to low power consumption. In addition, the study of reversible
circuits has intensi�ed because of the intrinsic connection of quan-
tum computation to the gate model. The transformations performed
by quantum gates are de�ned by unitary matrices and are thus by
de�nition reversible. Reversible Boolean functions are also central
components of many quantum computation algorithms. This section
of the book provides novel ideas and is also a very good basis for un-
derstanding the challenging problem of synthesizing and optimizing
quantum gate realizations of reversible functions.

The section begins with a detailed study of the computational power
of a gate referred to as the square root of NOT since two such gates in
succession realize the conventional Boolean NOT gate. In addition to
describing the computational power of such gates, this contribution
provides a very good basis for understanding the connections and
di�erences between reversible Boolean gates and quantum operations.

The To�oli gate is a key building block in Boolean reversible circuits.
The second contribution in this section considers the realization of
To�oli gates using controlled-NOT gates and the square root of NOT
as well as the fourth root of NOT gates. The work extends beyond
the conventional To�oli gate to include multiple mixed positive and
negative controls, and alternate control functions. The �nal contri-
bution in this section concerns the quantum realization of pairs of
multi-control To�oli gates. It builds nicely on the work in the two
preceding contributions and provides the reader with valuable insight
and techniques for the optimization of quantum gate realizations par-
ticularly for reversible logic.

I am con�dent that this book will provide novel ideas and concepts
to researchers and students whether or not they are knowledgeable
in modern approaches and recent progress in the Boolean domain. I
am also con�dent that study of the work presented here will lead to
further developments in Boolean problem solving and the application
of such techniques in both theory and practice.

The contributions appearing in this book are extended versions of

xxi

works presented at the International Workshop on Boolean Problems
held at the Technische Universität Bergakademie Freiberg, Germany
on September 19-21, 2012. The 2012 workshop was the tenth in a
series of Boolean ProblemsWorkshops held in Freiberg biennially since
1994. Prof. Bernd Steinbach has organized and hosted the workshop
since its inception. The Boolean research community is indebted to
him for this long-term contribution and for his e�orts in organizing
and editing this book.

D. Michael Miller

Department of Computer Science
University of Victoria
Victoria, British Columbia, Canada

Foreword

This book covers several �elds in theory and practical applications
where Boolean models support there solutions. Boolean variables are
the simplest variables at all, because they have the smallest possible
range of only two di�erent values. In logic applications these values
express the truth values true and false; in technical applications the
values of signals high and low are described by Boolean variables. For
simpli�cation, the numbers 0 and 1 are most commonly used as values
of Boolean variables.

The basic knowledge in the Boolean domain goes back to the En-
glish mathematician, philosopher and logician George Boole as well
the American mathematician, electronic engineer, and cryptographer
Claude Shannon. The initiator of the very strong increase of Boolean
application was Conrad Zuse. He recognized the bene�t of Boolean
values to avoid errors in large technical systems. In this way he was
able to build the �rst computer.

The bene�t of Boolean values is not restricted to computers, but can
be utilized for all kinds of control systems in a wide range of appli-
cations. The invention of the transistor as a very small electronic
switch and the integration of a growing number of transistors on a
single chip together with the strong decrease of the cost per transistor
was the second important factor for both the substitution of existing
systems by electronic ones and the extensive exploitation of new �elds
of applications. This development is forced by a growing community
of scientists and engineers.

As part of this community, I built as electrician control systems for
machine tools, developed programs to solve Boolean equations during
my studies, contributed to test software for computers as graduated
engineer, and taught students as assistant professor for design au-
tomation. In 1992, I got a position as full professor at the Technische

xxiv Foreword

Universität Bergakademie Freiberg. Impressed by both the strong de-
velopment and the challenges in the Boolean domain, I came to the
conclusion that a workshop about Boolean Problems can be a valuable
meeting point for people from all over the world which are working in
di�erent branches of the Boolean domain. Hence, I organized the �rst
workshop in 1994 and encouraged by the attendees I continued the
organization of the biennial series of such International Workshops on
Boolean Problems (IWSBP).

The idea for this book goes back to Carol Koulikourdi, Commissioning
Editor of Cambridge Scholars Publishing. She asked me one month
before the 10th IWSBP whether I would agree to publish this book
based on the proceedings of the workshop. I discussed this idea with
the attendees of the 10th IWSBP and we commonly decided to prepare
this book with extended versions of the best papers of the workshop.
The selection of these papers was done based on the reviews and the
evaluation of the attendees of the 10th International Workshop on
Boolean Problems. Hence, there are many people which contributed
directly or indirectly to this book.

I like to thank all of them: starting with the scientists and engi-
neers which have been working hard on Boolean problems and sub-
mitted papers about their results to the 10th IWSBP; continuing
with the 23 reviewers from eleven countries; the invited speakers
Prof. Raimund Ubar from the Tallinn University of Technology, Es-
tonia, and Prof. Vincent Gaudet from the University of Waterloo,
Canada; all presenters of the papers; and all attendees for their fruit-
ful discussions of the very interesting presentation on all three days
of the workshop. Besides of the technical program, such an interna-
tional workshop requires a lot of work to organize all necessary things.
Without the support by Ms. Dr. Galina Rudolf, Ms. Karin Schüttauf,
and Ms. Birgit Ste�en, I would not have been able to organize this
series of workshops. Hence, I like to thank these three ladies for their
valuable hard work very much.

Not only the authors of the papers but often larger group contribute
to the presented results. In many cases these peoples are �nancially
supported by grants of many di�erent organizations. Both the au-
thors of the sections of this book and myself thank for this signi�cant
support. The list of these organizations, the numbers of the grants,

xxv

and the titles of the supported projects is so long that I must forward
the interested reader for this information to the proceedings of the
10th IWSBP [297].

I like to emphasize that this book is a common work of many authors.
Their names are directly associated to each section and additionally
summarized in lexicographic order in the section List of Authors start-
ing on page 413 and the Index of Authors on page 419. Many thanks
to all of them for their excellent collaboration and high quality contri-
butions. My special thank goes to Prof. Michael Miller for his Preface
which re�ects the content of the whole book in a compact and clear
manner, Prof. Christian Postho� for correction of the English text,
and Matthias Werner for setting up the LATEX-project of the book
and improving the quality of the book using many LATEX-tools.

Finally, I like to thank Ms. Carol Koulikourdi for her idea to prepare
this book, the acceptance to prepare this scienti�c book using LATEX,
and for her very kind collaboration. I hope that all readers enjoy to
read the book and �nd helpful suggestions for their own work in the
future. It will be my pleasure to talk with many readers on one of the
next International Workshops on Boolean Problems or on any other
place.

Bernd Steinbach

Department of Computer Science
Technische Universität Bergakademie Freiberg
Freiberg, Saxony, Germany

Introduction

Applications of Boolean variables, Boolean operations, Boolean func-
tions, and Boolean equations are not restricted to computers, but
grow in nearly all �elds of our daily life. May be that the digitally
controlled alarm-clock wake us in the morning; we listen to the sound
of digital audio broadcast during our breakfast; we buy the ticket for
the train on a ticket vending machine controlled by Boolean values; we
use our smart phone that transmits all information by Boolean values
for business; look the wrist watch which counts and shows the time
based on Boolean data so that we do not miss the end of our work; we
get the bill for shopping from a pay machine which calculates the sum
of the prices and initiates transmission between our bank account and
the bank account of the shop; and in the evening we watch a movie
in TV which is also transmitted by Boolean values. Hence, without
thinking about the details, our daily life is surrounded with a growing
number of devices which utilize Boolean values and operations.

Gorden E. Moore has published in 1965 a paper about the trend of
components in integrated circuits which doubles approximately every
12 to 24 months. This observation is known as Moore's Law. Of
course, there are many physical limits which take e�ect against this
law, but due to the creativity of scientists and engineers this law is
valid in general even now. The exponential increase of the control
elements is a strong challenge for all people working in di�erent �eld
in�uenced by Boolean values.

The International Workshop on Boolean Problems (IWSBP) is a suit-
able event where people from all over the world meat each other to
report new results, to discuss di�erent Boolean problems, and to ex-
change new ideas. This book documents selected activities and results
of the recent progress in the Boolean domain. All sections are written
from authors which presented their new results on the 10th IWSBP
in September 2012 in Freiberg, Germany.

xxviii Introduction

The most general challenge in the Boolean Domain originates from
the exponential increase of the complexity of the Boolean systems as
stated in Moore's Law. Chapter 1 of this book deals with this problem
using a Boolean task of an unlimited complexity. Chapter 2 applies
the found methods to a �nite, but unbelievable complex multi-valued
problem of more than 10195 color patterns. The last open problem in
this �eld was recently solved, too. For completeness, these results are
added as Section 2.5 to this book. Basic versions of all other sections
of this book are published in the proceedings of the 10th IWSBP [297].

Success in solving special tasks for applications requires a well de-
veloped theoretical basis. Chapter 3 of the book contains interesting
new results which can be utilized in future applications. The design
of digital circuits is the main �eld where solutions of Boolean prob-
lems result in real devices. Seven di�erent topics of this �eld are
presented in Chapter 4. Not all produced devices are free of errors,
due to geometrical structures of few nanometers on the chips. Hence,
it is a big challenge to test such circuits which consist of millions of
transistors as switching elements in logic gates. Chapter 5 deals with
these Boolean problems. Following Moore's Law, in the near future
single atoms must be used as logic gates. This very strong change of
the basic paradigm from classical logic gates to reversible quantum
gates requires a comprehensively preparatory work of scientists and
engineers. The �nal Chapter 6 of this book shows recent results in
reversible and quantum computing.

A more detailed overview of the content of this book is given in the
excellent preface by Prof. Miller. Hence, it remains to wish the readers
in the name of all authors pleasure while reading this book and many
new insights which are helpful to solve many future tasks.

Bernd Steinbach

Department of Computer Science
Technische Universität Bergakademie Freiberg
Freiberg, Saxony, Germany

Exceptionally Complex

Boolean Problems

1. Boolean Rectangle Problem

1.1. The Problem to Solve and its

Properties

Bernd Steinbach Christian Posthoff

1.1.1. Motivation and Selection of the Problem

The in�uence of the Boolean Algebra in almost all �elds of our life
is growing. Even if we enjoy movies in high quality on the TV or
travel by car to our friends, we are strongly supported by the Boolean
Algebra.

Where the Boolean Algebra is hidden when we are watching movies?
The excellent quality of High De�nition TV (HDTV) is achieved be-
cause both the color information of each pixel of the sequence of pic-
tures and two or more channels of sound information are transmitted
by a bit stream that contains only the values 0 and 1. The restriction
to this simplest alphabet restricts the in�uence of noise, and possible
transmission errors of one or few bits in a certain period are removed
using error correction codes. The number of bits which must be trans-
mitted in each second is approximately equal to 20 millions. Hence,
we see our modern TV device is in fact a specialized high-performance
computer.

Looking to the second example: we typically do not think about the
Boolean Algebra; we simply want to use the car to travel from place
A to B. It is a precondition for our travel that the car is located on
place A and not taken away be an unfriendly person. An electronic

4 Boolean Rectangle Problem

immobilizer system based on a strongly encoded binary key helps to
satisfy this precondition. Next, we have to start and not to kill the
engine. This is supported by the engine management system, which
calculates in real time the binary information from many sensors and
controls the needed amount of gas and the correct trigger moment
for each cylinder of the engine. Here the next important computer
works in our car. Stopping the car before reaching an obstacle is as
important as driving the car. The anti-lock braking system (ABS)
helps the driver in critical situations by evaluation of the information
from rotation sensors of the wheels and separate control of all four
breaks. These are only some selected tasks where the Boolean Alge-
bra inside of computers supports the driver of a car. Further examples
are electronic brake-force distribution (EBD), electronic stability con-
trol (ESC) or GPS navigation systems. The needed high security is
reached in all these systems by the utilization of binary values, which
have the highest possible noise immunity.

The bene�t of Boolean calculations was discovered by Konrad Zuse
[352]. In 1938, he �nished his �rst computer Z1. This event marked
the starting point of a gigantic development in Computer Science and
its applications. Based on the Boolean Algebra Konrad Zuse and
many other engineers strongly improved the technology of computers
and other control systems.

Based on the success of the development of digital integrated circuits,
Gordon E. Moore published in 1965 an article that included the pre-
diction of an exponential increase of the number of components in
digital circuits in �xed periods of time. That means, the performance
of electronic devices doubles approximately every one to two years.
Evaluating the reached number of transistors of integrated circuits,
the truth of the so-called Moore's Law can be accepted until now.

This exponential increase of the number of components in electronic
devices maps directly onto the complexity of the realized Boolean
functions and generates strong challenges for their representation and
manipulation. Many di�erent Boolean tasks must be solved directly
for the digital circuits. These tasks comprise the design, the analysis,
the comparison and the test of digital circuits. Both the available
larger memory size and the very high computation power of several
computation cores of the central processing unit (CPU) or even several

The Problem to Solve and its Properties 5

hundreds of cores of the graphics processing unit (GPU) make the
realization of applications of all �elds of our life possible. Altogether
this originates in a wide range of di�erent Boolean tasks. It is a
common property of these tasks that the number of used Boolean
variables and consequently the size of the Boolean function grows
more and more into extreme regions.

It is not possible to discuss all these Boolean problems in this book.
However, we want to contribute in a generalized manner to the com-
plexity problem in the Boolean domain. In order to do that we select
a Boolean task which

1. is easy to understand,

2. requires many Boolean calculations,

3. does not have any restriction in the size, and

4. has a simple solution for each �xed size of the problem.

Slightly increased values of the control parameters of such a problem
can cause an extension of the required runtime for the solution process
of several orders of magnitude. Finding improvements for the solution
process for such a task can be useful for other Boolean tasks.

A task which holds the enumerated requirements is the calculation of
the maximal number of edges within a bipartite graph that does not
contain any cycle of the length four. This problem of graph theory
is equivalent to rectangle-free grids. We explain these two di�erent
views of the selected Boolean task in the next two subsections.

1.1.2. The Problem in Context of Graph Theory

Graphs appear in our life without thinking about them, alike the
Boolean Algebra discussed in the previous subsection. Basically, a
graph G is speci�ed by two sets. The �rst set contains the vertices
vi ∈ V of the graph. An example of the elements of this set are
the crossings in a city. The second set contains the edges ej ∈ E.

6 Boolean Rectangle Problem

Completing our example, the roads which connect the crossings, are
the elements of this second set for the example of the road net of a
city.

A graph can be built in a similar way for the rail net of a railway
station. The vertices are in this case the switches, and the edges are
the rails between them. From a more general point of view, the graph
can be built for a rail net of a whole country or even a continent where
the vertices are in this case the cities connected to the rail net, and
the edges are the rails between these cities.

The sets of the graph must not necessarily be the representation of
real things like streets or rails. In the case of a �ight net of an air
company, the provided �ight connections between selected airports
describe the edges E and build together with these airports as set of
vertices V the graph G(V,E).

Graphs can be split into directed and undirected graphs, based on the
direction of the edges. We will focus on undirected graphs. Further-
more, it is possible to distinguish graphs based on weights associated
to the vertices and / or to the edges. We concentrate in this section on
unweighted graphs. One more possibility to divide graphs in certain
classes is the split of the set of vertices into subsets and the de�nition
of constraints for the edges between these subsets.

The problem we want to study in this section is de�ned on so-called
bipartite graphs. In a bipartite graph the set of vertices V is divided
into two subsets of vertices V1 and V2 with V = V1 ∪ V2. Each edge
of a bipartite graph connects one vertex vi ∈ V1 with one vertex
vj ∈ V2. Consequently, there are no edges that connect two vertices
of the subset V1 or two vertices of the subset V2.

A bipartite graph can be used to describe assignments of items of two
sets. As example, we can take the set of bus stations and the set
of bus lines in a city. An edge of the bipartite graph describes the
assignment that the bus line stops on the connected bus station. The
wide range of applications of bipartite graphs becomes visible by a
second example. The two sets are in this example the professors of a
university and the modules studied by the students. In this case, areas
of the experiences of the professors decide about possible modules to

The Problem to Solve and its Properties 7

teach. Such a bipartite graph is an important input to solve the
di�cult problem to build the class schedule for a semester.

A third example brings us �nally to the problem to solve. Here we
take as �rst set of vertices the inputs of NAND-gates of a circuit and
as second set the outputs of the same NAND-gates. The NAND-gates are
chosen due to the property that each Boolean function can be built
with this type of gates alone. Each gate merges the logical values
of its inputs to the logical value on its output. Hence, the gates of a
circuit generate assignments of edges of the bipartite graph due to the
internal structure of the gate. In order to reach the needed behavior
of the circuit, the outputs of internal gates must be connected by
wires with inputs of certain other gates. These wires describe also
assignments between the subsets of edges and must be expressed by
edges in the bipartite graph.

There are two types of digital circuits: combinatorial circuits and
sequential circuits. Both of them can be realized by NAND-gates. A
bipartite graph, as explained in the last paragraph, is suitable for their
description. Assume that a combinatorial circuit must be designed.
The associated bipartite graph must not include a cycle of the length
4 because such a cycle causes a memory behavior so that we have a
sequential circuit. We do not want to go deeper into the details of
digital circuits in this section, but we concentrate on bipartite graphs
which do not include any cycle of the length 4.

Now we are prepared to describe formally the problem to solve. The
set of vertices V of the bipartite graph is divided into the subsets of
vertices V1 and V2 with

V1 ∪ V2 = V ,

V1 ∩ V2 = ∅ ,
m = |V1| is the number of vertices in the subset V1 , and

n = |V2| is the number of vertices in the subset V2 .

The number of di�erent graphs Gm,n(V1, V2, E) with edges from V1
to V2 is equal to 2m∗n. We select from this complete set of graphs the
graphs that do not include a cycle C4 of the length 4. Such graphs
are called cycle-4-free and can be expressed by GC4f

m,n(V1, V2, E). The

8 Boolean Rectangle Problem

v11 v12 v13
◦ ◦ ◦

◦ ◦ ◦ ◦
v21 v22 v23 v24

G1
3,4

v11 v12 v13
◦ ◦ ◦

◦ ◦ ◦ ◦
v21 v22 v23 v24

G2
3,4

Figure 1.1. Two bipartite graphs: G1
3,4 with C4 and G2

3,4 without C4.

number of edges of a graph GC4f
m,n(V1, V2, E) is labeled by:

ne(G
C4f
m,n(V1, V2, E)) .

The task to solve consists in �nding the maximal number of edges
maxc4f(m,n) of all cycle-4-free bipartite graphs GC4f

m,n(V1, V2, E) with
m = |V1| and n = |V2|:

maxc4f(m,n) = max
G
C4f
m,n(V1,V2,E)

ne(G
C4f
m,n(V1, V2, E)) . (1.1)

This task can be solved for all sets of bipartite graphs with m > 0
and n > 0. It is a challenge to solve this task because the number
of bipartite graphs depends exponentially on m ∗ n. The veri�cation
of the solution of this task is quite easy because maxc4f(m,n) is a
single integer number.

Figure 1.1 shows as example two simple bipartite graphs with m = 3
and n = 4. The left graph G1

3,4 of Figure 1.1 contains six edges
ne(G

1
3,4) = 6:

{e(v11, v22), e(v12, v21), e(v12, v23), e(v13, v21), e(v13, v23), e(v13, v24)} .

Four of them

{e(v12, v21), e(v12, v23), e(v13, v21), e(v13, v23)}

describe a cycle of the length 4. Hence, the graph G1
3,4 does not belong

to the set of cycle-4-free bipartite graphs
{
GC4f

3,4 (V1, V2, E)
}
:

G1
3,4(V1, V2, E) /∈

{
GC4f

3,4 (V1, V2, E)
}
.

The Problem to Solve and its Properties 9

The right graph G2
3,4 of Figure 1.1 contains seven edges ne(G

2
3,4) = 7.

Despite the larger number of edges there is no cycle of the length 4
within the bipartite graph G2

3,4. Hence, this graph belongs the set of

cycle-4-free bipartite graphs
{
GC4f

3,4 (V1, V2, E)
}
:

G2
3,4(V1, V2, E) ∈

{
GC4f

3,4 (V1, V2, E)
}
.

It is not possible to add an edge to the graph G2
3,4 without loss of

the property that it is cycle-4-free. An exhaustive evaluation of all
bipartite graphs G3,4(V1, V2, E) con�rms that maxc4f(3, 4) = 7.

1.1.3. Rectangle-free Grids

An alternative to the graphical representation of a bipartite graph
Gm,n(V1, V2, E) is an adjacency matrix. Such a matrix is also called
grid . We prefer this short term in the rest of Chapter 1.

The subset V1 ⊂ V is mapped to the set of rows R of the grid:

v1i ∈ V1 =⇒ ri ∈ R .

Similarly, we map the subset V2 ⊂ V to the set of columns C of the
grid:

v2k ∈ V2 =⇒ ck ∈ C .

As usual for a matrix, the row numbers ri of the grid grow top down,
and the column numbers ck grow from the left to the right. The
elements of the grid are Boolean values. A value 1(0) in the position
of row ri and column ck means that the edge e(ri, ck) ∈ E belongs
(does not belong) to Gm,n(V1, V2, E).

Figure 1.2 shows the same bipartite graphs G1
3,4 and G2

3,4 of Figure
1.1 expressed by their grids (adjacency matrices). Four positions of
the left grid G1

3,4 of Figure 1.2 are framed by thick lines. These four
positions describe the four edges of the cycle C4 which is also called
a complete subgraph K2,2. It can be seen that these four position are
located in the corners of a rectangle. There is a rectangle when all
four cross-points of two rows and two columns carry values 1.

10 Boolean Rectangle Problem

c1 c2 c3 c4

r1

r2

r3

0 1 0 0

1 0 1 0

1 0 1 1

G1
3,4

c1 c2 c3 c4

r1

r2

r3

1 0 0 1

1 1 1 0

0 1 0 1

G2
3,4

Figure 1.2. Grids (adjacency matrices) of two bipartite graphs.

The problem to solve, introduced in the previous subsection, can be
expressed for a grid in the following compact manner:

What is the largest number of Boolean values 1 that can be
assigned to the elements of a grid of m rows and n columns
such that not all four corners of each rectangle of any pair of
rows and any pair of columns are labeled with the value 1.

We call this largest number of rectangle-free grids of m rows and n
columns maxrf(m,n) and use the term Boolean Rectangle Problem
(BRP) as name of the problem.

The grid representation of the bipartite graph emphasizes the Boolean
nature of this problem. The cells of the grid contain either the Boolean
value 0 or the Boolean value 1. Hence, each cell of the row ri and the
column ck represents a Boolean variable xri,ck .

There arem∗n such Boolean variables for the grid Gm,n. The Boolean
function fr(x) (1.2) is equal to 1 in the incorrect case that Boolean
values 1 are assigned to the variables in the corners of the rectangle
selected by the rows ri and rj and by the columns ck and cl:

fr(xri,ck , xri,cl , xrj ,ck , xrj ,cl) =

xri,ck ∧ xri,cl ∧ xrj ,ck ∧ xrj ,cl . (1.2)

The conditions of the Boolean Rectangle Problem for a grid Gm,n are
met when the function fr(x) (1.2) is equal to 0 for all rectangles which

The Problem to Solve and its Properties 11

can be expressed by:

m−1∨
i=1

m∨
j=i+1

n−1∨
k=1

n∨
l=k+1

fr(xri,ck , xri,cl , xrj ,ck , xrj ,cl) = 0 . (1.3)

It can be veri�ed that the function fr(x) (1.2) is equal to 0 for all
18 possible rectangles of the grid G2

3,4 of Figure 1.2. Hence, G
2
3,4 is a

rectangle-free grid Grf3,4.

The solution of the Boolean equation (1.3) is the set of all rectangle-
free grids of m rows and n columns. The number of values 1 in such a
grid is n1(Gm,n). Counting the values 1 in the grids of Figure 1.2, we
get as example n1(G1

3,4) = 6 and n1(G2
3,4) = 7. It is our �nal aim to

�nd the value: maxrf(m,n) which is the maximal number of values
1 of all rectangle-free grids of m rows and n columns:

maxrf(m,n) = max
Grfm,n

n1(Grfm,n) . (1.4)

It should be mentioned that there is another problem [124] which is
strongly related to the Boolean Rectangle Problem. It is the Zarankie-
wicz Problem which is named after the Polish mathematician Kaz-
imierz Zarankiewicz. Zarankiewicz has contributed more than 60
years ago to this problem. The �rst sentence in the abstract of [249]
is:

Zarankiewicz, in problem P 101, Colloq. Math., 2 (1951), p.
301, and others have posed the following problem: Determine
the least positive integer kα,β(m,n) so that if a 0,1-matrix of
the size m by n contains kα,β(m,n) ones then it must have a
α by β submatrix consisting entirely of ones.

One di�erence between the Boolean Rectangle Problem (BRP) and
the Zarankiewicz Problem (ZP) is that these problems evaluate op-
posite sides of the same problem. The BRP searches for the largest
number of values 1 in the grids of the size m by n which does not con-
tain any rectangle (this is a submatrix 2 by 2) consisting entirely of
ones. The ZP searches for the smallest number of values 1 in the grids

12 Boolean Rectangle Problem

of the size m by n which must contain a submatrix 2 by 2 consisting
entirely of ones. Hence,

maxrf(m,n) = k2,2(m,n)− 1 .

Furthermore, the Zarankiewicz Problem is more general in the sense
that not only rectangles as submatrices of the size 2 by 2 but also
submatrices of larger sizes are taken into account.

1.1.4. Estimation of the Complexity

The 0-pattern of a grid is speci�ed by the values of the Boolean vari-
ables xri,ck . There are m ∗ n Boolean variables for the grid Gm,n.
Hence, in order to �nd the maximal number maxrf(m,n) of values 1
of all grids Gm,n,

ngp(m,n) = 2m∗n (1.5)

di�erent grid patterns must be evaluated.

The function (1.2) must be equal to 0 for each possible rectangle.
The number of all possible rectangles depends on the number of rows
m and the number of columns n of a grid Gm,n. Each pair of rows
generates together with each pair of columns one possible rectangle.
Hence,

nr(m,n) =

(
m

2

)
∗
(
n

2

)
(1.6)

rectangles must be veri�ed.

For each of the ngp grid patterns all nr rectangles (1.6) must be evalu-
ated. The number of all rectangles nar (1.7) which must be evaluated
is equal to the product of ngp (1.5) and nr (1.6).

nar(m,n) = 2m∗n−2 ∗m ∗ n ∗ (m− 1) ∗ (n− 1) (1.7)

The evaluation of these nar rectangles of grid patterns takes on an
Intel Quad Core i7 processor 1.5 hours for m = n = 6, but already
2.7 years for n = m = 7. However, we are interested to solve BRP for
signi�cantly larger sizes of the grid. A challenge of Chapter 2 requires
as subproblem to solve the BRP for the grid of the size m = n = 18.

The Problem to Solve and its Properties 13

100

1020

1040

1060

1080

10100

10120

10140

2 4 6 8 10 12 14 16 18 20

rows and columns of quadratic grids (m = n)

Number of grid patterns ngp and all rectangles nar

ngp

nar

ne + np = 1.57 ∗ 1079

Figure 1.3. Number of grid patterns ngp (solid line) and all included rect-
angles (dashed line) for quadratic grids using a logarithmic
scale of the vertial axis.

The estimated time for the evaluation of nar(18, 18) is approximately
8.7 * 1084 years [333].

In order to get an impression of the complexity of the BRP, Figure
1.3 shows both the number of di�erent grid patterns ngp and the
number of all rectangles nar for quadratic grids in comparison to the
number of all electrons ne and all protons np of the whole universe
(thick horizontal line) in the range of 2 to 20 rows and columns. This,
with slightly growing values of the numbers of rows m and columns
n, extremely growing number of grid patterns can be restricted to
classes of grid patterns. The exchange of any pair of rows or any pair
of columns does not change the existing rectangles characterized by
(1.2). Both m! permutations of rows and n! permutations of columns
of the grid do not change both the number of assigned values 1 and the
number of rectangles consisting entirely of the value 1. Hence, there
is a potential of improvements of m! ∗ n! which grows from 518.400
for the grid G6,6 to 4 ∗ 1031 for the grid G18,18. We will show in the
following section how this potential of improvements can be utilized.

14 Boolean Rectangle Problem

1.2. Search Space Restriction

Bernd Steinbach Christian Posthoff

1.2.1. Basic Approach: Complete Evaluation

The task to solve consists in �nding the maximal numbermaxrf(m,n)
of values 1 which can be assigned to the grid Gm,n of m rows and n
columns without violating the rectangle condition (1.3). The maxi-
mal number maxrf(m,n) must be found when all 2m∗n di�erent grid
patterns are evaluated. The evaluation of each grid pattern can be
split into two subtasks:

1. verify whether the function fi(x), which is associated to the grid
pattern Gim,n, satis�es Equation (1.3), and

2. count the number of function values 1 of fi(x) for the decision
whether fi(x) belongs to the set of maximal grid patterns.

These two subtasks can be solved in an algorithm in two di�erent
orders. Each of these orders has an advantage. In case of the order
verify followed by count, the second subtask can be omitted if fi(x)
does not satisfy the rectangle condition (1.3). Vice versa, in case of the
order count followed by verify, it is not necessary to verify whether
fi(x) satis�es the rectangle condition (1.3) if the number of values 1
of fi(x) is smaller than a known number of values 1 of another fj(x),
which satis�es the rectangle condition (1.3).

In this basic approach we use the order of the subtasks as shown in the
enumeration given above. There are again two di�erent possibilities
to solve the �rst subtask. Due to the �nite numbers of m rows and
n columns the set of grid patterns

{
Gim,n|i = 1, . . . , 2m∗n

}
is also a

�nite set. Hence, the m∗n function values of each associated function
fi(x) can be substituted into Equation (1.3), and it can be checked
whether the rectangle condition is satis�ed for fi(x). However, this
is a very time-consuming procedure due to the large number 2m∗n of
di�erent functions.

Search Space Restriction 15

The solution of a Boolean equation is a set of binary vectors. Hence, a
Boolean equation of m∗n variables divides the set of all 2m∗n vectors
of the whole Boolean space Bm∗n into two disjoint subsets. Each
solution vector of m ∗ n Boolean values that solves Equation (1.3)
describes one function fi(x) of this Boolean space. This set is the
solution of the �rst subtask.

The Boolean function fr(x) (1.2) describes the incorret case that all
grid values in the corners of the rectangle selected by the rows ri and
rj and by the columns ck and cl are equal to 1. The conditions of the
Boolean rectangle problem on a grid Gm,n are met when the function
fr(x) (1.2) is equal to 0 for all rectangles which can be expressed by the
restrictive equation (1.3). The set of solutions of a Boolean equation
remains unchanged if the functions on both sites are replaced by their
negated function. Using this transformation, we get the characteristic
equation (1.8) from (1.3). On the left-hand side of (1.8) the Law
of De Morgan is applied which changes all given disjunctions into
conjunctions.

m−1∧
i=1

m∧
j=i+1

n−1∧
k=1

n∧
l=k+1

fr(xri,ck , xri,cl , xrj ,ck , xrj ,cl) = 1 . (1.8)

Equation (1.8) can be e�ciently solved using XBOOLE [240], [302].
XBOOLE is a library of more than 100 operations. The basic data
structure of XBOOLE is the list of ternary vectors (TVL). The oper-
ations of XBOOLE can be used in programs written in the languages
C or C++. A simple possibility to use XBOOLE is a program called
XBOOLE Monitor. This program can be downloaded and used with-
out any restrictions for free. The URL is:

http://www.informatik.tu-freiberg.de/xboole .

Algorithm 1.1 describes how the complete evaluation of a grid Gm,n
can be done using XBOOLE operations. In lines 1 to 11 the set of all
rectangle-free grids is calculated. Based on these data this algorithm
determines in line 12 the number of solutions of (1.8) and in line 13
the number of ternary vectors needed to represent all solutions. The
ratio between these two numbers provides an insight into the power

16 Boolean Rectangle Problem

Algorithm 1.1 CompleteEval(m,n)

Require: number of rows m and number of columns n of the grid
Gm,n

Ensure: maxrf(m,n): maximal number of assignments of values 1
in the rectangle-free grid Gm,n

Ensure: nsol: number of the solutions of (1.8)
Ensure: ntv: number of ternary vectors of the solutions of (1.8)
1: all← ∅
2: all← CPL(all) . complement
3: for i← 1 to m− 1 do
4: for j ← i+ 1 to m do

5: for k ← 1 to n− 1 do
6: for l← k + 1 to n do
7: all← DIF(all, fr(i, j, k, l)) . di�erence
8: end for

9: end for

10: end for

11: end for

12: nsol ← nbv(all) . number of binary vectors
13: ntv ← NTV(all) . number of ternary vectors
14: h← CEL(all, ”− 11”) . change elements
15: maxrf(m,n)← 0
16: for i← 1 to ntv do
17: tv ← STV(h, i) . select ternary vector
18: n1 ← SV_SIZE(tv) . set of variables: size
19: if maxrf(m,n) < n1 then
20: maxrf(m,n)← n1
21: end if

22: end for

of XBOOLE. The lines 14 to 22 determine the wanted maximal value
maxrf(m,n).

All used XBOOLE operations are indicated by capital letters. The
small letters of the nbv() function in line 12 indicate that this is not
a basic XBOOLE function. This function calculates the number of
binary vectors of all solutions using some more elementary XBOOLE
operations. The XBOOLE operation NTV in line 13 simply counts the
number of ternary vectors.

Search Space Restriction 17

fr1(x) ∧ fr2(x) ∧ fr3(x) = 1

1 ∧ fr1(x) ∧ fr2(x) ∧ fr3(x) = 1

(1 \ fr1(x)) ∧ fr2(x) ∧ fr3(x) = 1

((1 \ fr1(x)) \ fr2(x)) ∧ fr3(x) = 1

((1 \ fr1(x)) \ fr2(x)) \ fr3(x) = 1 (1.9)

The idea for the procedure to solve Equation (1.8) becomes visible by
the following simpli�ed transformation. The added 1 in the second
line of (1.9) is a constant 1 function that describes the whole Boolean
space. This function is created in Algorithm 1.1 in the �rst two lines
such that the complement operation CPL is executed to the previously
initialized 0-function. Lines 3 to 6 and 8 to 11 describe the nested
loops as required in (1.8). The di�erence operation DIF excludes in
each application as shown in the last three lines of (1.9) one incorrect
rectangle pattern from the remaining solution set.

It is an advantage of the chosen approach that only the number of
values 1 in the solution vectors of (1.8) must be counted. The repre-
sentation of the solutions by ternary vectors restricts this e�ort even
more. One ternary vector with d dash elements (`-') represents 2d

binary vectors.

Only the binary vector which is created by the substitution of all
dashes by values 1 can belong to the set maximal grid patterns. The
XBOOLE operation CEL is used in line 14 of Algorithm 1.1 for this
transformation, which excludes the explicit count of the values 1 in
2d − 1 vectors. Within the same operation all given elements `0' are
changed into elements `-' in order to exclude them from counting the
covered positions.

In the loop over ntv ternary vectors in lines 16 to 22, the XBOOLE
operation STV selects each ternary vector once for the next evalua-
tion in line 17. The number of values 1 in this vector is counted
by the XBOOLE operation SV_SIZE in line 18. The searched value
maxrf(m,n) is initialized in line 15 with the value 0 and replaced by
a larger number n1 of found values 1 in the solution vectors as shown
in lines 19 to 21 of Algorithm 1.1.

18 Boolean Rectangle Problem

Table 1.1. Maximal assignments of maxrf(m,n) values 1 to a rectangle-
free grid up to 6 rows calculated by complete evaluation

number of values 1 complete solution set time in milliseconds

m n nv maxrf all ratio nsol ntv calc. count all

2 2 4 3 4 0.750 15 4 0 0 0

2 3 6 4 6 0.666 54 12 0 0 0

2 4 8 5 8 0.625 189 32 0 0 0

2 5 10 6 10 0.600 648 80 0 0 0

2 6 12 7 12 0.583 2,187 192 0 0 0

2 7 14 8 14 0.571 7,290 448 16 0 16

2 8 16 9 16 0.563 24,057 1,024 31 0 31

2 9 18 10 18 0.555 78,732 2,304 47 0 47

2 10 20 11 20 0.550 255,879 5,120 94 31 125

2 11 22 12 22 0.545 826,686 11,264 141 109 250

2 12 24 13 24 0.542 2,657,205 24,576 297 608 905

2 13 26 14 26 0.538 8,503,056 53,248 656 3,198 3,854

2 14 28 15 28 0.536 27,103,491 114,688 1,404 17,972 19,376

2 15 30 16 30 0.533 86,093,442 245,760 3,167 92,836 96,003

2 16 32 17 32 0.531 272,629,233 524,288 7,348 568,279 575,627

3 2 5 4 6 0.666 54 12 0 0 0

3 3 9 6 9 0.666 334 68 16 0 16

3 4 12 7 12 0.583 1,952 326 16 0 16

3 5 15 8 15 0.533 10,944 1,485 32 0 32

3 6 18 9 18 0.500 59,392 6,580 110 46 156

3 7 21 10 21 0.476 313,856 28,451 390 843 1,233

3 8 24 11 24 0.458 1,622,016 120,048 1,872 16,896 18,768

3 9 27 12 27 0.444 8,224,768 494,537 9,578 558,840 568,418

4 2 8 5 8 0.625 189 12 0 0 0

4 3 12 7 12 0.583 1,952 68 16 0 16

4 4 16 9 16 0.563 18,521 326 16 0 16

4 5 20 10 20 0.500 165,120 1,485 32 0 32

4 6 24 12 24 0.500 1,401,445 6,580 110 46 156

5 2 10 6 10 0.600 648 80 16 0 16

5 3 15 8 15 0.533 10,944 1,457 31 0 31

5 4 20 10 20 0.500 165,120 18,769 265 312 577

5 5 25 12 25 0.480 2,293,896 216,599 4,103 79,513 83,616

6 2 12 7 12 0.583 2,187 192 0 0 0

6 3 18 9 18 0.500 59,392 6,418 94 31 125

6 4 24 12 24 0.500 1,401,445 130,521 2,184 27,317 29,501

Search Space Restriction 19

Table 1.1 summarizes the experimental results for grids up to 6 rows
restricted by a memory size of 2 Gigabytes and executed on a PC
using a single core of the CPU i7-940 running on 2.93 GHz. This
computer was used for all experiments which are described in this
subsection. The �rst three columns of Table 1.1 specify the values of
rows m, columns m, and Boolean variables nv of the evaluated grids.
The main results are the maximal numbers of values 1 of rectangle-
free grids in the column maxrf . The values in the column ratio are
calculated by:

ratio =
maxrf(m,n)

all
,

where all = m∗n. It can be seen that this ratio decreases for growing
numbers of rows or columns of the grid.

The sizes of the complete solution sets give an impression of the enor-
mous complexity of the problem to be solved. The bene�t of the uti-
lization of lists of ternary vectors as main data structure in XBOOLE
[240] becomes visible comparing the values in the columns of all cor-
rect grids nsol and the number of ternary vectors ntv required to store
these sets.

The Boolean function of the simplest grid of 2 rows and 2 columns
depends on 4 variables and has 24 = 16 function values. nsol = 15
is the number of function values 0 associated to correct grids; only
that grid is excluded in which all four positions (all for edges of the
bipartite graph) are assigned to the value 1. These 15 solutions are
expressed by ntv = 4 ternary vectors. The ratio between nsol and ntv
reaches nearly three orders of magnitude for growing numbers of rows
and columns of the grid.

The power of XBOOLE becomes visible looking at the time required
for the calculation. All 272,629,233 correct grid patterns of G2,16

were calculated within only 7.348 seconds. It is an advantage that
not all of these patterns must be counted to �nd the searched value
of maxrf(m,n), but only the elements of 524,288 ternary vectors.
Despite this advantage it takes 568.279 seconds for the counting pro-
cedure for G2,16.

The basic approach is limited by the available memory to store the
solution of Equation (1.8). In [295] we have published an recursive

20 Boolean Rectangle Problem

approach in which the limit of space is compensated by additional
time. In the same publication the needed time is reduced by parallel
algorithms using the message passing interface MPI [229].

1.2.2. Utilization of Rule Con�icts

The strategy of the basic approach was the restriction of the set of
all 2m∗n grid patterns to the correct patterns and the detection of
patterns of maximal numbers of values 1 out of them. The very large
search space of 2m∗n can be divided into 1 + m ∗ n subspaces that
contain grid patterns of a �xed number of values 1 in the range from
zero values 1 to m ∗ n values 1. In Subsection 1.2.3 we will utilize the
ordered evaluation of these subspaces.

Here we restrict ourselves to the subtask of �nding correct grid pat-
terns of a �xed number of values 1. The evaluation of such a subspace
can be realized using a recursive algorithm that generates all permu-
tations of the �xed number of values 1.

Solving this subtask, the search space can be restricted even more.
It is not necessary to assign further values 1 to a partially �lled grid
that contradicts the rectangle-free rule (1.3). Combining the recursive
assignment of values 1 with the rule check for con�icts regarding a
newly assigned value 1 allows an immediate backtrack in the recursion
in the case of a rule con�ict. In this way many incorrect grid patterns
must neither be constructed nor checked for the rectangle condition.

Algorithm 1.2 generates recursively all permutations of grid assign-
ments of n1 values 1 for a grid Gm,n with m ≥ 2 rows and n ≥ 2
columns which satisfy rectangle-free rule (1.3). All three parameters
level, next, and nop are equal to 0 in the case of the initial call.

The variable level carries the value of the level of the recursion. On
each level a single value 1 is assigned to one grid position. Hence, the
value of the variable level is equal to the number of values 1 assigned
to the grid. The grid contains pmax = m ∗n grid positions which are
numbered consecutively in the range from 0 to m ∗ n− 1.

Search Space Restriction 21

Algorithm 1.2 GenPerm(m,n, n1, level, next, nop)

Require: number of rows m of the grid Gm,n
Require: number of columns n of the grid Gm,n
Require: number of values 1, n1 > 0 that must be assigned to the

grid Gm,n
Require: number level of already assigned values 1
Require: position next for the next assignment
Ensure: nop: the number of all rectangle-free permutations of n1

values 1 in the grid Gm,n
1: pmax← m ∗ n
2: pos← next
3: while pos ≤ pmax− n1 + level do
4: repeat

5: if pos > next then
6: G[(pos− 1)/n, (pos− 1) mod n]← 0 . reset to 0
7: end if

8: G[pos/n, pos mod n]← 1 . assign a value 1
9: conflict← crc((pos/n), (pos mod n)) . check condition
10: pos← pos+ 1 . select next grid position
11: until pos > pmax− n1 + level OR conflict = false
12: if conflict = true AND pos ≥ pmax− n1 + level then
13: return nop . no further rectangle-free grid
14: end if

15: if level < n1 − 1 then
16: nop← GenPerm(m,n, n1, level + 1, pos, nop) . recursion
17: else if con�ict = false then
18: nop← nop+ 1 . correct grid pattern of n1 values 1
19: end if

20: end while

21: return nop . nop correct grid patterns of n1 values 1

The variable next speci�es the position in this range where the next
value 1 must be assigned to the grid. Algorithm 1.2 changes this
position using the internal variable pos. In order to simplify the map-
ping of the value pos to the associated row and column, 0-based index
values are used in Algorithm 1.2. The result of the integer division
(pos/n) is equal to the row index (0, . . . ,m− 1) selected by the value
of pos, and the result of the remainder of this operation (pos mod n)
indicates the associated column index (0, . . . , n− 1).

22 Boolean Rectangle Problem

Algorithm 1.2 initializes the variables pmax and pos in lines 1 and
2, realizes the main task within the while-loop in lines 3 to 20, and
returns the number nop of rectangle-free grid patterns of n1 values 1
in line 21.

In case of the initial call of Algorithm 1.2, the while-condition in line
3 is satis�ed for n1 ≤ m ∗ n, but the if-condition in line 5 is not
satis�ed. Hence, a value 1 is assigned to the grid position of pos in
line 8. All rectangles which contain this assigned value 1 in one of
their corners are checked by the function crc((pos/n), (pos mod n))
whether the rectangle-free rule (1.3) is satis�ed. Independent on the
result of this check the next position pos of the grid is selected in line
10 of Algorithm 1.2.

The utilization of the rule con�ict is implemented in line 11 of Al-
gorithm 1.2. If there is a rule con�ict (conflict = true), further
additional assignments of values 1 cannot satisfy the rectangle-free
rule (1.3) and will be omitted, because the repeat-until-loop in lines
4 to 11 is repeated.

If position pos does not reach the limit given in line 11, alternative
assignments of the last assigned value 1 exist. Due to the enlarged
value of pos in line 10 the if-condition in line 5 becomes true so that
the last assigned value 1 is deleted in line 6, and the next grid position
is assigned to a value 1 in line 8. The repeat-until-loop in lines 4 to 11
will be left, the value 1 is assigned in line 8 without causing a con�ict
regarding the rectangle-free rule (1.3).

In the case that both the last assignment of a value 1 causes a con�ict
regarding the rectangle-rule (1.3) and the required number of values
1 n1 cannot be reached, the if-statement in lines 12 to 14 breaks the
recursion and returns the number nop of so far found rectangle-free
assignments of n1 values 1 to the grid.

Algorithm 1.2 must be recursively called for each rectangle-free grid
that includes less than n1 values 1. This is controlled by the if-
condition in line 15 and executed in line 16. If level = n1 − 1, the
con�ict-free assignment of n1 values 1 is completed and will be remem-
bered by the increment of nop in line 18. All rectangle-free patterns
of n1 values 1 are found due to the while-loop of Algorithm 1.2.

Search Space Restriction 23

Table 1.2. Recursive generation of all grids G5,5 containing 10, 11, 12 or
13 values 1

10 values 1 11 values 1 12 values 1 13 values 1

level con�icts level con�icts level con�icts level con�icts

0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

2 0 2 0 2 0 2 0

3 48 3 39 3 33 3 30

4 700 4 508 4 373 4 289

5 3,980 5 3,980 5 2,600 5 1,691

6 16,584 6 13,584 6 13,584 6 7,956

7 61,695 7 37,895 7 28,235 7 28,235

8 203,777 8 103,973 8 52,353 8 32,553

9 489,410 9 243,106 9 105,898 9 39,290

10 340,260 10 154,716 10 57,684

11 96,480 11 39,744

12 6,264

number of

all grids 3,268,760 4,457,400 5,200,300 5,200,300

grids without

any con�ict 388,440 108,000 7,800 0

time in

milliseconds 172 125 93 32

Table 1.2 summarizes some experimental results and reveals the bene-
�ts of the explained restricted recursive algorithm. It is not necessary
to generate all permutations of grids of a �xed number of values 1.
After the assignment of 3 values 1 (labeled by level 3 in Table 1.2) 30
or more assignments of the fourth value 1 cause a con�ict with the
rectangle-free rule (1.3). Hence, in these cases the recursive invoca-
tion of the function GenPerm() with the next higher level can be
omitted. In this way the search space is strongly reduced without any
loss of solutions. On each higher level the same property is utilized
and restricts the search space even more.

From Table 1.1 it is known that the basic approach needs 83,616 mil-
liseconds to calculate maxrf(5, 5) = 12. The e�ciency of Algorithm
1.2 becomes visible by the required time to calculate all rectangle-free
patterns for �xed numbers n1 of values 1 for the same grid of m = 5

24 Boolean Rectangle Problem

Algorithm 1.3 OrderedEval(m,n)

Require: number of rows m and number of columns n of the grid
Gm,n

Ensure: maxrf(m,n): maximal number of assignments 1 in the
rectangle-free grid Gm,n

1: n1 ← 3 . there cannot be a con�ict for 3 assigned values 1
2: repeat

3: n1 ← n1 + 1 . select next grid position
4: nop← GenPerm(m,n, n1, 0, 0, 0) . evaluation for n1
5: until nop = 0 . no rectangle-free grid for n1
6: maxrf(m,n)← n1 − 1 . largest number of n1 with nop > 0
7: return maxrf(m,n)

rows and n = 5 columns. The needed time to calculate all rectangle-
free patterns decreases despite a growing number of all grid patterns
in the subspace of a �xed number of values 1.

1.2.3. Evaluation of Ordered Subspaces

There is a monotone order within the subspaces of �xed numbers of
values 1. Each grid pattern that contains n1 + 1 values 1 can be
constructed by an additional assignment of a single value 1 to a grid
pattern that contains n1 values 1. Hence, if there is a rectangle-
con�ict in the grid of n1 values 1, at least the same con�ict occurs in
the constructed grid of n1 + 1 values 1.

Theorem 1.1. If no Boolean grid pattern of n1 values satis�es the
rectangle-rule (1.3), no Boolean grid pattern of more than n1 values
1 can be rectangle-free.

Proof. The conclusion follows from the premise because all values 1
which do not satisfy the rectangle-rule (1.3) remain in the grid that
is extended by one or more values 1.

The iterative Algorithm 1.3 utilizes Theorem 1.1. Using the function
GenPerm() shown in Algorithm 1.2 of Subsection 1.2.2, successively

Search Space Restriction 25

Table 1.3. Iterative generation of grids G5,5 and G6,6 for �xed numbers
of values 1; all time measurements are given in milliseconds

number G5,5 number G6,6

of 1s correct incorrect time of 1s correct incorrect time

0 1 0 0 0 1 0 0

1 25 0 0 1 36 0 0

2 300 0 0 2 630 0 0

3 2,300 0 0 3 7,140 0 0

4 12,550 100 0 4 58,680 225 0

5 51,030 2,100 16 5 369,792 7,200 31

6 156,500 20,600 15 6 1,837,392 110,400 203

7 357,100 123,600 47 7 7,274,880 1,072,800 1,279

8 582,225 499,350 94 8 22,899,240 7,361,100 3,105

9 627,625 1,415,350 171 9 56,508,480 37,634,800 9,048

10 388,440 2,880,320 172 10 106,441,776 147,745,080 20,997

11 108,000 4,349,400 125 11 146,594,016 454,211,280 38,080

12 7,800 5,192,500 93 12 138,031,200 1,113,646,500 52,635

13 0 5,200,300 32 13 79,941,600 2,230,848,000 54,350

14 23,976,000 3,772,234,200 41,870

15 2,769,120 5,565,133,440 25,678

16 64,800 7,307,807,310 13,837

17 0 8,597,496,600 7,145

complete time: 765 268,258

all subspaces for a �xed number n1 of values 1 are evaluated in line
4 of Algorithm 1.3. There cannot be a rectangle-con�ict for 3 or less
values 1. Hence, the variable n1 is initialized with the value 3 in
line 1 of Algorithm 1.3. Due to the monotony property, the repeated
invocation for a successively incremented number n1 of values 1 within
the repeat-until-loop in lines 2 to 5 is �nished when a completely
evaluated subspace does not contain any rectangle-free grid indicated
by nop = 0. The searched value maxrf(m,n) is equal to the largest
number of n1 with nop > 0 which is assigned in line 6 of Algorithm
1.3.

Table 1.3 shows experimental results of Algorithm 1.3 for the grids
G5,5 and G6,6. We added the values of rectangle-free grids for the
cases n1 = 0, . . . , 3 for completeness. The other values in the columns
correct are the results nop of the function GenPerm() called in line 4 of
Algorithm 1.3. The wanted result maxrf(m,m) is indicated as bold

26 Boolean Rectangle Problem

number in the columns number of 1s. The numbers of grid patterns
which do not satisfy the rectangle-rule (1.3) are shown in the columns
incorrect. These values are calculated by(

m ∗ n
n1

)
− nop(n1) . (1.10)

These numbers of incorrect grid patterns grow both absolutely and
relatively with regard to the correct grid patterns for growing numbers
of values 1 in the grid patterns.

The comparison of the results in Tables 1.1 and 1.3 reveals the e�-
ciency of Algorithm 1.3. The time to �nd the value maxrf(5, 5) = 12
is reduced from 83,616 milliseconds for the complete evaluation using
Algorithm 1.1 to 765 milliseconds for the successive evaluation of or-
dered subspaces using Algorithm 1.3. This is an improvement factor
of 109.3.

In addition to the achieved speed-up the BRP could be solved for
larger grids using Algorithm 1.3. Restricted by the available memory
the largest solvable quadratic grid of the complete evaluation using
Algorithm 1.1 is G5,5. The successive evaluation of ordered subspaces
using Algorithm 1.3 allows to �nd the value maxrf(6, 6) = 16. That
means that the evaluated set of grid pattern is improved from 25∗5 to
26∗6 so that a 211 = 2, 048 times larger set of grid patterns could be
successfully evaluated.

1.2.4. Restricted Evaluation of Ordered Subspaces

It is the aim of our e�orts to �nd the maximal value maxrf(m,n) of
values 1 of grid patterns which does not violate the rectangle-free con-
dition (1.3). For this purpose the number of such maximal rectangle-
free grids is not required. When we evaluate a subspace of a �xed
number of values 1, it is su�cient to know whether there is either at
least one or no rectangle-free grid pattern.

If there is at least one rectangle-free grid pattern of n1 values 1, the
subspace with n1 ← n1 + 1 must be evaluated. In the case that a
subspace of n1 values 1 does not contain any allowed grid pattern,

Search Space Restriction 27

no larger subspace can contain a rectangle-free grid pattern due to
Theorem 1.1. Hence, the implementation of the restricted evaluation
of subspaces requires only a slightly change of Algorithm 1.2 into
Algorithm 1.4.

Algorithm 1.3 can be reused such that the invocation of

GenPerm(m,n, n1, level, next, nop)

(Algorithm 1.2) is replaced by the invocation of

GenPermRestrict(m,n, n1, level, next, nop)

(Algorithm 1.4).

Algorithm 1.4 extends Algorithm 1.2 only in line 3 by the additional
condition: AND nop = 0. This additional condition allows the ter-
mination of Algorithm 1.4 when the �rst rectangle-free grid pattern
of n1 values 1 is found. The bene�t of this approach is that only the
subspace of the smallest number of values 1 without any rectangle-free
grid pattern must be completely evaluated.

Table 1.4 shows the experimental results. The numbers of calculated
grids are given in the columns calculated of Table 1.4. The comparison
between the complete case of Subsection 1.2.3 with the restricted case
of this subsection for the gridG6,6 shows the strong improvement. The
needed time is concentrated to the subspace of the smallest number of
values 1 for which no rectangle-free grid pattern exists. The restricted
ordered evaluation of subspaces reduces the runtime for the grid G6,6

by a factor of 36.6 in comparison to the already improved approach
of the complete ordered evaluation of subspaces.

Using the suggested restricted ordered evaluation of subspaces it was
possible to �nd the value maxrf(7, 7) = 21. The evaluated set of grid
patterns is extended from 25∗5 to 27∗7 in comparison with the basic
approach; a set could be successfully evaluated that is

224 = 16, 777, 216 = 1.678 ∗ 107

times larger.

We used the program that implements the approach of the restricted
ordered subspaces of Subsection 1.2.4 for solving the BRP of grids

28 Boolean Rectangle Problem

Algorithm 1.4 GenPermRestrict(m,n, n1, level, next, nop)

Require: number of rows m, number of columns n of the grid Gm,n,
number of values 1, n1 > 0 that must be assigned to the grid Gm,n,
number level of already assigned values 1, and position next for
the next assignment

Ensure: nop: number of all rectangle-free permutations of n1 values
1 in the grid Gm,n

1: pmax← m ∗ n
2: pos← next
3: while pos ≤ pmax− n1 + level AND nop = 0 do
4: repeat

5: if pos > next then
6: G[(pos− 1)/n, (pos− 1) mod n]← 0 . reset to 0
7: end if

8: G[pos/n, pos mod n]← 1 . assign a 1
9: conflict← crc((pos/n), (pos mod n)) . check condition
10: pos← pos+ 1 . select next grid position
11: until pos > pmax− n1 + level OR conflict = false
12: if conflict = true AND pos ≥ pmax− n1 + level then
13: return nop . no further rectangle-free grid
14: end if

15: if level < n1 − 1 then
16: nop← GenPerm(m,n, n1, level + 1, pos, nop) . recursion
17: else if con�ict = false then
18: nop← nop+ 1 . correct grid pattern of n1 values 1
19: end if

20: end while

21: return nop . nop correct grid patterns of n1 values 1

Gm,n. We restricted the runtime in this experiment to about 10 min-
utes and the number of rows tom = 9. The results are shown in Table
1.5.

1.2.5. Analysis of the Suggested Approaches

We investigated several restrictions of the search space to solve the
Boolean rectangle problem (BRP). The simple task of counting the

Search Space Restriction 29

Table 1.4. Restricted iterative generation of grids G6,6 and G7,7 for �xed
numbers of values 1; the time is measured in milliseconds

G6,6 G7,7

number complete restricted number restricted

of 1s calculated time calculated time of 1s calculated time

0 1 0 1 0 0 1 0

1 36 0 1 0 1 1 0

2 630 0 1 0 2 1 0

3 7,140 1 1 0 3 1 0

4 58,680 5 1 0 4 1 0

5 369,792 34 1 1 5 1 0

6 1,837,392 193 1 0 6 1 0

7 7,274,880 873 1 0 7 1 0

8 22,899,240 3,144 1 0 8 1 0

9 56,508,480 9,129 1 0 9 1 0

10 106,441,776 21,171 1 0 10 1 0

11 146,594,016 38,361 1 0 11 1 0

12 138,031,200 52,982 1 3 12 1 0

13 79,941,600 54,774 1 2 13 1 0

14 23,976,000 42,197 1 2 14 1 47

15 2,769,120 26,664 1 1 15 1 47

16 64,800 14,183 1 132 16 1 31

17 0 7,293 0 7,262 17 1 31

18 1 16

19 1 6,630

20 1 44,819

21 1 26,660

22 0 1,638,837

complete time: 271,006 7,404 1,717,118

number of values 1 required to �nd the value of maxrf(m,n) is very
time-consuming. In the basic approach this task is restricted to 6.84
percent of the grid patterns G5,5 that satisfy the rectangle-free con-
dition. Utilizing the ternary representation of the rectangle-free grid
patterns even only 0.65 percent of all grid patterns must be really
counted. Hence, the utilization of XBOOLE reduces the runtime by
a factor of more than 100. Restricted by the memory space of 2 GB,
the largest solved grid is G5,5 for which 25∗5 ≈ 3.4 ∗ 107 di�erent grid
patterns exist.

As a second complete approach we combined the utilization of rule

30 Boolean Rectangle Problem

Table 1.5. Maximal numbers of values 1 in grids Gm,n of m rows and n
columns calculated within about 10 minutes using the approach
of restricted evaluation of ordered subspaces

m n

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 4 6 7 8 9 10 11 12 13 14 15 16

4 5 7 9 10 12 13 14 15 16 17

5 6 8 10 12 14 15 17 18

6 7 9 12 14 16 18 19

7 8 10 13 15 18 21

8 9 11 14 17 19

9 10 12 15 18

con�icts with the evaluation of ordered subspaces. Here we replaced
the counting procedure by the generation of grid patterns of a �xed
number of values 1. Using Theorem 1.1 the evaluation of subspaces
with more than maxrf(m,n) + 2 values 1 can be completely omitted.
The utilization of rule con�icts restricts the e�ort to decide whether
the evaluated grid pattern is rectangle-free or not because one detected
con�ict is su�cient to exclude the pattern from the solution set. The
joint use of these two methods reduces the runtime for the grid G5,5

by a factor of more than 100. Using this approach maxrf(6, 6) = 16
could be calculated for the quadratic grid G6,6 for which 26∗6 ≈ 6.9 ∗
1010 di�erent grid patterns exist.

As �nal restriction of the search space we evaluated the grid pat-
terns of a subspace of a �xed number of values 1 only until the
�rst rectangle-free grid is found. In this way in less than 10 min-
utes maxrf(7, 7) = 21 could be calculated for the quadratic grid G7,7

for which 27,7 ≈ 5.6 ∗ 1014 di�erent grid patterns exists.

Taking into account the achieved improvement of more than seven
orders of magnitude, we can conclude that the restriction of the search
space is a powerful method. However, the restricted resources of the
computers and the exponential increase of the number of di�erent
grid pattern depending on the numbers of rows and columns limit the
application of this approach.

The Slot Principle 31

1.3. The Slot Principle

Bernd Steinbach Christian Posthoff

1.3.1. Utilization of Row and Column Permutations

We learned in Section 1.2 both the bene�t of recursively generated grid
patterns and the time limit of this procedure due to the exponential
complexity. It is our aim to improve this time-consuming process
without loss of the exact solution of maxrf(m,n) by utilization of
permutations of rows and columns. One possible approach is the
application of the slot principle. Before we give a formal de�nition
of this term within a grid, we explain both the procedure to create a
slot and the bene�ts of a slot for the remaining recursive generation
of grid patterns.

We assume that a grid pattern is partially �lled with values 1 without
violating the rectangle-free rule (1.3). In such a grid we can count the
numbers of values 1 for each row. This horizontal checksum must be
maximal for one or several rows. We select in the set of rows with
the maximal horizontal checksum one row and exchange its position
with the top row r1 of the grid. The result of the rectangle-free rule
(1.3) remains unchanged for the grid patterns before and after this
permutation of rows.

A result of this exchange of rows is a unique maximal number of values
1 in the �rst row r1. As next we swap the columns of the grid such
that all values 1 of the row r1 are located in the leftmost columns.
This permutation of columns does not change neither the horizontal
checksums of the grid nor the result of the rectangle-free rule (1.3).
We call the horizontal checksum of row r1 slot width sw1. In this way
we have created the slot s1 that is the leftmost subgrid of sw1 columns
c1 to csw1

. The head row of the slot is completely �lled with values 1.

There are two bene�ts of the slot s1 for the remaining recursive gen-
eration of grid patterns:

32 Boolean Rectangle Problem

1. not more than a single value 1 can be assigned in the rows ri with
1 < i ≤ m to the elements xri,c1 , . . . , xri,csw1

without violating
the rectangle-free rule (1.3) of the grid, and

2. no value 1 can be assigned in the �rst row right of the slot s1 to
the grid elements xr1,ck , . . . , xr1,cn , where k = sw1 + 1.

Further slots si+1, i ≥ 1, can be created within the columns of the
grid which are not covered by the slots s1, . . . , si. Values 1 located
in the slots s1, . . . , si are not used for the selection of the maximal
horizontal checksum of si+1. The head row of slot si+1 is located in
row ri+1. All elements in the slot si+1 above its head row are equal
to 0.

De�nition 1.1 (slot, slot width, head row). A slot is a set of columns
ck of a grid Gm,n which meet the following properties:

1. each of the n columns is assigned exactly to one slot of the grid,

2. the columns of a slot are located within a closed interval,

3. the slots si, i ≥ 1 are enumerated from the left to the right within
the grid,

4. the number of columns in the slot si is called slot width swi,

5. the slots are ordered based on their slot width such that swi ≥
swj for i < j,

6. all swi elements of the slot si in the row ri are equal to 1; this
row is called head row of the slot, and

7. all elements of the slot si in rows rj, j < i are equal to 0.

Figure 1.4 shows how the slots of a grid G4,5 given in Figure 1.4
(a1) will be constructed. The horizontal checksums are determined
by counting the values 1 in a row of the grid and represented at the
right of the grid in Figure 1.4 (a1). The maximal horizontal checksum
3 appears twice in rows r2 and r3. Each of these rows can be chosen
as head row. We select row r2 and exchange it with row r1 as shown

The Slot Principle 33

c1 c2 c3 c4 c5
r1
r2
r3
r4

1 1 0 0 0
0 1 1 1 0
1 0 1 0 1
0 0 1 0 0

2
3
3
1

c1 c2 c3 c4 c5
r1
r2
r3
r4

1 1 1 0 0
0 1 0 1 0
0 0 1 1 1
0 0 1 0 0

0
1
2
0

c1 c2 c3 c4 c5
r1
r2
r3
r4

0 1 1 1 0
1 1 0 0 0
1 0 1 0 1
0 0 1 0 0

3
2
3
1

c1 c2 c3 c4 c5
r1
r2
r3
r4

1 1 1 0 0
0 0 1 1 1
0 1 0 1 0
0 0 1 0 0

0
2
1
0

c1 c2 c3 c4 c5
r1
r2
r3
r4

1 1 1 0 0
0 1 0 1 0
0 0 1 1 1
0 0 1 0 0

3
2
3
1

c1 c2 c3 c4 c5
r1
r2
r3
r4

1 1 1 0 0
0 0 1 1 1
0 1 0 1 0
0 0 1 0 0

0
2
1
0

(a1) horizontal checksums s1 (b1) horizontal checksums s2

(a2) r1 ⇔ r2, sw1 = 3 (b2) r2 ⇔ r3, sw2 = 2

(a3) s1, c1 ⇔ c4 (b3) s1 s2

Figure 1.4. Creating slots within a grid G4,5: (ai) slot s1, (bi) slot s2.

in Figure 1.4 (a2). The slot width sw1 = 3 for the slot s1 is equal to
the horizontal checksum of the new row r1. As �nal step to create
the slot s1 the columns must be swapped such that all values 1 in the
head row of slot 1 are located at the left of the grid. This is realized
by exchanging the columns c1 and c4. The thick lines in Figure 1.4
(a3) emphasize the slot s1 with a slot width of sw1 = 3 and its head
row.

The same procedure is used to create the slot s2. As can be seen
in Figure 1.4 (b1), the horizontal checksums are only counted in the
remaining columns c4 and c5. The row with the maximal horizontal
checksum 2 must be used as row r2 for slot s2 with a slot width of
sw2 = 2. Therefore the complete rows r2 and r3 are exchanged as
shown in Figure 1.4 (b2). In this case the head row of slot s2 is
ordered as required as closed interval of values 1. Hence, no further
modi�cations are necessary. Both the slot s1 and the slot s2 have
been emphasized by thick lines in Figure 1.4 (b3).

34 Boolean Rectangle Problem

1.3.2. The Head of Maximal Grids

The head row uniquely identi�es a slot by the values 1 which are not
elements of a slot of a lower number. All head rows together specify
the head of a grid .

De�nition 1.2 (head of a grid). The head of a grid is built by all
elements 1 of the head rows of all slots of a grid.

We are searching for grids which contain maxrf(m,n) values 1. Such
grids require maximal heads.

Theorem 1.2. A maximal head of the grid Gm,n contains n values 1
distributed over all n columns of the grid and the rows ri, 1 ≤ i ≤ ns,
where ns is the number of slots.

Proof. The number of values 1 of the grid Gm,n cannot be maximal
in the case that the head of the grid contains less than n values 1.
At least one additional value 1 can be assigned to each column of the
grid which does not belong to the grid head because a single value 1
in a column of a grid cannot violate the rectangle-free rule (1.3).

Such additional values 1 cause either extensions of the given slots or
new slots such that the head of the maximal head of the grid contains
n values 1 distributed over all n columns of the grid.

Due to Theorem 1.2, a maximal head of a grid Gm,n contains a single
value 1 within each of the n columns. There are

nsoc =

(
m

1

)n
= mn (1.11)

di�erent grid patterns which contain exactly a single value 1 within
each of the n columns. These mn grids can be transformed into an
extremely smaller number of maximal heads using the allowed per-
mutations of rows and columns.

The number of all grid heads ngh is equal to the sum of all partitions

The Slot Principle 35

P (n, k) of the n columns into k parts:

ngh =

n∑
k=1

P (n, k) . (1.12)

Algorithm 1.5 utilizes the slot concept to �nd the maximal number
maxrf(m,n) of values 1 of all rectangle-free grids Gm,n. The main
task of Algorithm 1.5 is the generation of all grid heads which can be
extended to rectangle-free grids Gm,n. The used function

ExtendSlotBodies(nmax, na)

solves the subtask of �nding the maximal assignment of values 1 to
the bodies of the slots.

All possible maximal grid heads are constructed by Algorithm 1.5 di-
rectly within the grid Gm,n. This grid of m rows and n columns must
be initialized with values 0 on all positions. The recursive Algorithm
1.5 is called on the top level by GenMaxGrid(1, n, 1, 0). The �rst pa-
rameter 1 means that the slot number 1 with row r1 as head row must
be constructed. The second parameter n means that the �rst gener-
ated slot has a slot width of sw of all n columns. The third parameter
1 means that the slot begins in the column number 1, and the last
parameter 0 is used as initial value of nmax. The variable nmax holds
at each point of time the so far known maximal number of values 1
within a rectangle-free grid of the explored size.

The break of the recursion of Algorithm 1.5 is organized in lines 1 to 6.
The so far generated grid head cannot be extended by an additional
slot when the condition of line 1 is satis�ed. A maximal grid head is
generated if both the condition of line 1 and the condition of line 2
are satis�ed. In this case, the maximal extension of the bodies of the
slots is calculated in line 3. The so far found maximal number nmax
of values 1 is returned to the next higher level of the recursion in line
5.

The for-loop in lines 8 to 11 creates a single slot head of the requested
slot width sw in the row of the index hr starting in the column of the

36 Boolean Rectangle Problem

Algorithm 1.5 GenMaxGrid(hr, sw, first1, nmax)

Require: hr: index of the head row
Require: sw: slot width
Require: first1 �rst column to which a value 1 must be assigned
Require: nmax: so far known maximal number of assignments 1
Require: na: number of assignments 1, initialized with n
Require: m: number of rows of the grid Gm,n
Require: n: number of columns of rows of the grid Gm,n
Require: Gm,n in which all elements are initialized with values 0
Ensure: maxrf(m,n)
1: if hr > m then . no more head row
2: if first1 > n then . slots cover all columns
3: nmax ← ExtendSlotBodies(nmax, na)
4: end if

5: return nmax
6: end if

7: last1← first1
8: for i← 1 to sw do

9: Gm,n[hr, last1]← 1 . create slot head
10: last1← last1 + 1
11: end for

12: if last1 ≤ n then . next slot head
13: nsw ← Minimum(n− last1 + 1, sw)
14: nmax ← GenMaxGrid(hr + 1, nsw, last1, nmax)
15: else . extend slot bodies
16: nmax ← ExtendSlotBodies(nmax, na)
17: end if

18: for last1← first1 + sw − 1 downto 1 do
19: Gm,n[hr, last1]← 0 . reduce slot head by one column
20: if last1 > first1 then . next grid head
21: nsw ← Minimum(n− last1, last1− first1)
22: nmax ← GenMaxGrid(hr + 1, nsw, last1, nmax)
23: end if

24: end for

25: maxrf(m,n)← nmax
26: return maxrf(m,n)

index first1. If the number of the last column of the created slot is
less than the number of columns n then the next slot will be created

The Slot Principle 37

by a recursive invocation of Algorithm 1.5 using:

• the row hr + 1 as index of the head row,

• the maximal next slot width nsw that satis�es item 5 of De�ni-
tion 1.1, and

• the next unused column of the index last1 as �rst column of the
next slot, and

• the so far known maximal number nmax of values 1 within a
rectangle-free grid.

The next slot width nsw is determined in line 13 of Algorithm 1.5 as
the minimum of the last used slot width sw and the number of remain-
ing columns n − last1 + 1. If the created slots cover all columns the
completed grid head is used for �nding maximal grids in the function
ExtendSlotBodies(nmax, n).

In the for-loop in lines 18 to 24 the recursive creation of all further
possible maximal grid heads is organized. In order to do this the slot
head that belongs to the level of recursion is reduced by one column
in line 19 of Algorithm 1.5. The recursion must stop when the actual
slot width is reduced to 0 as realized in the if -statement in line 20
of Algorithm 1.5. The decremented value of last1 causes di�erent
next slot widths nsw within the loop. The recursive invocation of
Algorithm 1.5 in line 24 assures the generation of all maximal grid
heads.

The variable nmax carries the searched value maxrf(m,n) if the for-
loop in lines 18 to 24 is �nished on the highest level of the recursion.
Hence, this nmax is assigned tomaxrf(m,n) in line 25 of and returned
in line 26 as result of the Algorithm 1.5.

Figure 1.5 shows the sequence of all �ve maximal grid heads of the
grid G4,4. It can be seen how the slot of index i is reduced successively
to allow the creation of the slot of index i+ 1. The slot width of the
slot of index i + 1 is restricted by both the slot width of the slot of
index i and by the remaining columns.

38 Boolean Rectangle Problem

1 1 1 1

0 0 0 0
0 0 0 0
0 0 0 0

1 1 1
0 0 0

0 0 0 0
0 0 0 0

0
1

1 1
0 0

0 0 0 0
0 0 0 0

0 0
1 1

1 1
0 0
0 0 0
0 0 0 0

0 0
1 0

1

1
0
0 0
0 0 0

0 0 0
0 0

0
1

1
1

grid head 1 grid head 2 grid head 3 grid head 4 grid head 5

s1 s1 s2 s1 s2 s1 s2 s3 s1 s2 s3 s4

Figure 1.5. Sequence of all maximal grid heads of G4,4.

The creation of the grid heads solves only a subtask of maximal
rectangle-free grids. However, this utilization of permutations of both
rows and columns strongly restricts the number of grids which must
be evaluated.

Table 1.6 shows that all 2.05891∗1044 possible assignments of a single
value 1 to each column of a grid G30,30 can be transferred into only
5, 604 grid heads by permutations of rows and columns. Hence, the
grid heads save in this case the evaluation of more than 2∗ 1044 grids.
Algorithm 1.5 creates all grid heads for grids up to m = 30 rows and
n = 30 columns in less than one second. It should be mentioned that
Algorithm 1.5 is not restricted to square grids but it can be used to
generate all grid heads for any number of rows and columns very fast.

1.3.3. The Body of Maximal Grids

Figure 1.5 shows that the values 1 of each head of a maximal grid
separate values 0 in the north-east of the grid from values 0 in the
south-west of the grid. The north-east region is empty in the special
case of grid head 1. Due to item 7 of De�nition 1.1, no value 1 can be
assigned within the north-est region above the head of a grid. This
property strongly reduces further construction e�orts.

In order to �nd maxrf(m,n) of the grid all heads must be extended
as much as possible by values 1. The number of values 0 in the north-
east region above the head of a quadratic grid grows from 0 for the
grid head of a single slot to n∗ (n−1)/2 for the grid head of the main
diagonal strip. Hence, up to 2n∗(n−1)/2 assignments of values 1 can
be skipped which is 8.8725∗10130 for one grid head of the grid G30,30.

The Slot Principle 39

Table 1.6. Grid heads of all quadratic grids up tom = 30 rows and n = 30
columns with a single value 1 in each column calculated with
Algorithm 1.5

number of time in
m n all mn grids grid heads milliseconds

1 1 1 1 1
2 2 4 2 1
3 3 27 3 1
4 4 256 5 1
5 5 3, 125 7 1
6 6 46, 656 11 2
7 7 823, 543 15 2
8 8 16, 777, 216 22 3
9 9 387, 420, 489 30 3
10 10 1.00000 ∗ 1010 42 4
11 11 2.85312 ∗ 1011 56 4
12 12 8.91610 ∗ 1012 77 5
13 13 3.02875 ∗ 1014 101 8
14 14 1.11120 ∗ 1016 135 10
15 15 4.37894 ∗ 1017 176 16
16 16 1.84467 ∗ 1019 231 19
17 17 8.27240 ∗ 1020 297 25
18 18 3.93464 ∗ 1022 385 31
19 19 1.97842 ∗ 1024 490 41
20 20 1.04858 ∗ 1026 627 53
21 21 5.84259 ∗ 1027 792 73
22 22 3.41428 ∗ 1029 1,002 109
23 23 2.08805 ∗ 1031 1,255 122
24 24 1, 33374 ∗ 1033 1,575 162
25 25 8.88178 ∗ 1034 1,958 201
26 26 6.15612 ∗ 1036 2,436 267
27 27 4.43426 ∗ 1038 3,010 334
28 28 3.31455 ∗ 1040 3,718 422
29 29 2.56769 ∗ 1042 3,718 529
30 30 2.05891 ∗ 1044 5,604 687

It remains the south-west region below the grid head for additional
assignments of values 1 to �nd maximal grids. We call this region
body of a grid .

40 Boolean Rectangle Problem

De�nition 1.3 (body of a slot, body of a grid). All elements below
the head row of a slot are called body of the slot. The body of the

grid is the union of all bodies of the slots of the grid.

The number of values 1 within a rectangle-free slot si is limited by
swi +m− i.

Theorem 1.3. A rectangle-free grid cannot contain more than a sin-
gle value 1 within any row of the body of a slot.

Proof. The head row of a slot contains the value 1 in each column.
Two values 1 in any body row of a slot violate together with the �tting
values 1 in the head of the slot the rectangle-free rule (1.3).

Theorem 1.3 provides a further strong restriction of the e�ort to con-
struct maximal rectangle-free grids. The slot si, i ≥ 1, with a slot
width swi of a grid of m rows contains (m− i) body rows and there-
fore swi ∗ (m− i) body elements. According to Theorem 1.3 at most
(m− i) values 1 can be assigned in the body of this slot. Hence, the
number of possible assignments of values 1 to the body of the slot si
can be reduced by a factor of at least 2(swi−1)∗(m−i) which is equal to
1.4663 ∗ 10253 for a single slot of the grid G30,30.

The extreme reduction can be improved furthermore because the
columns within a slot can be exchanged. Hence, the topmost value 1
within the body of a slot can be located in the leftmost column of the
slot. In this way swi possible assignments of this topmost value 1 are
reduced to a single assignment. Additional assignments of values 1
below this topmost assignment can be located in the leftmost column
of the slot, too. However, two values 1 in one column of a slot can
cause, together with two values 1 within a single column of another
slot, a violation of the rectangle-free rule (1.3).

Such a violation can be avoided by moving the value 1 in the lower
row into a so far unused column of the slot. Usable target columns are
such columns of the slot which contain no value 1 in the body. Due
to the possible permutation of slot columns we use in this case the
leftmost possible slot column which additionally restricts the possible
assignments.

The Slot Principle 41

Algorithm 1.6 ExtendSlotBodies(nmax, na)

Require: nmax: so far known maximal number of assignments 1
Require: na: number of rectangle-free assignments 1
Require: G: grid Gm,n of m rows and n columns, initialized by a

maximal grid head
Ensure: se: vector that contains the index of the last column of each

slot
Ensure: la: matrix initialized by values -1, for last assignments of

values 1 within the slot bodies
Ensure: nmax: so far known maximal number of assignments 1
Ensure: ns: the number of slots of the grid Gm,n
1: for k ← 1 to n do
2: se[k]← −1 . initial value of slot ends
3: end for

4: for i← 1 to m do

5: for k ← 1 to n do
6: la[i, k]← −1 . initial value of last assignments
7: end for

8: end for

9: i← 1 . row index
10: ns ← 0 . number of slots
11: while (i < m) and (se[i] < n) do
12: if i = 1 then . left slot
13: se[i]← 0
14: else . other slots
15: se[i]← se[i− 1]
16: end if

17: while (i ≤ m) and (se[i] ≤ n) and (G[i, se[i]] = 1) do
18: se[i]← se[i] + 1
19: end while

20: ns ← ns + 1
21: end while

22: nmax ← MaxFillUp(2, 1, nmax, na)
23: return nmax

The utilization of these sources for improvements requires an easy
access to information about the columns on the right-hand side of each
slot and the rightmost assignments within the slots. Algorithm 1.6
prepares this information which are used in the recursive Algorithm

42 Boolean Rectangle Problem

1 1 1 0 0 0 0 0
b13 1 1 0 0 0
b12 b11 1 1 0
b10 b9 b8 1
b7 b6 b5 b4
b3 b2 b1 b0

ns = 4

nbrs = 14

Figure 1.6. Enumeration of the body rows in the grid G6,8 with 4 slots.

1.7. The vector se is initialized by values −1 in the for-loop in lines
1 to 3. Similarly, the matrix la is initialized by values −1 in the for-
loops in lines 4 to 8. The information about the end of the slots is
taken from the generated grid head of Gm,n. Within the while-loop
in lines 11 to 21 both the values of the slot ends se and the number
of slots nos are assigned.

An initial value se[i] is assigned in the alternative in lines 12 to 16.
The required value of se[i] is built by counting the values 1 of the slot
i of Gm,n in the while-loop in the lines 17 to 19. Finally, the function
MaxFillUp(2, 1, nmax, na) of the recursive Algorithm 1.7 is called.

The �rst parameter 2 of the function MaxFillUp(2, 1, nmax, na) selects
row 2 as the topmost body row of the �rst slot. The second parameter
1 speci�es the slot in which the additional value 1 can be assigned.
The third parameter is the maximal number of values 1 known so far
for the rectangle-free grid Gm,n. The �nal parameter na is the number
of assigned values 1 in the actually evaluated grid Gm,n.

Algorithm 1.7 assigns as much as possible values 1 in the body of the
grid. This algorithm must �nd maximal additional assignments of
values 1 to a given grid head. This is achieved in a smart restricted
manner based on Theorem 1.3. The number of body rows of all slots
nbrs is equal to

nbrs =
ns ∗ (ns − 1)

2
+ ns ∗ (m− ns) , (1.13)

where ns is the number of slots.

Each body row of each slot can contain at most one single value 1.
The body rows bi can be ordered as shown in Figure 1.6. As basic

The Slot Principle 43

step we assign all binary numbers from 0 to 2nbrs − 1 to these body
rows using the row index bi as shown in Figure 1.6. These values 1
are assigned to the leftmost column of the associated body row of a
slot. If such an assignment causes a con�ict with the rectangle-free
rule (1.3) then we try to solve this con�ict by moving one assigned
value 1 within its body row to the right.

Algorithm 1.7 recursively realizes the assignment of the 2nbrs binary
numbers to the body rows of the slots. The core of this recursion is
separated in Algorithm 1.8. The invocation of Algorithm 1.8 in line 4
of Algorithm 1.7 ensures that the upper body rows of the slots carry
only values 0. For the example of Figure 1.6 the body rows in the
sequence b13, b12, . . . , b0 are �lled with values 0. The alternative of
lines 5 to 9 of Algorithm 1.7 selects the �rst column c of the actual
slot.

Within the repeat-until-loop in lines 10 to 33, a single value 1 is
assigned to the body row of a slot in line 11 selected by the level
of recursion. The �rst value 1 is assigned to the body row b0 in
the example of Figure 1.6. Such an assignment is counted by na in
line 12. The used column is stored in the matrix la in line 13. The
value 1 assigned to the grid in line 11 can cause for slots si, i > 1, a
rectangle-free con�ict which is checked by the function crc(r, c) in line
14. The check for rectangle-free con�icts is restricted in this function
to rectangles which contain the position (r, c) of the new assigned
value 1.

In the case that the rectangle-free condition (1.3) is violated by the
assigned value 1, this assignment is withdrawn in lines 15 to 17. In
such a case the next column to the right within the body row of the
slot is selected for an alternative assignment of the value 1 in line 18.

If there is no possible column, as checked in line 19, the recursion
will be broken in line 20. Otherwise the next possible assignment of a
value 1 within the body row of the slot is induced by the continue-
statement for the repeat-until-loop in line 22. The break of the
recursion in line 20 can occur on a high level of the recursion and
restricts the necessary evaluation of the search space signi�cantly.

In the case that the rectangle-free condition (1.3) is not violated, a new

44 Boolean Rectangle Problem

Algorithm 1.7 MaxFillUp(r, s, nmax, na)

Require: all variables as introduced in Algorithm 1.6
Require: r: index of the row of the actual recursion
Require: s: index of the slot of the actual recursion
Ensure: nmax: the so far known maximal number of assignments 1
1: if r > m then . break of the recursion
2: return nmax
3: end if

4: nmax ← NextSlot(r, s, nmax, na)
5: if s = 1 then . select the column for the next assignment
6: c← 1
7: else

8: c← se(s− 1) + 1
9: end if

10: repeat

11: G[r, c]← 1 . assign value 1
12: na ← na + 1
13: la[r, s]← c . remember the column
14: if s > 1 and crc(r, c) then . rectangle con�ict?
15: G[r, c]← 0 . replace assigned 1 by 0
16: na ← na − 1
17: la[r, s]← −1 . restore initial value
18: c← c+ 1 . next column
19: if (c > la[r − 1, s] + 2) or (c > se[s]) then
20: return nmax . no more possible column
21: else

22: continue . try assignment in next column
23: end if

24: end if

25: if na > nmax then . larger rectangle-free grid
26: nmax ← na
27: end if

28: nmax ← NextSlot(r, s, nmax, na)
29: G[r, c]← 0 . replace assigned 1 by 0
30: na ← na − 1
31: la[r, s]← −1 . restore initial value
32: c← c+ 1 . next column
33: until (c > la[r − 1, s] + 2) or (c > se[s])
34: return nmax

The Slot Principle 45

maximal assignment of values 1 can be found. This will be checked in
line 25. In the successful case the new maximal value of assigned val-
ues 1 is remembered in line 26. Thereafter, the recursive assignment
of a value 1 in the remaining slots is initiated in line 28. If a con�ict
with the rectangle-free rule happens in this part of the recursion, an
alternative assignment in the actual body row is prepared in lines 29
to 32 as in the case of a direct con�ict in lines 15 to 18.

Table 1.7. Early break of the recursion in Algorithm 1.7 due to the
rectangle-free condition for the Grids G8,8, G9,9, and G10,10

number of number of detected con�icts for grid
assigned values 1 G8,8 G9,9 G10,10

10 0 0 0
11 137 0 0
12 1117 275 0
13 5298 2634 565
14 14924 16066 6689
15 40351 73595 48796
16 82225 227264 262336
17 153122 541870 1187941
18 206705 1267637 4202340
19 193196 2200083 11511211
20 117481 3836481 25336356
21 105632 5063619 53319506
22 87276 5327652 86332581
23 35345 3771029 145781391
24 6266 1854612 191922194
25 698 1212354 220620600
26 0 814065 186319424
27 0 294390 115718047
28 0 56279 53227679
29 0 5597 27424287
30 0 332 15174190
31 0 0 6060258
32 0 0 1444707
33 0 0 175683
34 0 0 10824
35 0 0 635
36 0 0 0

46 Boolean Rectangle Problem

Table 1.7 reveals the bene�t of the early break of the recursion in
cases of violations of the rectangle-free condition using the quadratic
grid G8,8, G9,9, and G10,10 as example. A violation of the rectangle-
free condition (1.3) cannot occur when values 1 are only assigned to
the grid head. Any two additionally assigned values 1 cannot cause a
violation of the rectangle-free condition (1.3), because these two values
1 are either in di�erent body rows of the same slot or in body rows of
di�erent slots. Three additional values can can cause together with
a value 1 of the slot i + 1 a violation of the rectangle-free condition
(1.3) when two of them are located in the same column of slot i, and
the third value 1 is assigned to a body row of slot i + 1. Due to this
property, the �rst break of the recursion appears for n + 3 assigned
values 1. The break of the recursion on this very early level strongly
restricts the search space.

Table 1.7 shows that the number of breaks of the recursion grows for
increased numbers of assigned values 1. Both the already restricted
search space and the larger number of values 1 which may cause a
con�ict are the reasons that the number of con�icts decreases when
the number of assigned values 1 surpasses a given limit. The maximal
numbers of values 1 of rectangle-free grids are maxrf(8, 8) = 24,
maxrf(9, 9) = 29, and maxrf(10, 10) = 34 (see Table 1.8). Table 1.7
shows that each additional assignment of a value 1 to grids with these
values maxrf(m,n) causes a break of the recursion on the deepest
level.

Algorithm 1.8 organizes the recursive invocation of Algorithm 1.7 for
all body rows of a grid. The number of body rows of the slots grows
from 1 to ns − 1 in the rows from 2 to the number of slots ns. Figure
1.6 shows that the grid of ns = 4 slots contains in row 2 the single
body row b13, in row 3 two body rows b12 and b11, and in row 4 three
body rows b10, b9 and b8. The �rst summand of (1.13) describes this
number of body rows.

All rows ri with i > ns contain ns body rows. The second summand
of (1.13) expresses this part of the body rows. In Figure 1.6 these are
the four body rows b7, b6, b5, and b4 in row 5 and the four body rows
b3, b2, b1, and b0 in row 6, respectively. Therefore the recursion must
be distinguished between the range of the grid head and the remaining
other rows of the grid. Algorithm 1.8 makes this decision in line 1.

The Slot Principle 47

Algorithm 1.8 NextSlot(r, s, nmax, na)

Require: variables as introduced in Algorithm 1.7
Ensure: recursive invocation of function MaxFillUp(r, s, nmax, na)

for all body rows of all slots of a grid
Ensure: nmax: the so far known maximal number of assignments 1
1: if r ≤ ns then . within the head rows
2: if r − s < 2 then . �rst slot in the next row
3: nmax ← MaxFillUp(r + 1, 1, nmax, na)
4: else . next slot in the same row
5: nmax ← MaxFillUp(r, s+ 1, nmax, na)
6: end if

7: else . below the head rows
8: if ns − s < 2 then . �rst slot in the next row
9: nmax ← MaxFillUp(r + 1, 1, nmax, na)
10: else . next slot in the same row
11: nmax ← MaxFillUp(r, s+ 1, nmax, na)
12: end if

13: end if

14: return nmax

The recursion for the rows of the grid head is organized in lines 2 to
6 of Algorithm 1.8. If there is no more body row to the right of the
actual body row, Algorithm 1.7 is invoked for the �rst slot row of the
next row in line 3; otherwise the next slot to the right in the same
row is used in line 5 of Algorithm 1.7.

The recursion for the rows below the head rows of the grid is organized
in lines 8 to 12 of Algorithm 1.8. The index of the actual slot and
the number of slots are used in this case for the decision whether the
Algorithm 1.7 is invoked for the next slot of the same row in line 11
or the �rst slot of the next row in line 9.

1.3.4. Experimental Results

Both the achieved speedup and the extended successfully evaluated
grid size are measurements for the improvement. Using the approach
of the search space restriction of Section 1.2, it was possible to calcu-

48 Boolean Rectangle Problem

Table 1.8. maxrf(m,n) of quadratic rectangle-free grids utilizing the slot
principle; the time is measured in milliseconds

m n nv size of search space maxrf(m,n) time

2 2 4 1, 6000000 ∗ 101 3 0
3 3 9 5, 1200000 ∗ 102 6 32
4 4 16 6, 5536000 ∗ 104 9 32
5 5 25 3, 3554432 ∗ 107 12 47
6 6 36 6, 8719476 ∗ 1010 16 62
7 7 49 5, 6294995 ∗ 1014 21 468
8 8 64 1, 8446744 ∗ 1019 24 17,207
9 9 81 2, 4178516 ∗ 1024 29 503,522
10 10 100 1, 2676506 ∗ 1030 34 25,012,324

late maxrf(7, 7) = 21 for a grid G7,7 within 1,717,118 milliseconds.
Table 1.8 shows that the utilization of the slot principle with Algo-
rithms 1.5, 1.6, 1.7, and 1.8 reduces this runtime to only 468 millisec-
onds. Hence, the suggested slot principle reduces the runtime by a
factor of 3,669.

Furthermore, using the slot principle, maxrf(10, 10) = 34 could be
calculated for the grid G10,10. The search space of 27∗7 = 5, 63 ∗ 1014

for the grid G7,7 could be successfully extended to the search space of
210∗10 = 1, 27 ∗ 1030 which is an extension by a factor of 2.2518 ∗ 1015.

There can be several di�erent maximal grids of a �xed size with the
same value maxrf(m,n). Figure 1.7 on page 50 depicts in the upper
part examples for maximal quadratic grids from G2,2 to G10,10. Both
the emphasized slot structure and the distribution of the additional
values 1 in the bodies of the slots facilitate the comprehension of the
slot approach.

As a second experiment we calculated the values maxrf(m,n) for
grids up to 25 rows and 25 columns. We have chosen this number of
rows and columns due to the restricted width of Table 1.9 over the
full width of the page. All results of Table 1.9 are calculated within
seconds or few minutes.

The reached improvement can be measured by the maximal size of

The Slot Principle 49

Table 1.9. maxrf(m,n) of grids Gm,n calculated by the algorithms 1.5,
1.6, 1.7, and 1.8 which utilize the slot principle

n m

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
4 5 7 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
5 6 8 10 12 14 15 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
6 7 9 12 14 16 18 19 21 22 24 25 27 28 30 31 32 33 34 35 36 37 38 39 40
7 8 10 13 15 18 21 22 24 25 27 28 30 31 33 34 36 37 39 40 42 43 44 45 46
8 9 11 14 17 19 22 24 26 28 30 32 33 35 36 38 39 41 42 44 45 47 48 50 51
9 10 12 15 18 21 24 26 29 31 33 36
10 11 13 16 20 22 25 28 31 34
11 12 14 17 21 24 27 30 33
12 13 15 18 22 25 28 32 36
13 14 16 19 23 27 30 33
14 15 17 20 24 28 31 35
15 16 18 21 25 30 33 36
16 17 19 22 26 31 34 38
17 18 20 23 27 32 36 39
18 19 21 24 28 33 37 41
19 20 22 25 29 34 39 42
21 22 24 27 31 36 42 45
22 23 25 28 32 37 43 47
23 24 26 29 33 38 44 48
24 25 27 30 34 39 45 50
25 26 28 31 35 40 46 51

the search space for which maxrf(m,n) could be calculated. The
maximal successfully evaluated search space based on the search space
restriction of Section 1.2 is 27∗7 = 249 = 5.6295 ∗ 1014. The maximal
successfully evaluated search space in this limited approach of the slot
principle is 28∗25 = 2200 = 1.60694 ∗ 1060. Hence, the utilization of
the slot principle extends the successfully evaluated search space by
a factor of 2.8545 ∗ 1045. Figure 1.7 shows at the bottom a maximal
rectangle-free grid G8,25.

50 Boolean Rectangle Problem

1 1
1 0

G2,2

maxrf(2, 2) = 3

1 1 0
1 0 1
0 1 1

G3,3

maxrf(3, 3) = 6

1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1

G4,4

maxrf(4, 4) = 9

1 1 1 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

G5,5

maxrf(5, 5) = 12

1 1 1 0 0 0
1 0 0 1 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 1 1
0 0 1 1 0 1

G6,6

maxrf(6, 6) = 16

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0

G7,7 : maxrf(7, 7) = 21

1 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0
1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 1 0 1 1 0

G8,8 : maxrf(8, 8) = 24

1 1 1 1 0 0 0 0 0
1 0 0 0 1 1 1 0 0
1 0 0 0 0 0 0 1 1
0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 1
0 0 1 0 1 0 0 0 1
0 0 0 1 0 1 0 1 0
0 0 1 0 0 0 1 1 0
0 0 0 1 0 0 1 0 1

G9,9 : maxrf(9, 9) = 29

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 1 1 0
0 1 0 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 1
0 0 0 1 0 0 1 1 0 1
0 0 0 1 1 0 0 0 1 0

G10,10 : maxrf(10, 10) = 34

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1

G8,25 : maxrf(8, 25) = 51

Figure 1.7. Examples of maximal rectangle-free grids G2,2 to G10,10 and
G8,25 with emphasized slots.

Restricted Enumeration 51

1.4. Restricted Enumeration

Matthias Werner

1.4.1. The Over�ow Principle

In Section 1.2 we have seen a recursive algorithm that computes the
maximum number of values 1 among the rectangle-free grids Gm,n
up to m=n=7. The utilization of the slot principle in Section 1.3
could extend the successfully evaluated grids Gm,n up to m=n=10.
In order to �nd maxrf(m,n), many �di�erent� assignments must be
tested. But what makes an assignment di�erent from another one?
Since the rectangle-free condition (1.3) does not depend on the order
of the columns and rows, one has to consider only those assignments
which are distinct with respect to column and row permutations. In
terms of bipartite graphs, permuting vertices in one of the two disjoint
sets yields just an isomorphic graph.

Table 1.10. Number of assignments modulo permutations

m n none (2m·n) row row & column

8 8 1.845× 1019 5.099× 1014 8.182× 1011

11 11 2.659× 1036 6.841× 1028 7.880× 1023

12 12 3.230× 1043 4.731× 1034 8.291× 1028

Table 1.10 gives a comparison for the number of assignments with
respect to permutations. The numbers for assignments modulo row
permutations can be computed directly and will be given later in this
section. For the number of assignments modulo row and column per-
mutations a direct formula is still unknown, since it involves partition
numbers. The series up to m=n=12 can be found on the website [225]
of The On-Line Encyclopedia of Integer Sequences.

Each assignment has to be checked further for rectangles which re-
quires

(
n
2

)(
m
2

)
additional operations for a single assignment.

52 Boolean Rectangle Problem

Table 1.11. Time estimation to compute maxrf(m,n)

m = n all grids evaluated permutations utilized

8 1.71× 105 a 66 h 44min

11 9.55× 1022 a 2.83× 1010 a

12 1.15× 1030 a 4.29× 1015 a

Table 1.11 shows the theoretical times to calculate maxrf(m,n) for
quadratic grids without (with) utilization of row and column permu-
tations. These estimated times assume a single CPU with 2.67GHz
and 1 instruction per cycle. Even the evaluation of the grid G8,8

needs almost 67 h to compute maxrf(8, 8) with taking advantage of
permutation classes. This section will give an exact algorithm solving
maxrf(8, 8) in just 1 s and maxrf(11, 11) in 7days.

The Boolean matrix k(m,n) of the grid can be represented as a list of
positive numbers ai in binary notation. Because the permutation of
rows yields an isomorphic solution, ai+1 ≥ ai is assumed. In this way,
no solutions will be created which would be actually the same by just
permuting the rows of them. Running ai ∈ {1, . . . , 2n−1} generates
all bit patterns for the i-th row with n bits. Step by step, every row
is incremented by value 1 always beginning with the last row.

When am reaches the limit 2n−1 then am−1 is incremented by value
1 and am is reset to the new value of am−1. When am−1 over�ows,
then am−2 is incremented and am−1, am are reset to the new value of
am−2. After each change, the whole assignment must be completely
veri�ed.

If the binary matrix k(m,n) does not contain any rectangle, a feasible
solution has been found. The algorithm will �nish when a1 over�ows.
Because of that over�ow principle we will call this the Over�ow Algo-
rithm. Algorithm 1.9 gives a simple implementation in pseudo-code,
without the veri�cation and optimality tests.

The values {1 ≤ ai < 2n} can be represented as nodes sorted in a row
where the most right node begins with ai = 1. A matrix of bit patterns
is obtained, where the current state of the algorithm represents a path

Restricted Enumeration 53

Algorithm 1.9 Over�ow principle as pseudo code

Require: m: number of rows of the grid Gm,n
Require: n: number of columns of rows of the grid Gm,n
Ensure: Gm,n with maxrf(m,n) is constructed by a1, i = 1, . . . ,m
1: a1 ← 1
2: i← 1
3: while a1 < 2n do . algorithm will �nish, when a1 over�ows
4: for i = i+1, . . . ,m do . reset all successors of ai to ai
5: ai ← ai−1
6: end for

7: while am < 2n−1 do . am runs through {am−1, . . . , 2n−1}
8: am ← am + 1 . yields an instance for k(m,n)
9: end while

10: repeat

11: i← i− 1 . �nds i where ai is not at the limit yet
12: until ai < 2n−1 or i=1
13: ai ← ai + 1
14: end while

as illustrated in Figure 1.8. Due to the row order only steps to the
south and west are allowed. For the complexity, the total number of
paths has to be computed.

p

q

a1

ai

am−1

am

(001)2(010)2(011)2(100)2(101)2(110)2(111)2(11 . . . 1)2

12345672n − 1

Figure 1.8. Paths of patterns taken by the Over�ow Algorithm.

Theorem 1.4. Let {a1, . . . , am} be a set of positive numbers with ai ∈
{1, . . . , T} as well as T := T (n) ≥ 1 and ai ≤ ai+1, i ∈ {1, . . . ,m}.
The number N(m,n, a1, T) of paths from a1 to T is:

N(m,n, a1, T) =

(
T − a1 +m

m

)
. (1.14)

54 Boolean Rectangle Problem

Proof. Let us consider a block of the matrix of bit patterns (Figure
1.8) with m rows, a1 = p, am = q, and the alphabet Γ = {W,S}. W
and S describe a step to the west, and a step to the south, respectively.
A word must contain (q − p =: j) ×W and (m − 1) × S. Hence the
number of words with the length q − p + m − 1 is

(
m+j−1

j

)
. Since

each path can be identi�ed by its words with S-W combinations, we
obtain the result by applying Pascal's rule:

N(m,n, a1, T) =

T−a1∑
j=0

(
m+ j − 1

j

)
=

(
T − a1 +m

m

)
. (1.15)

In our case T = 2n − 1 is given, thus n should be minimal (m ≥ n
was already assumed). If the adjacency matrix is long enough, then
there is a direct result. Given m ≥

(
n
2

)
then the exact value of the

Zarankiewicz function easily can be computed (for proof see [333,
p. 23] while [124, p. 130] gives a generalisation for Zr,s(m,n)):

maxrf(m,n) = Z2(m,n)− 1 = m+

(
n

2

)
, m ≥

(
n

2

)
. (1.16)

Form <
(
n
2

)
the Over�ow Algorithm comes into the play. The number

of all paths given in Theorem 1.4 is the indicator for the complexity
of the algorithm. One way to reduce the value of N(m,n, a1, T) could
be to increase the start value a1 of the �rst row as much as possible.
It turns out that there are many optimal solutions. A lot of paths
can be initially skipped. The question is how far the algorithm can
be pushed forward without losing optimality? Corollary 1.1 provides
a simple but good estimation of (1.14). It will be used for examining
the runtime improvements, when the start value of a1 is increased.

Corollary 1.1 (see [333, p. 8]). If the most signi�cant bit in the
�rst row a1 is shifted from the 0-th to the p-th position, the runtime
improves by:

cp(m,n)

c0(m,n)
:=

N(m,n, 2p, 2n − 1)

N(m,n, 1, 2n − 1)
=

m∏
i=1

2n − 2p +m− i
2n − 1 +m− i . (1.17)

Let be β(p,m, n) =
(

1− 2p−1
2n−2

)m
. For p ∈ [0, n] one can show that

β(p,m, n) ≤ cp(m,n)
c0(m,n)

. If m grows slower than
√

2n, the absolute error

Restricted Enumeration 55

∆(p,m, n) :=
∣∣∣ cp(m,n)c0(m,n)

− β(p,m, n)
∣∣∣ =

cp(m,n)
c0(m,n)

− β(p,m, n) converges

to 0 and, hence, β(p,m, n) converges to
cp(m,n)
c0(m,n)

for p ∈ [0, n].

Figure 1.9 shows the absolute error ∆(p,m, n), which occurs by esti-

mating
cp(m,n)
c0(m,n)

= N(m,n,2p,2n−1)
N(m,n,1,2n−1) with β(p,m, n). The error becomes

visible when m is much higher than n, as ∆(p, 36, 6) illustrates well.
In the opposite case, ∆(p, 6, 6) gives a deviation of not more than
2 percent. The estimation with β(p,m, n) already becomes almost
accurate for a grid G10,10.

Figure 1.10 shows the relative runtime behavior of the Over�ow-
Algorithm, where a1 starts at 2p instead of 20 = 1. The approximation
quality of β(p,m, n) is shown as well. The estimation β(p,m, n) con-

verges to
cp(m,n)
c0(m,n)

under the conditions of Theorem 1.1. The bigger n

the later the runtime acceleration takes impact due to the in�uence

of the ratio 2p+1−2p
2n = 2p

2n . Small bit positions would do almost noth-
ing to reduce the amount of paths. For m = n = 18 the theoretical
runtime improves noticeable when the most signi�cant bit is moved
at least to the 10th position.

With the help of Corollary 1.1 the considerably simpler derivation of
the relative runtime estimation can be utilized for the maximum of
the relative runtime acceleration:

pmax(m,n) := arg max
{∣∣∣ d

dpβ(p,m, n)
∣∣∣}

= log2

(
2n−1
m

)
= n− log2(m)− log2(1− 2−n)
≈ n− log2(m) .

(1.18)

For instance, the value of the maximum acceleration of β(p, 18, 18) is
pmax(18, 18) = 13.830069 . . . ≈ 13.83. The exact maximum accelera-

tion given by arg max
{∣∣∣ d

dp
cp(m,n)
c0(m,n)

∣∣∣} for m = n = 18 is 13.830121 . . .

In Subsection 1.4.3 we will utilize (1.18).

In Algorithm 1.9 we have omitted the veri�cation for rectangles. This
test involves

(
m
2

)
comparisons on the set of the m numbers ai. Two

numbers a and b form a rectangle, if they have at least two 1 bits in
common. A fast check that c=a&b contains two or more 1 bits is:

56 Boolean Rectangle Problem

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1
p/n

Absolute error ∆(p,m, n) =
∣∣ cp(m,n)
c0(m,n)

− β(p,m, n)
∣∣

∆(p, 10, 10)

∆(p, 6, 6)

∆(p, 36, 6)

Figure 1.9. Absolute error ∆(p,m, n) by estimating cp(m,n)

c0(m,n)
with the help

of β(p,m, n).

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1
p/n

Relative runtime β(p,m, n) and cp(m,n)
c0(m,n)

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

Derivation:
∣∣∣ d
dpβ(p,m, n)

∣∣∣

β(p, 18, 18)

β(p, 6, 6)

β(p, 18, 6)
cp(·,·)
c0(·,·)

Figure 1.10. Relative runtime improvement with a1 = 2p and p ∈ [0, n).

Restricted Enumeration 57

bool ha s_rec t ang l e := c && ((c & (∼c + 1)) != c) ;

where `&' is the bitwise AND operator, `∼' the unary bitwise comple-
ment, and `&&' the logical AND operator.

1.4.2. Strategies for Improvements

The implemented Over�ow Algorithm works without recursion and
uses several improvements to speed up the runtime. If a row ai is
incremented then ai+1 has to be reset to ai (since ai+1 caused an
over�ow before). If ai has two or more 1 bits then the assignment
ai+1 ← ai would yield a rectangle. So the second bit of ai+1 is shifted
up by one position and the following bits are reset to 0:

ai 0 1 0 0 1 0
ai+1 0 1 0 1 0 0

ai 0 1 0 1 0 1
ai+1 0 1 1 0 0 0

Figure 1.11. Rectangle-free incrementing ai+1 with respect to ai

The assignment can be also skipped if ai ≥ (1100 . . . 0)2, i < m,
because ai+1 then would always have the �rst two bits in common
with ai.

Another improvement utilizes the estimation of the maximum value
maxrf(m−i, n) for a given i ∈ {1, . . . ,m−1} in the remaining subgrid
(m − i, n) by an upper bound z(m − i, n). Let be emax the current
maximum, bi−1 the accumulated bit count from previous rows and i
the current row. If bi−1 + z(m − i, n) ≤ emax then this assignment
can be skipped. ai or the previous rows do not have enough bits to
improve the local maximum. Now z(m,n) can return the optimal
value, if it is already known or it computes an upper bound instead.
Theorem 1.5 uses [333, p. 25].

Theorem 1.5. If m ≥ n > 2 then the following inequality is satis�ed:

maxrf(m,n) ≤ 1

2

(
m+

√
m2 + 4 ·mn(n− 1)

)
. (1.19)

Proof. The number of 1 bits of row ai, namely the pattern size, is

58 Boolean Rectangle Problem

1 1 1
1 1
1 1

1 1

1 1 1 1
1 1 1
1 1

1 1
1 1

Figure 1.12. Recipes for creating higher patterns from 2-bit patterns.

denoted by di ∈ {1, . . . , n}. So maxrf(m,n) =
∑m
i=1 di gives the

total number of 1 bits in k(m,n). To prove the upper bound an ideal
pattern size σ ∈ [1, n] has to be computed. If m = m0 =

(
n
2

)
then

maxrf(m0, n) = 2 · m0 due to (1.16). Every row of the Boolean
matrix k(m0, n) has two 1 bits. For m < m0, rows from k(m0, n) can
be combined to create higher patterns. Since k(m0, n) is rectangle-
free, no rectangles can occur in k(m,n). A pattern with size σ acquires(
σ
2

)
rows from k(m0, n). Since every row will have the same pattern

size σ, the following condition must be sati�ed: m ·
(
σ
2

) !
= m0 =

(
n
2

)
.

Solving this for positive σ yields: σ = 1
2 +

√
1
4 + n(n−1)

m . Hence, we

obtain the upper bound by assigning σ to all rows:

maxrf(m,n) ≤ m · σ =
m

2
+

√
mn(n− 1) +

m2

4
. (1.20)

Figure 1.12 illustrates the creation of higher pattern sizes using 2-bit
patterns as explained in the proof of Theorem 1.5. For instance, a 3-
bit pattern acquires three 2-bit patterns. The upper bound of (1.20)
was found �rst by I. Reiman [248]. For n ≤ m ≤ 14, the bound is
optimal or overestimates the number of edges by only one. Yet it
gives a noticeable impact on the runtime of the algorithm, since more
branches have to be traversed by the algorithm. Thus, we will take
the exact maximum value of a subgrid, unless otherwise speci�ed.

1.4.3. Applying Heuristics

Figure 1.13 shows the solution structure of the last optimum found by
the Over�ow Algorithm. It constructs a nice bow pattern of the most

Restricted Enumeration 59

1 . . 1 . 1 1 1 . 46
2 . . 1 1 . . . 1 49
3 . 1 . . 1 . . 1 73
4 . 1 . 1 . 1 . . 84
5 . 1 1 96
6 1 1 . 1 133
7 1 . . 1 1 . . . 152
8 1 . 1 160
9 1 1 1 . 194

1 . . 1 . 1 1 1 . . 92
2 . . 1 1 . . . 1 1 99
3 . 1 . . . 1 . 1 . 138
4 . 1 . . 1 . . . 1 145
5 . 1 . 1 . . 1 . . 164
6 1 1 1 . 262
7 1 1 . . 1 265
8 1 . . 1 1 304
9 1 1 1 448

Figure 1.13. Last obtained optimum for G9,8, G9,9.

signi�cant bits. The Slot Algorithm in [333, p. 15] uses the so-called
Slot Architecture that is inspired by B. Steinbach's work in [294].
The Over�ow Algorithm seems to produce that Slot Architecture by
itself, i.e., subdividing the matrix in groups (slots). Figure 1.13 shows
instances with a slot con�guration �(4, 3, 2)�, which is de�ned by the
size of grouped most signi�cant bits in rows 6-9, 3-5, and 1-2.

Another interesting result can be observed on the �rst row a1 and
its �rst signi�cant 1 bit. Its position p seems to �t pmax(m,n) ≈
n− log2(m) of (1.18). Now the key idea is to �x a1 to a pattern where
the leading 1 bit is placed at bn− log2(m)c. However, the number of
bits of a1 must be known, most likely their positions are important
too.

The optimal pattern of a1 as well as the whole optimal Slot Archi-
tecture is still unknown. So the pattern of a1 is estimated with the
help of the ideal pattern size σ from Theorem 1.5. It is assumed that
the pattern size of a1 is σ(s) := bσ + sc with s ∈ [0, 1). s is a weight
for choosing the next higher pattern size that must also exist in the
optimal solution (assuming that its set of pattern sizes is connected).
Figure 1.14 illustrates some possible con�gurations of the �rst three
rows depending on σ.

a1 . . 1 . 1 .
a2 . . 1 1 . .
a3 . 1

a1 . . 1 . 1 1 . .
a2 . . 1 1 . . 1 .
a3 . 1

a1 . . 1 . 1 1 1 . . .
a2 . . 1 1 . . . 1 1 .
a3 . 1

Figure 1.14. Con�gurations of �rst three rows where a1 is a �xed pattern.

60 Boolean Rectangle Problem

1.4.4. Experimental Results

Applying the restrictions from the heuristics mentioned in Subsection
1.4.3 a signi�cant speed-up is achieved as illustrated in Table 1.12.
However, accuracy no longer can be hold on other certain dimensions.
For instance, the most signi�cant bit p of a1 for the grids G12,8 and
G12,9 is pmax(m,n)−1. So only a suboptimal solution is found with the
suggested heuristic. Conversely, the grid G5,5 has an optimal solution
with p at pmax(5, 5) + 1 (yet an optimal solution with p = pmax(5, 5)
exists). The following questions arise from the applied heuristic (â1
refers to the �rst row of an optimal solution):

• What is the highest leading bit position for â1?

• Does â1 really have a pattern with size σ(s) for given s ∈ [0, 1)?

• Which of the other bit positions in â1 are possible at all?

• How many rows are in the �rst group (slot)? (We assumed two
rows for the �rst group, where a2 can be elevated and a3 already
is in the next slot.)

Table 1.12. Number of solutions and runtime (Intel X5650 2.67 GHz),
σ = σ(s), s = 0.3

maxrf(m,n) full run #sol. a1 �xed #sol. σ

(7, 7) = 21 3ms (3ms) 1 0.5ms (0.1ms) 1 3

(14, 7) = 31 11 s (2 s) 27 641 400ms (1.7ms) 282 2

(8, 8) = 24 1 s (72ms) 16 596 14ms (1ms) 128 3

(9, 9) = 29 23 s (9 s) 4464 354ms (171ms) 144 3

(10, 10) = 34 18min (34 s) 32 838 1.6 s (1.6 s) 1 3

(11, 11) = 39 7 d 4h (9h) 1 168 996 34min (6min) 432 4

(12, 12) = 45 � � � 12h 28min (5 h 7min) 72 4

Table 1.12 gives a comparison of the exact and the heuristic variant of
the Over�ow Algorithm. In addition to the number of optimal solu-
tions, the complete runtime and the time to �nd the optimal solution
(in brackets) are enumerated. The pattern size for a1 is given in case
of the heuristic variant σ(s). An optimal solution was found for the

Restricted Enumeration 61

Table 1.13. Comparison of relative runtime - theoretical and experimental
results for the grid G10,10

p 1 2 3 4 5 6 7 8

N(10,10,2p,2n−1)
N(10,10,1,2n−1)

99.0% 97.1% 93.4% 86.3% 73.6% 53.1% 26.7% 5.8%

β(p, 10, 10) 99.0% 97.1% 93.4% 86.3% 73.5% 52.9% 26.5% 5.7%

full run 100.4% 100.4% 99.9% 93.7% 64.4% 53.9% 88.3% 5.2%

�rst solution 99.0% 99.7% 101.7% 88.8% 71.0% 65.9% � �

grid G12,12 after just 5h (see Table 1.11), where â1 consists of four 1
bits with the most signi�cant 1 bit at p = 8.

Table 1.13 compares the experimental runtime improvement, where
the most signi�cant 1 bit of a1 starts1 at p ∈ 0, . . . , n− 1. So the
base value 100% refers to the full runtime of the Over�ow Algorithm
starting with p = 0, i.e., a1 = 2p = 1. With p = 6 the algorithm needs
53.9% of the time compared to p = 0. For p > 6 there is no optimal
solution. Since the maximum could not be found at all, the branches
cannot be discarded as early as for p ≤ 6, where the maximum was
found quite fast after 34 s. Thus the relative runtime increases back
to 88.3% for p = 7. For p = 8 the branches become very lightweight
and only a few number of paths are visited at all.

Table 1.14. Runtime by utilizing z(m,n) to estimate the Zarankiewicz
function for subgrids.

upper bound exact

maxrf(9, 9) 5min 49 s 23 s

maxrf(10, 10) 37 h 19min 18min

The developed exact algorithm solves the fast growing Zarankiewicz
problem in a non-recursive manner and uses simple structure infor-
mation for speed-up. In comparison to [292] the Over�ow Algorithm
calculates maxrf(7, 7) = 21 in 3ms instead of 28min. Table 1.14
shows that just the estimation of the maximum of the remaining sub-
grids by an upper bound can have a noticeable time impact. Even the
smallest overestimation of the maximum of the subgrids yields signif-

1a1 is not �xed, but only starts at a1 = 2p and is incremented until (1011 . . . 1)2
is exceeded.

62 Boolean Rectangle Problem

icant time di�erences. Of course, the exact maximum of a subgrid
helps to discard a time-consuming branch earlier.

Based on the complexity observations combined with the solution
structure of the Over�ow Algorithm we introduced heuristics at the
expense of accuracy in certain dimensions. Yet an enormous speed-up
could be achieved and the grid G12,12 could be solved correctly in just
12.5 hours. This illustrates the performance gain when the pattern of
the �rst row in the adjacency matrix is known. Moreover, the heuris-
tics give a clue how to create such a pattern or at least a range of
patterns for the �rst row. It will be a future task to discover these
important patterns.

The source code of the Over�ow Algorithm and the Slot Algorithm
which we did not discuss here is available on my website, see [333].

Permutation Classes 63

1.5. Permutation Classes

Bernd Steinbach Christian Posthoff

1.5.1. Potential of Improvements and Obstacles

A grid pattern that satis�es the rectangle-free condition (1.3) does not
loose this property when any pair of rows or columns are swapped.
Vice versa, a rectangle-free con�ict of a grid pattern cannot be re-
moved by swapping any pair of rows or columns.

In order to use this property we take the set of all possible patterns
and de�ne for this set a relation ρ as follows:

De�nition 1.4. p1 ρ p2 holds for two patterns p1 and p2 when p1 can
be transformed into p2 by a sequence of permutations of entire rows
or columns.

This relation is

• re�exive: if 0 permutations are applied, then the pattern is
transformed into itself;

• symmetric: if a pattern p1 is transformed into a pattern p2 by a
given sequence of permutations, then the inverse sequence will
transform p2 into p1;

• transitive: if there are two sequences of permutations, the �rst
transforming p1 into p2, the second p2 into p3, then these two
sequences can be combined to one sequence which is used for a
direct transformation of p1 into p3.

These properties de�ne the relation ρ as an equivalence relation, and
therefore the set of all grids will be divided into equivalence classes.

De�nition 1.5. A permutation class of grid patterns is an equivalence
class of the relation ρ of De�nition 1.4.

64 Boolean Rectangle Problem

Table 1.15. Maximal number m!∗n! of patterns of permutation classes of
quadratic grids of m rows and n columns

m n m! n! m! ∗ n!

2 2 2.00E+00 2.00E+00 4.00E+00
3 3 6.00E+00 6.00E+00 3.60E+01
4 4 2.40E+01 2.40E+01 5.76E+02
5 5 1.20E+02 1.20E+02 1.44E+04
6 6 7.20E+02 7.20E+02 5.18E+05
7 7 5.04E+03 5.04E+03 2.54E+07
8 8 4.03E+04 4.03E+04 1.63E+09
9 9 3.63E+05 3.63E+05 1.32E+11
10 10 3.63E+06 3.63E+06 1.32E+13
11 11 3.99E+07 3.99E+07 1.59E+15
12 12 4.79E+08 4.79E+08 2.29E+17
13 13 6.23E+09 6.23E+09 3.88E+19
14 14 8.72E+10 8.72E+10 7.60E+21
15 15 1.31E+12 1.31E+12 1.71E+24
16 16 2.09E+13 2.09E+13 4.38E+26
17 17 3.56E+14 3.56E+14 1.27E+29
18 18 6.40E+15 6.40E+15 4.10E+31
19 19 1.22E+17 1.22E+17 1.48E+34
20 20 2.43E+18 2.43E+18 5.92E+36

The number of elements of an equivalence class can be between 1 (all
grid points equal to 0 or equal to 1) andm!∗n! (each swapping of a row
or a column results in a new grid pattern). The number of elements is
smaller than m!∗n! when the same sequence of values 0 and 1 appears
in more than one row or more than one column. The restriction to
a single representative for all grid patterns of a permutation class is
a strong potential for improvements. Table 1.15 shows how many
di�erent grid patterns can be represented by a single grid pattern.
This potential for improvements increases for growing sizes of grids.

This potential for improvements is at the same time an obstacle be-
cause each of these permutation classes can contain a very large num-
ber of grid patterns. In order utilize the permutation classes of grid
patterns we must answer the following questions:

1. How can permutation classes be utilized for the calculation of
maxrf(m,n)?

2. How can a single grid pattern be chosen as a representative of
the class?

Permutation Classes 65

1.5.2. Sequential Evaluation of Permutation Classes

An answer to the �rst question asked at the end of Subsection 1.5.1
gives the simple Algorithm 1.10. This algorithm utilizes the property
of an equivalence relation that the whole Boolean space is completely
divided into disjoint permutation classes of grid patterns. Hence, each
grid pattern belongs to one single permutation class.

Algorithm 1.10 Sequential Evaluation of Permutation Classes
(SEPC)

Require: TVL agp of all grid patterns Gm,n
Ensure: TVL racgp representatives of all correct grid patterns
1: racgp← ∅
2: while NTV(agp) > 0 do . number of ternay vectors
3: rgp← STV(agp, 1) . select �rst ternary vector
4: rgp← CEL(rgp, agp, “010”) . substitute all `-' by `0'
5: if RecangleFree(rgp) then
6: racgp← UNI(racgp, rgp) . store correct representative
7: end if

8: pcgp← GeneratePermutationClass(rgp)
9: agp← DIF(agp, pcgp) . remove grids of the permutation class
10: end while

Algorithm 1.10 takes advantage of permutation classes in three ways.

• The �rst bene�t is the sequential evaluation of permutation
classes. Hence, at each point of time only the grid patterns
of a single permutation class must be handled.

• The second bene�t is that only one representative is checked
for the rectangle-free rule in line 5 of Algorithm 1.10. All other
members of the permutation class are generated in line 8 of
Algorithm 1.10 and excluded from further calculations in line 9.

• The third bene�t is that only the single chosen representative is
stored in line 6 of Algorithm 1.10.

Each grid pattern can be chosen as the representative of the permu-

66 Boolean Rectangle Problem

tation class. Algorithm 1.10 uses as the representative grid pattern
(rpg) simply that grid pattern which results from the �rst ternary
vector in the list of all grid patterns (apg) which are not yet evaluated
and in which dash elements are replaced by values 0 in line 2. The
di�erence (DIF) in line 9 of Algorithm 1.10 removes all patterns of the
permutation class of grid patterns (pcgp) from all grid patterns (apg)
which have not yet been evaluated. Hence, each grid pattern is taken
into account only once.

Unfortunately, Algorithm 1.10 has two drawbacks with regard to the
required memory space:

1. The number of grid patterns of a permutation class grows expo-
nentially depending on the size of the grid.

2. The grid patterns of a permutation class are binary vectors
which have in most cases a Hamming distance lager than 1.
Hence, these vectors cannot be merged well into a smaller num-
ber of ternary vectors. Consequently, the di�erence operation in
line 9 of Algorithm 1.10 splits the remaining search space into
a very large number of ternary vectors.

For these reasons Algorithm 1.10 is restricted by the available memory.
In the case of 2 GB memory this limit is reached already for a grid of
m = 6 rows and n = 6 columns.

1.5.3. Iterative Greedy Approach

An iterative greedy approach can overcome the obstacle of memory
requirements. The basic idea of this approach is that a rectangle-free
grid Gm,n with maximal number of values 1 also includes a rectangle-
free grid Gm−1,n−1 having a maximal number of values 1. We know
that this assumption must not be true. However, the restriction to
rectangle-free grids Gm−1,n−1 with maximal number of values 1 re-
duces the search space and guaranties a subset of correct solutions.

The �rst four lines of Algorithm 1.11 are used for initialization of the
wanted maximal number nmax of values 1, the maximal grid G1,1,

Permutation Classes 67

Algorithm 1.11 Iterative Greedy Grid Selection (IGGS)

Require: k number of rows and columns of a quadratic grid Gk,k
Ensure: nmax maximal number of values 1 in the grid Gk,k
1: nmax ← 1
2: G1,1[1, 1]← 1 . initial grid
3: smgp[1]← G1,1 . set of maximal grid patterns stored as TVL
4: i← 2
5: while i ≤ k do
6: sgp[i]← RectangleFreeGrids(smgp[i− 1])
7: smgp[i]← ∅
8: while NTV(sgp[i]) > 0 do . number of ternay vectors
9: gp← STV(sgp[i], 1) . select �rst ternary vector
10: gp← CEL(gp, sgp[i], ”010”) . substitute all '-' by '0'
11: n1 ← NumberOfValuesOne(gp)
12: if n1 ≥ nmax then
13: urgp← UniqueRepresentative(gp)
14: if n1 > nmax then . larger number of values 1
15: smgp[i]← urgp
16: nmax ← n1
17: else . same maximal number of values 1
18: smgp[i]← UNI(smgp[i], uggp)
19: end if

20: end if

21: sgp[i]← DIF(sgp[i], gp) . remove evaluated grid
22: end while

23: i← i+ 1
24: end while

the assignment of this grid to the �rst element smgp[1] of an array of
TVLs, and the index i that controls the iteration. Both the number
of rows and the number of columns of the evaluated grid are increased
by 1 within the while-loop in lines 5 to 24 of Algorithm 1.11.

The function RectangleFreeGrids calculates the set of rectangle-
free grid patterns sgp[i] of the grid Gi,i which contain known maximal
grid patterns of the grid Gi−1,i−1 in the top left part. This function
restricts the introduced 2i − 1 Boolean variables by means of the
rectangle-free condition (1.3). The set smgp[1] includes the single
existing maximal grid pattern of G1,1. In later iterations smgp[i− 1]

68 Boolean Rectangle Problem

1
1

1
0

1
1

0
1

1
0

1
1

Figure 1.15. Maximal assignments of the value 1 to the grid G2,2 where
the top left position is initially assigned to the value 1.

contains only representatives of found maximal permutation classes.
In this way the required memory is strongly restricted.

The task of the while-loop in lines 8 to 22 is the selection of represen-
tatives of maximal grid patterns out of the set of rectangle-free grid
patterns sgp[i]. These selected grid patterns are stored in smgp[i]
that is initialized as empty set before this loop. In order to limit the
memory space, each grid pattern of smgp[i] is separately selected in
lines 9 and 10, evaluated in lines 11 to 20, and removed from the set
smgp[i] in line 21.

As �rst step of the evaluation the number n1 of values 1 in the grid
pattern is counted in the function of line 11. If this number is smaller
than nmax then this grid pattern is excluded from further evaluations
in line 21. Otherwise, a unique representative grid pattern urgp of the
dedicated permutation class is calculated in line 13. This mapping of
the grid pattern to the unique representative reduces the number of
grid patterns which must be evaluated in the next round of iteration.

If the number n1 of values 1 is larger than the so far known maximal
number nmax of values 1 then smgp[i] is replaced by the new maximal
representative grid pattern urgp in line 15 and the larger number n1
of values 1 is stored as new value of nmax in line 16. Otherwise, the
representative grid pattern urgp is included into the set smgp[i].

Algorithm 1.11 �nds in line 6 of the �rst iteration 7 of 15 rectangle-
free grid patterns G2,2 where the top left position is initially assigned
to the value 1. The maximal number of values 1 assigned to the
rectangle-free grid G2,2 is equal to 3. Hence, four grid patterns with
less than three values 1 are not included into the set smgp[2] due to
the decision in line 12. Figure 1.15 shows the set of maximal grid
patterns G2,2 that contain the value 1 in the top left position due to
the initialization in line 2.

Permutation Classes 69

1
1
0

1
0
1

0
1
1

1 1 0 1 0 1 0 1 1 = 427
28 27 26 25 24 23 22 21 20

Figure 1.16. Decimal equivalent of a grid pattern.

It can be seen in Figure 1.15 that these three grid patterns belong to
the same permutation class. The grid pattern in the middle of Fig-
ure 1.15 can be built by permutation of the rows in the leftmost grid
pattern, and the rightmost grid pattern is the result of the permuta-
tion of the columns of the leftmost grid pattern. For larger grids this
bene�t grows exponentially depending on the size of the grid. Hence,
a unique representative of grid patterns strongly restricts the e�ort
of the next round of iteration. Algorithm 1.11 hides this task in the
function UniqueRepresentative(gp) in line 13. In the next two
sections we present both one exact and one soft computing approach
for this task.

1.5.4. Unique Representative of a Permutation Class

Algorithm 1.10 of Subsection 1.5.2 generates all grid patterns of a per-
mutation class in the function GeneratePermutationClass and
can use therefore an arbitrarily chosen representative grid pattern.
Algorithm 1.11 of Subsection 1.5.3 takes advantage of the sequential
evaluation of few grid patterns. This approach requires the direct
mapping of the actually evaluated grid pattern to a unique represen-
tative of the dedicated permutation class.

Generally, each grid pattern of a permutation class can be chosen as
representative. Hence, a rule must be de�ned for the unique selection
of a representative of a permutation class. A simple possibility for
the unique selection of the representative of a permutation class is the
utilization of the decimal equivalent of a grid pattern.

A grid pattern of m rows and n columns can be mapped onto a binary

70 Boolean Rectangle Problem

Algorithm 1.12 Representative of a Permutation Class (RPC)

Require: TVL gp of a single grid pattern of the grid Gm,n of m rows
and n columns

Ensure: TVL urgp of the unique representative grid pattern of the
dedicated permutation class of gp

1: spgp← PermuteRows(gp,m, n)
2: spgp← PermuteColumns(spgp,m, n)
3: urpc← SelectRepresentative(spgp)
4: return urpc

vector of the length m ∗ n where the top left corner of the grid is
mapped to the bit with the value 2m∗n−1 followed by the bits of the
�rst row, the bits of the remaining rows in the given natural order
until the bit of the bottom right corner of the grid with the value
20. Figure 1.16 illustrates how the decimal equivalent 427 of a grid
pattern of 3 rows and 3 columns is built. A simple possibility to de�ne
a representative of a permutation class is the use of the grid pattern
which belongs to the decimal equivalent of the the highest value.

This simple selection of the representative requires the knowledge of all
grids of a permutation class. However, only a single grid pattern of a
permutation class is known in Algorithm 1.11 for the invocation of the
function UniqueRepresentative(gp) in line 13. Hence, it is neces-
sary to generate temporarily all patterns of a permutation class of the
given grid size. Algorithm 1.12 solves this problem such that at �rst
the set of all permuted grid patterns spgp is calculated by the func-
tions PermuteRows(gp,m, n) and PermuteColumns(spgp,m, n)
in lines 1 and 2. The function SelectRepresentative(spgp) calcu-
lates as �nal step for each grid pattern of the permutation class the
decimal equivalent and returns the grid pattern of the highest decimal
equivalent as the wanted representative.

Algorithm 1.12 can be used as function UniqueRepresentative(gp)
in the iterative greedy grid search of Algorithm 1.11. The results of
the combination of these algorithms con�rms the strong bene�t of the
iterative greedy approach to �nd the maximal number of assignments
of values 1 to a grid. Up to the grid G4,4 only a single permutation
class of maximal grid patterns exists. These representatives are shown
in Figure 1.17. That means, in case of the grids G4,4 only one of all

Permutation Classes 71

1
1

1
0

1
1
0

1
0
1

0
1
1

1
1
0
0

1
0
1
0

1
0
0
1

0
1
1
1

maxrf(2, 2) = 3
maxrf(3, 3) = 6
maxrf(4, 4) = 9

Figure 1.17. Representatives of permutation classes of maximal assign-
ments of values 1 to the grids G2,2, G3,3, and G4,4.

1
1
1
0
0

1
0
0
1
0

1
0
0
0
1

0
1
0
1
1

0
0
1
1
0 maxrf(5, 5) = 12

1
1
0
0
0

1
0
1
0
0

1
0
0
1
0

1
0
0
0
1

0
1
1
1
1

Figure 1.18. Representatives of permutation classes of maximal assign-
ments of values 1 to the grid G5,5.

216 = 65, 536 grid patterns carries the needed information.

Two di�erent maximal permutation classes were calculated within 1.3
seconds for assignments of values 1 to the grid G5,5. Figure 1.18 shows
theses representatives. The reduction in terms of needed memory
space to represent the maximal grid patterns decreases from 225 =
33, 554, 432 down to 2.

Another interesting observation: there is only one single maximal
permutation class of assignments of the value 1 to the grid G6,6. The
representative grid of this permutation class is shown in Figure 1.19.

1
1
1
0
0
0

1
0
0
1
0
0

0
1
0
1
1
0

0
1
0
0
0
1

0
0
1
1
0
1

1
0
0
0
1
1 maxrf(6, 6) = 16

Figure 1.19. Representative of the permutation class of maximal assign-
ments of values 1 to the grid G6,6.

72 Boolean Rectangle Problem

From all 236 = 68, 719, 476, 736 = 6.9 ∗ 1010 grid patterns of the grid
G6,6 only a single grid pattern is needed as representative. This is
a strong reduction in terms of required memory. However, it takes
already 338 seconds to �nd this single representative of the maximal
permutation class of the grid G6,6 even though the calculation of all
rectangle-free grid patterns using the iterative greedy approach needs
only 11 milliseconds. The reasons for this strong di�erence are:

1. based on the two representatives of maximal grid patterns G5,5

all extended rectangle-free patterns of the grid G6,6 can be rep-
resented by 60 ternary vectors,

2. only three of these grid patterns have a maximal number of 16
values 1, but

3. 6! ∗ 6! = 720 ∗ 720 = 518, 400 grid patterns G6,6 of the permuta-
tion class must be generated in order to select the single unique
representative.

From this analysis we can conclude that Algorithm 1.12 has both
strong bene�ts and a strong drawback. The bene�ts are:

1. a single representative of Gm,n represents the large number of
m! ∗ n! grid patterns so that both the required calculation time
for the next larger grid Gm+1,n+1 and the needed memory to
store these grid patterns is drastically reduced,

2. the permutation classes can be sequentially evaluated so that
the memory to store all patterns of a single permutation class is
su�cient.

The drawback of Algorithm 1.12 is that all m! ∗ n! grid patterns of a
single maximal permutation class must be generated in order to select
the representative using the maximal value of the decimal equivalent.
Taking into account that the number of grid patterns of a single per-
mutation class grows from grid Gm−1,n−1 to grid Gm,n by a factor of
m ∗ n, the limit for the application of the algorithm RPC is reached
for the grid G6,6 or, depending on the computer, for grids which are
a little bit larger.

Permutation Classes 73

Algorithm 1.12 can be modi�ed such that the calculation of the dec-
imal equivalent and its evaluation is executed immediately when a
new permuted grid pattern of the class is generated. In this way only
a single grid pattern must be stored in the modi�ed RPC algorithm
at each point in time so that the memory problem is solved. How-
ever, the time problem remains because all m! ∗ n! grid patterns of a
permutation class must be sequentially evaluated.

1.5.5. Direct Mapping to Representatives

In Subsection 1.5.4 we learned that it is practically not possible to gen-
erate and store all grid patterns of a permutation class for grids larger
than approximately G6,6. The sequential evaluation of all m! ∗n! grid
patterns of a permutation class overcomes the memory problem. How-
ever, due to the exponential increase of the number of grid patterns
of a permutation class, the time required for their evaluation limits
practical solutions for a similar size of grids. Hence, we need an algo-
rithm that allows us to map a known grid pattern of a permutation
class directly to a unique representative.

There are two important questions which must be answered to solve
this task.

1. How the representative grid pattern of a permutation class is
de�ned?

2. Which information is constant for rows and columns of a grid
independent on any permutation of rows and columns?

The answer to the �rst question is that we can choose each grid pat-
tern of a permutation class as representative. However, we must use
exactly the same representative for each given grid pattern of the same
permutation class. Hence, the rules which specify the representative
can be expressed by an algorithm that maps a given grid pattern to
the representative of the class by certain permutations of rows and
columns.

The answer to the second question is that the horizontal checksum of

74 Boolean Rectangle Problem

a row does not change for any permutation of columns and the vertical
checksum of a column does not change for any permutation of rows.

1
0
0
1
1

3

0
0
0
0
1

1

0
0
0
1
1

2

0
0
0
0
0

0

1
0
1
1
1

4

2
0
1
3
4

0
1
0
0
1

2

0
0
0
0
0

0

1
1
0
1
1

4

1
1
0
0
1

3

0
1
0
0
0

1

2
4
0
1
3

(a)

1
1
1
0
0

3

1
0
0
0
0

1

1
1
0
0
0

2

0
0
0
0
0

0

1
1
1
1
0

4

4
3
2
1
0

1
1
0
0
0

2

0
0
0
0
0

0

1
1
1
1
0

4

1
1
1
0
0

3

1
0
0
0
0

1

4
3
2
1
0

(b)

1
1
1
1
0

4

1
1
1
0
0

3

1
1
0
0
0

2

1
0
0
0
0

1

0
0
0
0
0

0

4
3
2
1
0

1
1
1
1
0

4

1
1
1
0
0

3

1
1
0
0
0

2

1
0
0
0
0

1

0
0
0
0
0

0

4
3
2
1
0

(c)

Figure 1.20. Mapping onto a representative by permutations controlled
by descending checksums for rows and columns for two grid
patterns G5,5: (a) two given grid patterns, (b) grid patterns
after row permutations, (c) �nal grid patterns after column
permutations.

The main idea of such a mapping algorithm of any grid pattern to the
representative of the dedicated permutation class is the ordering of the
rows of the grid pattern top down in descending order of the horizontal
checksums and the ordering of the columns of the grid pattern from
the left to the right in descending order of the vertical checksums.
When we assume that both all horizontal checksums and all vertical
checksums are di�erent then the permutation of rows and columns in
descending order of their checksums creates a unique representative
grid pattern. Figure 1.20 shows how two grid patterns G5,5 of the
same permutation class are mapped onto their representative. The
checksums of rows are annotated on the right-hand sides of the grids,
and the checksums of the columns are labeled below the corresponding
columns.

In a �rst step, the rows are ordered top down with regard to descend-

Permutation Classes 75

1
1
1
0
0
0

1
0
0
1
0
0

0
1
0
1
1
0

0
1
0
0
0
1

0
0
1
1
0
1

1
0
0
0
1
1

3
3
2
3
2
3

1
1
0
0
1
0

1
0
1
0
0
0

0
1
1
0
0
1

0
1
0
1
0
0

0
0
1
1
1
0

1
0
0
1
0
1

3
3
3
3
2
2(a) (b)

Figure 1.21. Mapping of a grid pattern G6,6 using checksums of rows in
descending order: (a) given grid, (b) unique row intervals.

ing horizontal checksums. Intervals de�ned by the same horizontal
checksum are indicated by horizontal lines in Figure 1.20 (b). In the
next step the columns are ordered from the left to the right with re-
gard to descending vertical checksums. Again, intervals de�ned by
the same vertical checksum are indicated be vertical lines in Figure
1.20 (c). After these two permutation steps each element of the given
grid patterns is assigned to a unique position in the grid. Hence, we
have created a grid pattern which we de�ne and use as representative
of the permutation class. Algorithm 1.13 realizes this procedure.

A special feature of the example shown in Figure 1.20 is that no
checksum of the rows and no checksum of the columns occurs more
than once. Generally, the checksums of several rows or columns can
be equal to each other. In this case it is not possible to create directly
a grid pattern where each interval consists of a single row or a single
column. However, intervals of several rows with the same horizontal
checksum and intervals of columns with the same vertical checksum
can also be built in a unique way.

In order to study the most general case of grid patterns, we consider
grid patterns with equal checksums for the rows or the columns. Fig-
ure 1.21 shows a given grid pattern (a) and the resulting grid pattern
(b) after permuting the rows such that intervals in descending order
are built. This interval border remains �xed in all further steps of per-
mutations to the �nal representative grid pattern. The permutations
are executed by swapping neighboring rows.

Column intervals are built based on the vertical checksums of the

76 Boolean Rectangle Problem

1
1
0
0
1
0

2

1
0
1
0
0
0

2

0
1
1
0
0
1

2

0
1
0
1
0
0

2

0
0
1
1
1
0

2

1
0
0
1
0
1

2

3
3
3
3
2
2

1 0 1 0 1 1

1
1
0
0
1
0

2

0
1
1
0
0
1

2

0
0
1
1
1
0

2

1
0
0
1
0
1

2

1
0
1
0
0
0

2

0
1
0
1
0
0

2

2
2
2
2
2
2

1
1
1
1
0
0

1 1 1 1 0 0(a) (b)

Figure 1.22. Mapping of a grid pattern G6,6 using checksums of columns
in descending order: (a) given grid ordered according to row
intervals, (b) unique intervals of rows and columns.

created row intervals in the next step. All the checksums of the upper
row interval are equal to 2, the checksums of the lower interval have
the values 0 and 1. We arrange the columns from the left to the right in
such a way that the columns with the values 1 come �rst, the columns
with the value 0 second. When we consider the column checksums of
the initial grid, we have the value 3 on the left side (columns 1 -
4) and the value 2 in the columns 5 and 6. Figure 1.22 shows both
the additionally created column intervals and all checksums of the
intervals.

The new intervals allow a more detailed di�erentiation between rows of
�xed row intervals and columns of �xed column intervals. We calculate
separate checksums for the intervals and order them according to the
order of the intervals. As can be seen in Figure 1.22 (b), horizontal
checksums are restricted to the �xed column intervals and vertical
checksums are restricted to the �xed row intervals.

New intervals of rows or columns are created when there are di�erent
checksums of intervals where a horizontal checksum of a left interval
dominates all checksums of intervals located to the right. Similarly,
a vertical checksum of an upper interval dominates all checksums of
intervals located thereunder. This procedure of creating smaller inter-
vals of rows and columns is repeated iteratively within one loop while
di�erences in the checksums exist.

In the special case of Figure 1.22 the checksums for each interval are

Permutation Classes 77

1
1
0
0
1
0

1
1
1

0
1
1
0
0
1

0
2
1

0
0
1
1
1
0

0
2
1

1
0
0
1
0
1

1
1
1

1
0
1
0
0
0

1
1
0

0
1
0
1
0
0

0
2
0

2
2
2
2
2
2

1
1
1
1
0
0

(A)

0
1
1
0
1
0

0
2
1

0
0
1
1
0
1

0
2
1

1
0
0
1
1
0

1
1
1

1
1
0
0
0
1

1
1
1

0
1
0
1
0
0

0
2
0

1
0
1
0
0
0

1
1
0

2
2
2
2
2
2

1
1
1
1
0
0

(B)

1
1
0
0
1
0

1
1
1

1
0
0
1
0
1

1
1
1

0
1
1
0
0
1

0
2
1

0
0
1
1
1
0

0
2
1

1
0
1
0
0
0

1
1
0

0
1
0
1
0
0

0
2
0

2
1
0
1
1
1

0
1
2
1
1
1

1
0
1
0
0
0

0
1
0
1
0
0

(A)

1
0
0
1
1
0

1
1
1

1
1
0
0
0
1

1
1
1

0
1
1
0
1
0

0
2
1

0
0
1
1
0
1

0
2
1

1
0
1
0
0
0

1
1
0

0
1
0
1
0
0

0
2
0

2
1
0
1
1
1

0
1
2
1
1
1

1
0
1
0
0
0

0
1
0
1
0
0

(B)

(a)

(b)

Figure 1.23. Mapping of two grid patterns G6,6 of the same permutation
class for di�erent topmost intervals: (a) new row interval,
(b) subsequent creation of column intervals.

already equal to each other for both the rows and columns. Hence, the
rows of the upper interval (the �rst four rows) are equivalent to each
other with regard to their checksum vectors in each column interval,
therefore each of them can be chosen as content of a separate interval.
An analog statement is true for the columns of the left interval.

Algorithm 1.13 (MRPC) separates in such a case the topmost row as
a single interval and creates new column intervals based on the new
checksums. Thereafter, the leftmost column is separated as a single
column interval, and new row intervals based on the new checksums
are created, respectively. In order to demonstrate that di�erent selec-
tions out of a set of rows with identical checksum vectors lead to the
same representative, we show in parallel the further transformation
steps for the selection of the �rst row as case (A) and the selection of
the fourth row as case (B). Figure 1.23 shows the additionally created
intervals for both cases.

78 Boolean Rectangle Problem

1
1
0
0
1
0

1
1
1

1
0
0
1
0
1

1
1
1

0
1
1
0
0
1

0
2
1

0
0
1
1
1
0

0
2
1

1
0
1
0
0
0

1
1
0

0
1
0
1
0
0

0
2
0

1
1
0
0
1
0

1
0
0
1
0
1

0
1
2
1
1
1

1
0
1
0
0
0

0
1
0
1
0
0

(A)

1
0
0
1
1
0

1
1
1

1
1
0
0
0
1

1
1
1

0
1
1
0
1
0

0
2
1

0
0
1
1
0
1

0
2
1

1
0
1
0
0
0

1
1
0

0
1
0
1
0
0

0
2
0

1
0
0
1
1
0

1
1
0
0
0
1

0
1
2
1
1
1

1
0
1
0
0
0

0
1
0
1
0
0

(B)

1
1
0
0
1
0

1
1
0

1
0
0
1
0
1

1
0
1

0
1
1
0
0
1

0
1
1

0
0
1
1
1
0

0
0
2

1
0
1
0
0
0

1
0
1

0
1
0
1
0
0

0
1
1

1
1
0
0
1
0

1
0
0
1
0
1

0
1
2
1
1
1

1
0
1
0
0
0

0
1
0
1
0
0

(A)

1 0 0 1 0 0
0 1 1 0 0 0

1
1
0
0
1
0

1
1
0

1
0
1
0
0
1

1
0
1

0
0
1
1
1
0

0
0
2

0
1
0
1
0
1

0
1
1

1
0
0
1
0
0

1
0
1

0
1
1
0
0
0

0
1
1

1
1
0
0
1
0

1
0
1
0
0
1

0
1
1
2
1
1

1
0
0
1
0
0

0
1
1
0
0
0

(B)

1 0 1 0 0 0
0 1 0 1 0 0

(a)

(b)

Figure 1.24. Mapping of two grid patterns G6,6 of the same permutation
class for di�erent topmost intervals: (a) new column interval,
(b) subsequent creation of row intervals.

As mentioned above, next the �rst column is selected from the equiv-
alent columns of the left interval. Based on this additionally �xed
column interval further row intervals can be created uniquely. Figure
1.24 shows the results of these steps for both grids of Figure 1.23 (b).

Only the third row interval remains with more than one row. Based
on the di�erent values in the second column of this interval (see Figure
1.24 (b)) these rows can be separated in �xed row intervals. In case of
grid (A) of Figure 1.24 (b), the third and fourth row must be swapped
because G[3, 2] < G[4, 2]; the result is shown in Figure 1.25 (a).

Due to di�erent values in the second row of the third column interval,
the last column interval of more than one column can be separated
into two column intervals of one column each (see Figure 1.25). Here it
is necessary to swap the third and fourth column of grid (B) of Figure

Permutation Classes 79

1
1
0
0
1
0

1
1
0

1
0
1
0
0
1

1
0
1

0
1
0
1
0
1

0
1
0

0
0
1
1
1
0

0
0
1

1
0
0
1
0
0

1
0
0

0
1
1
0
0
0

0
1
1

1
1
0
0
1
0

1
0
0
1
0
1

0
1
2
1
1
1

1
0
1
0
0
0

0
1
0
1
0
0

(A)

0 0 1 1 1 0
1 0 0 1 0 0
0 1 1 0 0 0

1
1
0
0
1
0

1
1
0

1
0
1
0
0
1

1
0
1

0
0
1
1
1
0

0
0
1

0
1
0
1
0
1

0
1
0

1
0
0
1
0
0

1
0
0

0
1
1
0
0
0

0
1
1

1
1
0
0
1
0

1
0
1
0
0
1

0
1
1
2
1
1

1
0
0
1
0
0

0
1
1
0
0
0

(B)

0 0 1 1 1 0
1 0 1 0 0 0
0 1 0 1 0 0

1
1
0
0
1
0

1
1
0

1
0
1
0
0
1

1
0
1

0
1
0
1
0
1

0
1
0

0
0
1
1
1
0

0
0
1

1
0
0
1
0
0

1
0
0

0
1
1
0
0
0

0
1
1

1
1
0
0
1
0

1
0
1
0
0
1

0
1
0
1
0
1

0
0
1
1
1
0

1
0
0
1
0
0

0
1
1
0
0
0

(A)

0 0 1 1 1 0
1 0 0 1 0 0
0 1 1 0 0 0

1
1
0
0
1
0

1
1
0

1
0
1
0
0
1

1
0
1

0
1
0
1
0
1

0
1
0

0
0
1
1
1
0

0
0
1

1
0
0
1
0
0

1
0
0

0
1
1
0
0
0

0
1
1

1
1
0
0
1
0

1
0
1
0
0
1

0
1
0
1
0
1

0
0
1
1
1
0

1
0
0
1
0
0

0
1
1
0
0
0

(B)

0 0 1 1 1 0
1 0 0 1 0 0
0 1 1 0 0 0

(a)

(b)

Figure 1.25. Mapping of two grid patterns G6,6 of the same permutation
class for di�erent topmost intervals: (a) completely �xed row
intervals, (b) completely �xed column intervals: this is the
unique representative.

1.25 (a), because G[2, 3] < G[2, 4]; the result of this step is shown
in Figure 1.25 (b). After this step, both all rows and all columns
are separated from each other by intervals and de�ne in this way the
representative of the permutation class of grid patterns. Figure 1.25
(b) shows identical grid patterns which are constructed from di�erent
grid patterns (A) and (B) of Figure 1.23 (a) which are taken from the
same permutation class of grids.

The main steps of the algorithm MRPC are summarized in Algorithm
1.13. The matrix rim stores the checksums of the row intervals and

80 Boolean Rectangle Problem

Algorithm 1.13 Mapping onto Representatives of Permutation
Classes (MRPC)

Require: TVL gp of a single grid pattern of the grid Gm,n of m rows
and n columns

Ensure: TVL urgp of unique representative grid pattern of the ded-
icated permutation class of gp

1: rim← InitRm(m,n) . initialize row interval matrix
2: cim← InitCm(m,n) . initialize column interval matrix
3: while any interval of rows or columns > 1 do
4: while checksums specify smaller intervals do
5: 〈gp, rim〉 ← CreateRowIntervals(gp, cim)
6: 〈gp, cim〉 ← CreateColumnIntervals(gp, rim)
7: end while

8: if any interval of rows > 1 then
9: 〈gp, rim〉 ← DefineRowInterval(gp, cim)
10: 〈gp, cim〉 ← CreateColumnIntervals(gp, rim)
11: end if

12: if any interval of columns > 1 then
13: 〈gp, cim〉 ← DefineColumnInterval(gp, cim)
14: 〈gp, rim〉 ← CreateRowIntervals(gp, rim)
15: end if

16: end while

17: urpc← gp
18: return urpc

is initialized in line 1. Similarly, the matrix cim stores the checksums
of the column intervals and is initialized in line 2. The actions in the
while-loop in lines 3 to 16 are repeated until all row intervals have a
height of 1 and all column intervals have a width of 1.

The inner while-loop in lines 4 to 7 creates in a sequence �rst new
row intervals and thereafter new column intervals based on di�erent
dominating checksums. The functions of lines 5 and 6 extend the
dedicated interval matrix by new checksums and exchange required
rows or columns in the grid pattern gp.

The function

CreateRowIntervals(gp, cim)

Permutation Classes 81

works as shown in Figure 1.21, and the function

CreateColumnIntervals(gp, rim)

proceeds as shown in Figure 1.22.

In the case that neither rows nor columns of intervals can be separated
based on their checksums, the function

DefineRowInterval(gp, cim)

creates a row interval of one row in line 9 of Algorithm 1.13. An ad-
ditional condition for this step is that at least on row interval consists
of more than one row. Commonly, the row interval matrix rim is
extended with the created row interval. An example of this step is
shown in Figure 1.23 (a). Due to the new checksums of row intervals,
the function

CreateColumnIntervals(gp, rim)

builds additional column intervals in line 10. This step is illustrated
in Figure 1.23 (b).

Similarly, the function

DefineColumnInterval(gp, rim)

builds a new single column interval within an interval of more than
one column with identical checksums in line 13 of Algorithm 1.13. An
example for this step is shown in Figure 1.24 (a). Function

CreateRowIntervals(gp, cim)

in line 14 creates possible consecutive row intervals as shown in Figure
1.24 (b).

The while-loop in lines 3 to 16 terminates when each element of the
grid pattern gp belongs exactly to one row interval and to one column
interval. Necessary permutations of rows and columns change the
given grid pattern into a pattern that is used as representative of the
permutation class. Figure 1.25 (b) shows that in the explored example
the same representative is created for the di�erent grid patterns (A)

82 Boolean Rectangle Problem

and (B) of Figure 1.23 (a) which are elements of the same permutation
class.

It must be mentioned that Algorithm 1.13 (MRPC) belongs to the
class of soft-computing algorithms. This algorithm allows to �nd rep-
resentatives of extremely large permutation classes but cannot guar-
antee that a unique representative is constructed for each member of
the permutation class. Vice versa, in the case that Algorithm 1.13
(MRPC) creates the same representative for a given set of grid pat-
terns, all these grid patterns belong to the permutation class, cer-
tainly. Hence, the bene�ts of Algorithm 1.13 (MRPC) can be mea-
sured by the number of grid patterns which are mapped to the same
representative of a permutation class of grids. In detail we evaluate
this quality in the next section of experimental results.

1.5.6. Soft-Computing Results

We implemented Algorithm 1.11 of the iterative greedy approach of
subsection 1.5.3 and used Algorithm 1.13 (MRPC) as implementa-
tion of the function UniqueRepresentative(gp) in line 13 of Al-
gorithm 1.11 for the direct mapping onto representatives of a per-
mutation class. Table 1.16 summarizes the results of this combined
soft-computing approach.

The �rst three columns of Table 1.16 are labeled by m, n, and v
which means that the evaluated grid has m rows and n columns so
that v = m∗n Boolean variables are necessary to store the assignments
of values 1 to the grid elements. It can be seen that the number of
needed variables ranges from 4 to 400. The runtime of about 5 seconds
for the last iteration step reveals that the complexity of 2400 does not
restrict the calculation of even larger grids. We did not continue
the calculation for grids larger than G20,20 because in the context of
chapter 2 we are interested in the results for the grid G18,18.

We evaluated in this experiment only grids with the same number
of rows and columns. Generally, grids of each size can be evaluated
using the applied approach. Again, the restriction to quadratic grids
is caused by the focus on the grid G18,18 that has the same number

Permutation Classes 83

Table 1.16. Results of the iterative greedy approach in combination with
the direct mapping onto a representative of a permutation
class.

recursively de�ned maximal ratio time in
m n nv assignments grids classes v/ass. seconds

2 2 4 3 3 1 0.750 0.001
3 3 9 6 1 1 0.667 0.171
4 4 16 9 3 1 0.563 0.176
5 5 25 12 7 2 0.480 0.196
6 6 36 16 3 1 0.444 0.189
7 7 49 21 1 1 0.429 0.192
8 8 64 24 28 4 0.375 0.418
9 9 81 28 108 12 0.346 3.149
10 10 100 33 48 8 0.330 1.612
11 11 121 38 51 11 0.314 1.483
12 12 144 43 142 31 0.299 3.860
13 13 169 49 85 33 0.290 3.449
14 14 196 56 4 3 0.285 1.023
15 15 225 61 63 15 0.271 3.932
16 16 256 67 180 8 0.262 11.024
17 17 289 74 16 1 0.256 2.704
18 18 324 81 3 1 0.250 2.272
19 19 361 88 6 4 0.244 3.246
20 20 400 96 12 2 0.240 5.370

of rows and columns.

The main results are given in columns 4 to 6 of Table 1.16. The
meaning of this columns must be explained precisely. The �rst row
summarizes the exact solution for the grid G2,2. There are exactly
three grid patterns (column 5) in which three elements (column 4)
carry the value 1 having the initial grid value G[1, 1] = 1. Figure 1.15
shows these grids which belong to the same permutation class so that
a single representative (column 6) is constructed by Algorithm 1.13.
This representative is the leftmost grid of Figure 1.15.

The results for all grids Gm+1,n+1,m ≥ 2, n ≥ 2, n = m are calculated
based on the results of Gm,n. Hence, only grids of the known maximal

84 Boolean Rectangle Problem

assignments of values 1 of the grid Gm,n are extended to associated
grids Gm+1,n+1 with a maximal number of values 1. This greedy
approach must not de�ne exact maximal assignments because less
assignments of values 1 in a grid Gm,n can allow more assignments of
values 1 in the added row and column to construct the grid Gm+1,n+1.

The numbers of recursively de�ned maximal grid patterns and per-
mutation classes in columns 5 and 6 of Table 1.16 reveal an inter-
esting self-adjustment behavior of the used iterative greedy approach.
Generally, there are more rectangle-free grid patterns and permuta-
tion classes which do not have the maximal number of assignments of
values 1. We veri�ed by another approach that the number of assign-
ments given in Table 1.16 for the grids from G2,2 until G8,8 are the
largest possible rectangle-free assignments of values 1. Hence, in this
range the values of column 4 of Table 1.16 are equal to maxrf(m,n).
The signi�cantly larger number of rectangle-free grids G9,9 is caused
by the fact that no maximal rectangle-free grid G9,9 includes a maxi-
mal rectangle-free grid G8,8. Vice versa, the smaller number of rect-
angle-free grids G14,14 or G17,17 in comparison to the grids G13,13 or
G16,16 indicates the return to maximal grids.

Table 1.16 shows in column 7 the ratio between all variables v which is
equal to all grid positions and the maximal number of rectangle-free
assignments of values 1. This ratio decreases from 0.75 for G2,2 to
0.25 for G18,18. This ratio 0.25 for the grid G18,18 is very important
for the task to solve in Chapter 2.

Finally, we evaluate the advantage of the direct mapping onto repre-
sentatives of a permutation class by Algorithm 1.13 (MRPC) as im-
plementation of function UniqueRepresentative(gp) in line 13 of
Algorithm 1.11 (IGGS). Algorithm 1.13 reduces the number of found
grids in most cases to a smaller number of representatives of permu-
tation classes as can be seen by comparing the columns 5 and 6 of
Table 1.16. Only in the case of a single grid pattern no smaller num-
ber of representatives can be found. Algorithm 1.11 belongs to the
class of soft-computing algorithms because the aim of maximal assign-
ments of values 1 cannot be reached in each sweep of the iteration.
Using the soft-computing algorithms IGGS and MRPC, the strong
lower bound of maxrf(20, 20) = 96 in the gigantic search space of
2400 = 2.58 ∗ 10120 could be calculated within few seconds using a

Permutation Classes 85

normal PC.

The achieved improvement (the quotient of the values in columns
5 and 6 of Table 1.16) is in the range between 1 for the grid G2,2

and 22.5 for the grid G16,16. On the �rst glance these reductions
do not seem to be strong. However, due to the recursive greedy ap-
proach we have to multiply these quotients so that Algorithm 1.13
(MRPC) contributes an overall improvement of 1.41816 ∗ 1011 to �nd
the rectangle-free grid patterns of G20,20. Without the utilization of
Algorithm 1.13 (MRPC) 2.83632 ∗ 1011 rectangle-free grid patterns
must be calculated and stored instead of only 2 of these grid patterns
calculated by Algorithm 1.13. Taking into account that 50 bytes are
needed to store a single solution vector of 400 bits, 14.1816 Terabytes
are necessary to store the iteratively calculated solutions of rectangle-
free grids G20,20. Assuming furthermore, each of the 2.83632 ∗ 1011

rectangle-free grids can be calculated within 1 millisecond, then it
takes more than 9 years to create all of them. We see, without the
utilization of the direct mapping onto representatives of permutation
classes it is practically impossible to solve the considered task using
normal resources.

2. Four-Colored Rectangle-Free

Grids

2.1. The Problem to Solve and its

Complexity

Bernd Steinbach Christian Posthoff

2.1.1. Extension of the Application Domain

Many practical problems innately belong to the Boolean domain.
Boolean problems have the characteristic property that their variables
can attain only two values. Such pairs of values can be, e.g.,

• the light in the room is on or o�,

• the train drives at a switch to the left or to the right,

• the book is in a bookstore available or not available,

• the answer to a question is yes or no,

• a paper is accepted or not accepted for publication in a journal,

• one more picture can be stored on the memory card of a camera,
and so on.

A small number of Boolean problems were presented in Chapter 1 to
motivate the Boolean rectangle problem. Many other Boolean prob-
lems are explored in the other chapters of this book. Hence, there is
a very wide �eld in which Boolean methods can directly be used to
solve the given problem.

88 Four-Colored Rectangle-Free Grids

In this chapter we extend the �eld of problems in which Boolean meth-
ods can be utilized in order to �nd a solution. The variables of this
extended domain do not only hold two values but a �nite number of
di�erent values. Such variables are called multiple-valued variables.
Very often these problems are summarized in parts of Discrete Math-
ematics.

An example of multiple-valued variables is the assignment of one of a
small number of frequencies to the hotspots of a mobile net. Neigh-
bored hotspots must use di�erent frequencies in order to reduce the
mutual perturbations. This problem leads to the well-known problem
that nodes of a graph must satisfy certain restrictions. We will study
a similar problem in this chapter.

All multiple-valued problems can be mapped into the Boolean domain
because each multiple-valued variable holds only a �nite number of
di�erent values, and k Boolean variables su�ce to represent up to 2k

di�erent values of a multiple-valued variable. Basically, the table to
encode up to 2k di�erent values by k Boolean variables can be arbi-
trarily chosen. However, the same table must be used to map solutions
from the Boolean domain back into the multiple-valued domain.

One general approach to solve a multiple-valued problem consists in
three steps:

1. encode the multiple-valued variables by Boolean variables using
a unique code,

2. solve the problem in the Boolean domain,

3. decode the results stored in the Boolean domain back into the
multiple-valued domain using the same coding table in the re-
verse direction.

2.1.2. The Multiple-valued Problem

This chapter deals with a special graph-coloring problem. Examples
for applications of graph-coloring were already introduced in Chapter
1. Further applications of graph-coloring are explained in [186]. Now

The Problem to Solve and its Complexity 89

we extend the range of graph-coloring. We found this problem in [98]
published on a web page. The short de�nition of the problem in this
paper is as follows.

A two-dimensional grid is a set Gm,n = [m]× [n]. A grid Gm,n
is c-colorable if there is a function χm,n : Gm,n → [c] such that
there are no rectangles with all four corners of the same color.

In comparison with [98] we exchanged in this de�nition the variables
m and n to get a natural alphabetic order of m rows and n columns.

In order to explain the problem in a way which is easy to understand
we start with a simple bipartite graph G(V,E). The set of all vertices
V of the bipartite graph G is divided into two subsets V1 and V2 with
V = V1 ∪V2 and V1 ∩V2 = ∅. It is a special property of each bipartite
graph G that each edge e ∈ E connects one vertex v1i ∈ V1 with one
vertex v2k ∈ V2. There are no edges between vertices of the subset V1
or the subset V2.

Only complete bipartite graphs are taken into consideration. That
means that each vertex of V1 is connected with each vertex of V2.
Figure 2.1 shows as example two di�erent complete bipartite graphs
of three vertices in the subset V1 ⊂ V and four vertices in the subset
V2 ⊂ V .

Each edge of the complete bipartite graph must be colored using one of
four colors. The four colors red, green, blue, and yellow are mapped to
four-valued variables of the edges using the encoding table of Figure
2.1. This table additionally shows di�erent styles to represent the
color of an edge in a black-white picture of the graph.

The left graph G1
3,4 of Figure 2.1 contains:

• two red (1) edges: {e(v11, v21), e(v12, v23)}
• three green (2) edges: {e(v11, v22), e(v12, v22), e(v13, v21)}

• four blue (3) edges: {e(v11, v23), e(v11, v24),
e(v13, v23), e(v13, v24)}, and

• three yellow (4) edges: {e(v12, v21), e(v12, v24), e(v13, v22)} .

90 Four-Colored Rectangle-Free Grids

v11

v12

v13

v21

v22

v23

v24G1
3,4

c1 c2 c3 c4

r1

r2

r3

1 2 3 3

4 2 1 4

2 4 3 3

v11

v12

v13

v21

v22

v23

v24G2
3,4

c1 c2 c3 c4

r1

r2

r3

1 2 3 4

4 2 1 4

2 4 3 3

encoding
of the colors

1
2
3
4

red
green
blue
yellow

Figure 2.1. Edge colorings of two complete bipartite graphs G1
3,4 and

G2
3,4 using four colors: incorrect graph G1

3,4 that violates the
rectangle-free condition and rectangle-free graph G2

3,4.

The graph G1
3,4 contains a complete subgraph K2,2 in which all edges

between two vertices of V1 and two vertices of V2 are colored by the
same color. These are the blue-colored edges e(v11, v23), e(v11, v24),
e(v13, v23), and e(v13, v24). Such a monochromatic cycle of four edges
violates the color condition. Hence, the graph G1

3,4 must be excluded
from the set of wanted graphs. Such a coloring of a complete bipartite
graph is called incorrect.

The graphsG1
3,4 andG

2
3,4 di�er only in the color of the edge e(v11, v23).

The graph G2
3,4 does not contain any monochromatic subgraph K2,2.

Hence, such a rectangle-free coloring of a complete bipartite graph is
called correct.

An alternative to the graphical representation of a bipartite graph
Gm,n is an adjacency matrix. Such a matrix is also called a grid . We
prefer this short term in the rest of this chapter.

The subset V1 ⊂ V is mapped to the set of rows R, and the subset
V2 ⊂ V is mapped to the set of rows C. The row ri of such a grid
indicates the vertex v1i ∈ V1, and the column ck refers to the v2k ∈ V2.
As usual for a matrix, the row numbers ri of the grid grow top down,
and the column numbers ck grow from the left to the right. The

The Problem to Solve and its Complexity 91

elements of the grid are the colors indicated by associated integers.
A value c ∈ {1, . . . , 4} in the position of row ri and column ck means
that the edge e(ri, ck) is colored with the given color c.

Figure 2.1 shows the grids (adjacency matrices) below the graphical
representation of the bipartite graphs G1

3,4 and G
2
3,4. Four positions of

the left grid G1
3,4 of Figure 2.1 are framed by thick lines. These four

positions describe the four edges of a complete subgraph K2,2 that
violates the color condition. It can be seen that these four positions
are located in the corners of a rectangle. There is a monochromatic
rectangle when all four rectangle positions are labeled by the same
values.

Due to this special locations of the four edges of the monochromatic
subgraph K2,2 in the corners of a rectangle we can substitute the
term color condition by the term rectangle-free condition. Hence, the
problem to solve is:

Are there rectangle-free grids of a certain size which are com-
pletely colored using four colors.

The result of a comprehensive mathematical analysis of this problem
in [98] are:

• upper bounds of grid sizes which can be colored rectangle-free
using four colors, and

• lower bounds of grid sizes which cannot be colored rectangle-free
using four colors.

There are six grids for which it is unknown whether the grid can be
colored rectangle-free using four colors. Table 2.1 is a part of a table
given in [98], and indicates the so far unsolved grids by bold letters
U. We are going to solve all this problems in this chapter.

Four of these so far unsolved grids di�er in the size of rows and columns
only by one. A four-colored rectangle-free grid G18,18 can be restricted
to:

92 Four-Colored Rectangle-Free Grids

Table 2.1. Sizes of grids which are four-colorable rectangle-free (C),
not four-colorable rectangle-free (N), or where it is unknown
whether a rectangle-free four-coloring exists (U)

11 12 13 14 15 16 17 18 19 20 21 22

11 C C C C C C C C C C C N

12 C C C C C C C C C C U N

13 C C C C C C C C C C N N

14 C C C C C C C C C C N N

15 C C C C C C C C C C N N

16 C C C C C C C C C C N N

17 C C C C C C U U N N N N

18 C C C C C C U U N N N N

19 C C C C C C N N N N N N

20 C C C C C C N N N N N N

21 C U N N N N N N N N N N

22 N N N N N N N N N N N N

• several four-colored rectangle-free grids G17,18 by removing any
row

• several four-colored rectangle-free grids G18,17 by removing any
column, or

• several four-colored rectangle-free grids G17,17 by removing of
both any row and any column.

Hence, a four-colored rectangle-free grid G18,18 will solve the coloring
problem for four of the open grid sizes. Subsections 2.2, 2.3, and 2.4
describe our steps to �nd solutions for this problem.

The other two unsolved grids are G12,21 and G21,12. A solution for
one of these grids is after a rotation by 90 degrees also a solution of
the other grid. The properties of this grid require other steps to �nd a
solution. Section 2.5 extends our basic results of [293] and shows, how
special properties could be utilized to �nd also four-colored rectangle-
free grids G12,21.

The Problem to Solve and its Complexity 93

2.1.3. Multiple-valued Model

The four colors can be represented by the four values {1, 2, 3, 4}. The
value of the grid in the row r and the column c can be modeled by the
four-valued variable xr,c. One rectangle of the grid is selected by the
rows ri and rj and by the columns ck and cl. The color condition for
the rectangles can be described using the following three operations:

1. equal (multiple-valued):

x ≡ y =

{
1 if x is equal to y
0 otherwise

, (2.1)

2. and (conjunction, Boolean):

x ∧ y =

{
1 if both x and y are equal to 1
0 otherwise

, (2.2)

3. or (disjunction, Boolean):

x ∨ y =

{
0 if both x and y are equal to 0
1 otherwise

. (2.3)

The function fec(xri,ck , xri,cl , xrj ,ck , xrj ,cl) (2.4) depends on four four-
valued variables and has a Boolean result that is true if the colors in
the corners of the rectangle selected by the rows ri and rj and by the
columns ck and cl are equal to each other.

fec(xri,ck , xri,cl , xrj ,ck , xrj ,cl) =

((xri,ck ≡ 1) ∧ (xri,cl ≡ 1) ∧ (xrj ,ck ≡ 1) ∧ (xrj ,cl ≡ 1))∨
((xri,ck ≡ 2) ∧ (xri,cl ≡ 2) ∧ (xrj ,ck ≡ 2) ∧ (xrj ,cl ≡ 2))∨
((xri,ck ≡ 3) ∧ (xri,cl ≡ 3) ∧ (xrj ,ck ≡ 3) ∧ (xrj ,cl ≡ 3))∨
((xri,ck ≡ 4) ∧ (xri,cl ≡ 4) ∧ (xrj ,ck ≡ 4) ∧ (xrj ,cl ≡ 4)) (2.4)

The condition that in the four corners of the rectangle selected by the
rows ri and rj and by the columns ck and cl not only one of the four
colors {1, 2, 3, 4} will appear is

fec(xri,ck , xri,cl , xrj ,ck , xrj ,cl) = 0 . (2.5)

94 Four-Colored Rectangle-Free Grids

Table 2.2. Encoding of four colors x by two Boolean variables a and b

x a b

1 0 0
2 1 0
3 0 1
4 1 1

For the whole grid Gm,n we have the four-valued rectangle condition:

m−1∨
i=1

m∨
j=i+1

n−1∨
k=1

n∨
l=k+1

fec(xri,ck , xri,cl , xrj ,ck , xrj ,cl) = 0 . (2.6)

2.1.4. Boolean Model

The four colors can be represented by the four values {1, 2, 3, 4}. Two
Boolean variables are needed to encode these four values. Table 2.2
shows the used mapping.

Using the encoding of Table 2.2, a complete model of the problem
within the Boolean domain can be created. The function (2.7) de-
pends on eight Boolean variables and has a Boolean result that is true
if the color is the same in the four corners of the rectangle selected by
the rows ri and rj and by the columns ck and cl.

fecb(ari,ck , bri,ck , ari,cl , bri,cl , arj ,ck , brj ,ck , arj ,cl , brj ,cl) =

(ari,ck ∧ bri,ck ∧ ari,cl ∧ bri,cl ∧ arj ,ck ∧ brj ,ck ∧ arj ,cl ∧ brj ,cl)∨
(ari,ck ∧ bri,ck ∧ ari,cl ∧ bri,cl ∧ arj ,ck ∧ brj ,ck ∧ arj ,cl ∧ brj ,cl)∨
(ari,ck ∧ bri,ck ∧ ari,cl ∧ bri,cl ∧ arj ,ck ∧ brj ,ck ∧ arj ,cl ∧ brj ,cl)∨
(ari,ck ∧ bri,ck ∧ ari,cl ∧ bri,cl ∧ arj ,ck ∧ brj ,ck ∧ arj ,cl ∧ brj ,cl)

(2.7)

The �rst conjunction of (2.7) describes the case that all four corners
of the selected rectangle carry the color red (x = 1). Equivalent
properties for the colors green (x = 2), blue (x = 3), and yellow

The Problem to Solve and its Complexity 95

(x = 4) are speci�ed in the rows 2, 3, and 4 of the function fecb (2.7),
respectively.

The index ebc of the function fecb (2.7) means: Equal Colors, Bi-
nary encoded. The rectangle-free condition of a grid Gm,n for a single
rectangle of the rows ri, rj and the columns ck, cl for all four colors is:

fecb(ari,ck , bri,ck , ari,cl , bri,cl , arj ,ck , brj ,ck , arj ,cl , brj ,cl) = 0 . (2.8)

All conditions of the four-color problem of a grid Gm,n are achieved
when the function fecb (2.7) is equal to 0 for all rectangles which can
be expressed by

m−1∨
i=1

m∨
j=i+1

n−1∨
k=1

n∨
l=k+1

fecb(ari,ck , bri,ck ,

ari,cl , bri,cl , arj ,ck , brj ,ck , arj ,cl , brj ,cl) = 0 . (2.9)

2.1.5. Estimation of the Complexity

The four colors of the grid element in the row ri and the column ck
are speci�ed by the values of Boolean variables ari,ck and bri,ck . Due
to these two Boolean variables of a single grid element, the number
m of rows ri, and the number n of columns ck, the overall number
of Boolean variables required to encode all di�erent four-colored grids
Gm,n is equal to 2 ∗ m ∗ n. Hence, the numbers of di�erent color
patterns are

ncp(m,n) = 22∗m∗n (2.10)

for a grid Gm,n that is completely colored by four colors. Hence, the
numbers of di�erent four-colored grids for the studied sizes are

G12,21 : ncp(12, 21) = 22∗12∗21 = 2504 = 5.23742 ∗ 10151 , (2.11)

G18,18 : ncp(18, 18) = 22∗18∗18 = 2648 = 1.16798 ∗ 10195 . (2.12)

Obviously, these are extremely large numbers. Therefore the gener-
ation of all color patterns for the grids G12,21 and G18,18 is not an
option for the solution of these problems, also including the fact that
the grid G18,18 is 1043-times more complex than the grid G12,21.

96 Four-Colored Rectangle-Free Grids

The problem is even more di�cult due to the number of rectangles
which must be evaluated for each color pattern. The number of all
possible rectangles depends on the number of rows m and the number
of columns n of a grid Gm,n. Each pair of rows and each pair of
columns generates one possible rectangle. Hence,

nr(m,n) =

(
m

2

)
∗
(
n

2

)
=
m(m− 1)

2
∗ n(n− 1)

2
(2.13)

rectangles exist for a grid Gm,n. The number of rectangles which must
be evaluated for the studied grids are:

G12,21 : nr(12, 21) =

(
12

2

)
∗
(

21

2

)
= 66 ∗ 210 = 13, 860 , (2.14)

G18,18 : nr(18, 18) =

(
18

2

)
∗
(

18

2

)
= 153 ∗ 153 = 23, 409 . (2.15)

The number of rectangles does not depend on the number of used
colors so that nr(m,n) for the studied four-valued grids (2.13) is the
same as for the Boolean rectangle problem (1.6).

The number of all rectangles n4car for all four-colored grids of a certain
size is equal to

n4car(m,n) =

(
m

2

)
∗
(
n

2

)
∗ 22∗m∗n . (2.16)

The value of nar(m,n) characterizes how many subtasks must be
solved in order to �nd all color patterns which satisfy the rectangle
condition (2.9) for the grid Gm,n. Hence, nar(m,n) is a measure for
the complexity of the task to be solved. The number of all rectangles
which must be evaluated for all di�erent grid patterns of the studied
grids are:

G12,21 : n4car(12, 21) = 66 ∗ 210 ∗ 2504 = 7.2591 ∗ 10155 , (2.17)

G18,18 : n4car(18, 18) = 153 ∗ 153 ∗ 2648 = 2.7341 ∗ 10199 . (2.18)

The number of rectangles nr(m,n) of a grid Gm,n does not depend
on the number of used colors. Hence, nr(m,n) for the studied four-
valued grids (2.13) is the same as for the Boolean Rectangle Problem
(1.6).

The Problem to Solve and its Complexity 97

However, the number of all rectangles nar(m,n) depends on the num-
ber of colors. The value 2 in the exponent of (2.10) indicates the
number of Boolean variables to encode the four colors. Therefore, the
number of all rectangles which must be evaluated for all four-colored
grids is ngp = 2m∗n times larger than the number of all rectangles for
a grid of the same size that contains Boolean values.

98 Four-Colored Rectangle-Free Grids

2.2. Basic Approaches and Results

Bernd Steinbach Christian Posthoff

2.2.1. Solving Boolean Equations

In order to make progress, we investigated more properties of the
problem. The details of our explorations have been published in [295].
Here we summarize the main results.

The Boolean equation (2.9) can be completely solved for small grid
sizes. The representation by ternary vectors of XBOOLE [240], [302]
and [298] helps to restrict the required memory.

Table 2.3 shows the detailed results for grids ofm = 2, . . . , 7 rows, and
n = 2 columns. The column labeled by v gives the number of Boolean
variables of the Boolean equation (2.9). The next column enumerates
the number of ternary vectors required to express the correct solutions
given in the �fth column. The bene�t of the ternary representation is
obvious. It is easy to calculate all solutions, because XBOOLE uses
orthogonal ternary vectors.

The di�erence between the number of all possible color patterns ncp
(2.10) and the number of correct solutions is equal to the number of
incorrect patterns. The column incorrect fraction in Table 2.3 gives
the percentage of these incorrect patterns.

For the simplest grid G2,2 almost all of the ncp = 28 = 256 color
patterns are correct solutions. Only the four patterns speci�ed by the
function (2.7) are incorrect. The incorrect fraction of rectangle-free
four-color patterns of G2,2 is equal to 1.56%. This percentage grows to
more than 25% for the grid G7,2. From this observation we learn that
there can be a four-colored rectangle-free grid Gm,n with the property
that at least one of the grids Gm+1,n or Gm,n+1 is not four-colorable
in a rectangle-free way. This border is achieved for a four-colored
rectangle-free grid Gm,n with a fraction of incorrect patterns of 0.75.
The practical results of Table 2.3 con�rm the theory of [98].

Basic Approaches and Results 99

Table 2.3. Solutions of the Boolean equation (2.9) for m rows and n
columns calculated with XBOOLE

number of

m n nv ternary correct incorrect incorrect memory time in

vectors solutions patterns fraction in KB seconds

2 2 8 24 252 4 1.56 % 6 0.002

3 2 12 304 3,912 184 4.49 % 61 0.004

4 2 16 3,416 59,928 5,608 8.56 % 675 0.006

5 2 20 36,736 906,912 141,664 13.51 % 7,248 0.029

6 2 24 387,840 13,571,712 3,205,504 19.11 % 76,509 0.379

7 2 28 4,061,824 201,014,784 67,420,672 25.12 % 801,259 4.383

2.2.2. Utilization of Permutations

The limit in the previous approach was the required memory of about
800 Megabytes to represent the correct color patterns of the grid G7,2

which could be calculated in less than 5 seconds. To break the limita-
tion of memory requirements we exploited some heuristic properties
of the problem:

1. Knowing one single correct solution of the four-color problem,
4! = 24 permutations of this solution with regard to the four
colors are also correct solutions.

2. The permutation of rows and columns of a given correct solution
pattern creates another pattern that is a correct solution, too.

3. A nearly uniform distribution of the colors in both the rows and
the columns increases the fraction of four-colored rectangle-free
grids.

Hence, in [295] we con�ned ourselves to the calculations of solutions
with a �xed uniform distribution of the colors in the top row and in
the left column. We restricted the calculation in this experiment to
12 columns and 2 Gigabytes of available memory.

100 Four-Colored Rectangle-Free Grids

Table 2.4. Selected solutions of the Boolean equation (2.9) with �xed uni-
form distribution of the colors in the top row and in the left
column

number of memory time in

m n nv ternary vectors correct solutions in KB seconds

2 2 8 1 4 1 0.000
2 12 48 6,912 2,361,960 1,365 0.023
3 2 12 1 16 1 0.002
3 8 48 4,616,388 4,616,388 424,679 7.844
4 2 16 1 64 1 0.002
4 5 40 674,264 12,870,096 113,135 1.000
5 2 20 1 256 1 0.002
5 4 40 573,508 12,870,096 133,010 0.824
6 2 24 4 960 2 0.003
6 3 36 15,928 797,544 11,367 0,020
7 2 28 16 3,600 4 0.004
7 3 42 183,152 104,93,136 95,565 0.314
8 2 32 64 3,600 14 0.005
8 3 48 2,152,819 136,603,152 910,656 4.457
9 2 36 256 50,625 52 0.007
10 2 40 768 182,250 153 0.008
15 2 60 147,456 104,162,436 29,090 0.386
19 2 76 6,553,600 14,999,390,784 1,292,802 21.378

Table 2.4 shows some results of this restricted calculation selected
from a table given in [295]. Figure 2.2 depicts the four selected four-
colored rectangle-free grids of the �rst row in Table 2.4. Using the
same memory size, the number of Boolean variables could be enlarged
from nv = 28 for G7,2 to nv = 76 for G19,2. That means, by utilizing
properties of the four-color problem mentioned above, we have solved
problems which are 248 = 281, 474, 976, 710, 656 times larger than
before, but again the available memory size restricts the solution of
larger four-colored rectangle-free grids.

1

2

2

1

1

2

2

2

1

2

2

3

1

2

2

4

Figure 2.2. Four-colored grids G2,2 of the �rst row in Table 2.4.

Basic Approaches and Results 101

2.2.3. Exchange of Space and Time

The function fecb (2.7) describes the incorrect patterns of a single
rectangle. The number of rectangles nr(m,n) (2.13) of a grid Gm,n is
speci�ed by all possible pairs of rows and all possible pairs of columns.
This number controls the sweeps of the loop in algorithms which eval-
uate these rectangles. Color patterns which violate the rectangle-free
condition (2.8) for a single rectangle must be excluded from all pat-
terns of the Boolean space B2∗m∗n which can be calculated using the
DIF-operation of XBOOLE [240], [302], and [298].

The main data structure of XBOOLE is an orthogonal list of ternary
vectors (TVL). Each ternary vector consists of 2 ∗ m ∗ n elements
`0', `1', and `�' for the Boolean space B2∗m∗n. Two di�erent binary
vectors which are equal to each other in (2 ∗m ∗ n)− 1 positions can
be merged into a single ternary vector that contains a dash element
in the position of given di�erent binary values. A ternary vector of
d dash elements expresses 2d binary vectors. Hence, a TVL can be
used as a compact representation of a set of binary vectors. The
bene�t in terms of required memory for the TVLs can be seen in
Table 2.3. The XBOOLE-operation C=DIF(A,B) calculates the set
di�erence C = A \B = A∩¬B for the given TVLs A and B such that
as much as possible dash elements of A remain in the result C.

We use the DIF-operation of XBOOLE to solve the four-color problem
of grids. We assume that aps is the actual partial solution which is
initialized by the whole Boolean space B2∗m∗n. Algorithm 2.1 �nds
all rectangle-free four-color patterns when unrestricted memory space
can be used.

Algorithm 2.1 RF4CG with unrestricted space requirements

Require: nr the number of rectangles of a grid
Require: fecb[i] Boolean rectangle condition for four colors
Ensure: all four-colored rectangle-free patterns of the evaluated grid
1: aps← ∅
2: aps← CPL(all) . complement
3: for i← 1 to nr do
4: aps← DIF(aps, fecb[i]) . di�erence
5: end for

102 Four-Colored Rectangle-Free Grids

It is an important drawback of Algorithm 2.1 that the size of aps
typically extremely increases up to a certain index i and decreases
later on. Therefore, we implemented an algorithm that exchanges
space against time.

The partial solution vectors of aps are logically connected by disjunc-
tions. Hence, aps can be split by (2.19) into two parts:

aps = aps0 ∨ aps1 . (2.19)

The main idea is to solve the problem sequentially for aps0 and aps1,
and combine both solutions at the end. If necessary, this approach
can be recursively applied. The decision about the split of aps can
be controlled by the size of aps itself. Hence, it is possible to restrict
the used memory space to an appropriate size. The restriction of the
memory size has to be compensated by a certain amount of compu-
tation time for the administration of the split and merge operations.

There are several implementations of the suggested approach. One
of them uses one stack aps_stack to store aps1 and another stack
position_stack to store the value of the index i that belongs to the
executed split. Two stacks with the check operation EMPTY(), and
the access operations PUSH() and POP() are used as storage for the
intermediate results. The function (aps0, aps1)← split(aps) splits the
TVL aps into aps0 and aps1 having approximately the same size.

Algorithm 2.2 uses the value of SplitLimit to decide which TVL aps
must be split into two parts. The NTV-operation of XBOOLE returns
the number of ternary vectors of a given TVL. This operation is used
in line 5 of Algorithm 2.2 to get the number of ternary vectors of
aps as basis of the decision about the execution of a split. Decisions
depending on the the number of ternary vectors of aps, the content
of the stack, and the index of the loop are used in lines 10 to 27 to
control the required actions.

Both Algorithm 2.1 and Algorithm 2.2 solve the same task to �nd
all four-colored rectangle-free patterns of the evaluated grid using the
same basic approach as shown in lines 3 and 4 of both algorithms.
Algorithm 2.1 fails to solve the problem if the program runs out of
memory. Such a break can not occur in Algorithm 2.2. Controlled
by the value of SplitLimit only disjoint subsets of all solutions are

Basic Approaches and Results 103

Algorithm 2.2 RF4CG with restricted space requirements

Require: nr number of rectangles of a grid
Require: fecb[i] Boolean rectangles conditions for four colors
Require: SplitLimit number of ternary vectors which causes a split

of aps
Ensure: all four-colored rectangle-free patterns of the evaluated grid
1: aps← ∅
2: aps← CPL(all) . complement
3: for i← 1 to nr do
4: aps← DIF(aps, fecb[i]) . di�erence
5: if NTV(aps) > SplitLimit then
6: (aps, aps1)← split(aps)
7: aps_stack.PUSH(aps1)
8: position_stack.PUSH(i)
9: end if

10: if NTV(aps) = 0 then . number of ternary vectors
11: if aps_stack.EMPTY() then
12: return aps . no solution
13: else

14: aps← aps_stack.POP()
15: i← position_stack.POP()
16: end if

17: else

18: if i = nr then
19: appendToFileOfSolutions(aps) . solutions
20: end if

21: if aps_stack.EMPTY() then
22: return aps . solutions
23: else

24: aps← aps_stack.POP()
25: i← position_stack.POP()
26: end if

27: end if

28: end for

calculated during each interval of time. The function

appendToFileOfSolutions(aps)

appends found solutions to an external �le.

104 Four-Colored Rectangle-Free Grids

Table 2.5. Four-colored rectangle-free grid patterns using Algorithm 2.2
canceled after the calculation of the �rst correct solution

number of maximal time in

m n nv ternary vectors correct solutions stack size seconds

12 2 48 337 6,620 3 0.011

12 3 72 147 2,423 22 0.029

12 4 96 319 7,386 30 0.056

12 5 120 236 1,188 47 0.095

12 6 144 181 1,040 61 0.147

12 7 168 231 627 69 0.216

12 8 192 109 413 81 0.287

12 9 216 72 227 79 0.398

12 10 240 34 103 87 0.516

12 11 264 40 109 88 0.645

12 12 288 112 293 82 0.806

12 13 312 51 81 81 1.054

12 14 336 82 1,415 97 1.290

12 15 360 1 1 80 2.361

12 16 384 2 3 81 426.903

We applied Algorithm 2.2 to grids of 12 rows, used a �xed value
SplitLimit = 400, and cancelled the calculation when the �rst solutions
were found. Table 2.5 shows the results.

Exchanging space against time allows us again an extreme improve-
ment: solutions for four-colored rectangle-free grids which are modeled
with up to 384 Boolean variables were found instead of 76 variables
in the second (already improved) approach. This means that the ap-
proach of exchanging space and time for the four-colored rectangle-free
grids allows the solution of problems which are

2308 = 5.21481 ∗ 1092

times larger than before. An approach to reduce the required time is
given by parallel computing [296].

Power and Limits of SAT-Solvers 105

2.3. Power and Limits of SAT-Solvers

Bernd Steinbach Christian Posthoff

2.3.1. Direct Solutions for Four-colored Grids

It is the aim of the satis�ability problem (short SAT) to �nd at least
one assignment of Boolean variables such that a Boolean expression
in conjunctive form [290] becomes true. We tried to �nd four-colored
rectangle-free grid patterns using the best SAT-solvers from the SAT-
competitions of the last years. The equation (2.9) can easily be trans-
formed into a SAT-equation by negation of both sides and the appli-
cation of De Morgan's Law to the Boolean expression on the left-hand
side. In this way we get the required conjunctive form (2.20) for the
SAT-solver.

m−1∧
i=1

m∧
j=i+1

n−1∧
k=1

n∧
l=k+1

fecb(ari,ck , bri,ck ,

ari,cl , bri,cl , arj ,ck , brj ,ck , arj ,cl , brj ,cl) = 0 . (2.20)

Table 2.6 shows the required time to �nd the �rst rectangle-free so-
lution for the quadratic four-colored grids G12,12, G13,13, G14,14, and
G15,15 using the SAT-solvers clasp [114], lingeling [31], plingeling [31],
and precosat [31].

The power of SAT-solvers becomes visible by comparing the success-
fully solved grid sizes. The largest grid G12,16 that has been solved
with the method of Subsection 2.2.3 by exchanging space and time
depends on 308 Boolean variables. All four SAT-solvers found a so-
lution for the grid G15,15 which needs 450 Boolean variables. Hence,
the number of additional variables is 450−308 = 142; the successfully
evaluated search space is increased by the factor of 2142 = 5.575∗1042,
a very strong improvement. One source of this improvement is that
SAT-solvers are focused to �nd a single assignment to the Boolean
variables that satis�es the given equation while the aim of our previous

106 Four-Colored Rectangle-Free Grids

Table 2.6. Time to solve quadratic four-colored grids using di�erent SAT-
solvers

number of time in minutes:seconds.milliseconds

m n nv clasp lingeling plingeling precosat

12 12 288 0:00.196 0:00.900 0:00.990 0:00.368
13 13 338 0:00.326 0:01.335 0:04.642 0:00.578
14 14 392 0:00.559 0:03.940 0:02.073 0:00.578
15 15 450 46:30.716 54:02.304 73:05.210 120:51.739

approaches is the calculation of all solutions. Only some SAT-solvers
are able to calculate iteratively several or even all solutions.

From the utilization of the SAT-solvers we learned that

1. SAT-solvers are powerful tools which are able to calculate a
four-colored rectangle-free grid up to G15,15,

2. it was not possible to calculate a four-colored rectangle-free grid
larger than G15,15 within a reasonable period of time.

The reasons for the second statement are in the �rst place that the
search space for the four-colored rectangle-free grid G16,16 is already
262 = 4.61 ∗ 1018 times larger than the search space for the four-
colored rectangle-free grid G15,15, and secondly that the fraction of
four-colored rectangle-free grids is even more reduced for the larger
grid.

Figure 2.3 shows the four-colored grid G15,15 found by the SAT-solver
clasp within 46.5 minutes.

2.3.2. Restriction to a Single Color

Taking into account on the one hand both the power and the limit
of SAT-solvers, and on the other hand the strong complexity of four-
colored rectangle-free grids, a divide-and-conquer approach may facili-

Power and Limits of SAT-Solvers 107

2 4 1 3 1 2 4 3 4 4 1 3 2 1 3

1 2 3 1 1 2 3 2 3 4 4 4 4 2 3

4 2 1 2 2 1 1 3 2 3 3 4 3 4 4

3 4 3 4 3 4 1 4 1 3 1 4 1 2 2

1 3 4 4 2 3 1 2 4 2 4 2 3 1 2

2 2 3 3 4 1 2 4 4 1 1 2 3 3 4

4 3 2 2 1 4 2 2 4 1 3 1 4 3 1

3 1 2 3 4 4 1 1 3 4 3 2 2 4 1

1 4 4 3 2 3 2 1 1 3 2 1 4 2 4

4 3 4 3 3 2 3 4 2 4 2 2 1 1 1

4 4 3 1 4 3 2 1 2 1 3 3 2 1 2

3 2 1 1 4 3 3 3 1 2 2 4 2 3 1

2 1 2 1 3 3 4 4 2 2 1 1 4 2 3

1 1 1 2 3 4 4 3 3 1 4 2 1 2 4

2 3 4 2 1 1 4 1 3 3 2 3 1 4 2

Figure 2.3. Four-colored rectangle-free grid G15,15 found by the SAT-
solver clasp-1.2.0 in about 46.5 minutes.

tate the solution of the four-colored grid G17,17 or even the grid G18,18.
The divide step restricts to single color. At least one fourth of the grid
positions must be covered by the �rst color without contradiction to
the rectangle-free condition. When such a partial solution is known,
the same �ll-up step must be executed for the second color taking into
account the already �xed positions of the grid. This procedure must
be repeated for the remaining two colors.

The advantage of this approach is that a single Boolean variable de-
scribes whether the color is assigned to a grid position or not. The
function fecb (2.7) which describes equal colors in the corners of a rect-
angle can be simpli�ed to fsecb (2.21) for a single color in the corners of
the row ri and rj and the columns ck and cl in the divide-and-conquer
approach.

fsecb(ari,ck , ari,cl , arj ,ck , arj ,cl) = ari,ck ∧ ari,cl ∧ arj ,ck ∧ arj ,cl (2.21)

The index ebc of the function fecb (2.7) means as before: Equal Colors,
Binary encoded, and the letter s indicates that the function describes

108 Four-Colored Rectangle-Free Grids

the condition only for a single color. The rectangle-free conditions for
a single color of a grid Gm,n are satis�ed when the function f

s
ecb (2.21)

is equal to 0 for all rectangles which can be expressed by:

m−1∨
i=1

m∨
j=i+1

n−1∨
k=1

n∨
l=k+1

fsecb(ari,ck , ari,cl , arj ,ck , arj ,cl) = 0 . (2.22)

Equation (2.22) depends on 18 ∗ 18 = 324 Boolean variables for the
grid G18,18. Knowing that the four-colored grid G13,13 depends on
13 ∗ 13 ∗ 2 = 338 and that a four-colored rectangle-free pattern could
be calculated in about 1 second by several SAT-solvers, it may be
expected that the 1-color rectangle problem for the grid G18,18 can be
easily solved by each SAT-solver. Using De Morgan's Law, equation
(2.22) can be converted into the SAT-formula:

m−1∧
i=1

m∧
j=i+1

n−1∧
k=1

n∧
l=k+1

fsecb(ari,ck , ari,cl , arj ,ck , arj ,cl) = 1 . (2.23)

Most of the SAT-solvers calculate only a single solution. One possible
solution of (2.23) is the assignment of values 0 to all variables of this
equation. Exactly this solution was immediately found by the SAT-
solver for the grid G18,18 in our experiment. Of course, in the case
that no value 1 is assigned to the grid, the �rst color does not violate
the rectangle condition. However, we are need solutions in which a
maximal number of variables is equal to 1.

There is only one possibility to eliminate this restriction of SAT-
solvers. Some of the SAT-solvers are able to calculate several or even
all solutions of a given SAT-equation. One of them is clasp [114]. The
needed patterns for one color with 0.25 % or more values 1 can be
selected by counting the values 1 in the found solutions of the SAT-
solver. However, both the created extremely large output �le of the
SAT-solver and the required time for counting the assigned values 1
are a strong drawback of this approach.

The function fsecb (2.21) is monotonously rising. Hence, if there is
a needed solution with 81 assignments of the �rst color for the grid

Power and Limits of SAT-Solvers 109

G18,18 then for each of these solutions all

80∑
i=0

(
324

i

)
= 3.36329 ∗ 1077

color patterns are also solutions of the SAT-equation. Hence, such
a huge amount of waste must be calculated �rst by the SAT-solver
and thereafter eliminated by a time-consuming counting procedure.
Hence, we must conclude that the SAT-approach is not suitable to
solve the assignment problem of a single color to the large rectangle-
free grid G18,18.

110 Four-Colored Rectangle-Free Grids

2.4. Cyclic Color Assignments of

Four-Colored Grids

Bernd Steinbach Christian Posthoff

2.4.1. Sequential Assignment of a Single Color

As mentioned in Subsection 2.3.2, a divide-and-conquer approach may
facilitate the solution of the four-colored grid G17,17 or even the grid
G18,18 because such an approach reduces the complexity. The divide
step restricts us to a single color. At least one fourth of the grid posi-
tions must be covered by the �rst color without contradiction to the
rectangle-free condition. Based on such a partial solution, the same
�ll-up step must be executed for the next color taking into account the
already �xed positions of the grid. This procedure must be repeated
for all four colors.

The advantage of this approach is that a single Boolean variable de-
scribes the fact whether the color is assigned to a grid position or
not. Such a restriction to one half of the needed Boolean variables
drastically reduces the search space from 22∗18∗18 = 1.16 ∗ 10195 to
218∗18 = 3.41 ∗ 1097 for the grid G18,18 .

The function fsecb (2.21) which describes equal colors with Boolean
variables for a single color in the corners of the row ri and rj and
the columns ck and cl is given in Subsection 2.3.2. This function is
reused nr times in (2.22) to describe the rectangle-free condition for
all rectangles of a grid. Unfortunately, the associated SAT-equation
(2.23) cannot be solved in a reasonable period of time.

Using the soft-computing approach that combines the iterative greedy
approach of Subsection 1.5.3 and the utilization of permutations by
direct mapping to representatives of Subsection 1.5.5 we found as im-
portant experimental result of Subsection 1.5.6 one permutation class
for the Grid G18,18 that contains the needed 0.25 % of assignments
of the �rst color. Figure 2.4 shows the representative of the found

Cyclic Color Assignments of Four-Colored Grids 111

single color solution of the grid G18,18 which contains 81 of 324 color
1 tokens.

1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0

0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0

0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0

0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0

0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1

0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0

Figure 2.4. Rectangle-free grid G18,18 where one fourth of all positions is
colored with a single color.

As next step of the divide-and-conquer approach the color pattern of
Figure 2.4 must be extended by 81 assignments of the color 2. The 81
already assigned tokens of the color 1 simpli�es this task because the
number of free Boolean variables is 324−81 = 243 for the grid G18,18.
However, this simpli�cation is not su�cient for the application of the
SAT-solver in a reasonable period of time, because

80∑
i=0

(
243

i

)
= 7.72567 ∗ 1065

unwanted solutions must be calculated and later on excluded.

Alternatively the soft-computing approach that combines the iterative

112 Four-Colored Rectangle-Free Grids

r1 s1 t1 r2

t4 u1 u2 s2

s4 u4 u3 t2

r4 t3 s3 r3

Figure 2.5. Cyclic quadruples in the grid G4,4.

greedy approach of Subsection 1.5.3 and the utilization of permuta-
tions by direct mapping to representatives of Subsection 1.5.5 can
be adapted to the modi�ed problem. However, our e�ort to �ll up
the grid G18,18 of Figure 2.4 with the second color again in 81 grid
positions failed. This results from the fact that the freedom for the
choice of the positions is restricted by the assignments of the �rst
color. We learned from this approach that it is not enough to know
a correct coloring for one color; these assignments must not constrain
the assignment of the other colors.

2.4.2. Reusable Assignment for Four Colors

The smallest restrictions for the rectangle-free coloring of a grid by
four colors are given when the number of assignments to the grid
positions is equal for all four colors. For quadratic grids Gm,n,m = n,
with an even number of rows m and columns n, quadruples of all
grid positions can be chosen which contain all four colors. There are
several possibilities of such selections of quadruples. One of them is
the cyclic rotation of a chosen grid position by 90 degrees around the
center of the grid. Figure 2.5 illustrates this possibility for a simple
grid G4,4. The quadruples are labeled by the letters r, s, t, and u. The
attached index speci�es the element of the quadruple.

In addition to the rectangle-free condition (2.23) for the chosen sin-
gle color we can require that this color occurs exactly once in each
quadruple. This property can be expressed by two additional rules.
For the corners of the grid of Figure 2.5, for instance, we model as
�rst rule the requirement

frequ(r1, r2, r3, r4) = 1 , (2.24)

Cyclic Color Assignments of Four-Colored Grids 113

with
frequ(r1, r2, r3, r4) = r1 ∨ r2 ∨ r3 ∨ r4 , (2.25)

so that at least one variable ri must be equal to 1. As second rule,
the additional restriction

frest(r1, r2, r3, r4) = 0 , (2.26)

with

frest(r1, r2, r3, r4) = (r1 ∧ r2) ∨ (r1 ∧ r3) ∨ (r1 ∧ r4)∨
(r2 ∧ r3) ∨ (r2 ∧ r4) ∨ (r3 ∧ r4) (2.27)

prohibits that more than one variable ri is equal to 1.

The SAT-equation (2.23) can be extended by these additional rules
for all quadruples. The function frequ(r1, r2, r3, r4) (2.25) on the left-
hand side of Equation (2.24) has the required disjunctive form. Hence,
this expression can be directly used as clause of the SAT-formula
(2.23). However, the function frest(r1, r2, r3, r4) (2.27) on the left-
hand side of Equation (2.26) is an expression in disjunctive form. The
set of solutions of a Boolean equation remains unchanged when the
expressions on both sides are negated:

frest(r1, r2, r3, r4) = 1 , (2.28)

with

frest(r1, r2, r3, r4) = (r1 ∨ r2) ∧ (r1 ∨ r3) ∧ (r1 ∨ r4)∧
(r2 ∨ r3) ∧ (r2 ∨ r4) ∧ (r3 ∨ r4) . (2.29)

De Morgan's Law is used to transform the disjunctive form of (2.27)
into the needed conjunctive form of (2.29). If the six disjunctions of
(2.29) are added as additional clauses to the SAT-formula (2.23) then
only one of the four variables ri can be equal to 1 in the solutions.

Cyclic reusable rectangle-free color patterns for a quadratic grid Gm,n
with m = n rows and columns are solutions of the SAT-equation:

m−1∧
i=1

m∧
j=i+1

m−1∧
k=1

m∧
l=k+1

fsecb(xri,ck , xri,cl , xrj ,ck , xrj ,cl)∧

m2
/4∧

quad=1

frequ[quad] ∧
m2
/4∧

quad=1

frest[quad] = 1 , (2.30)

114 Four-Colored Rectangle-Free Grids

where the index quad indicates the quadruple.

For each quadruple one clause of (2.24) and six clauses for the six
disjunctions of (2.28) are added in (2.30) to the clauses of (2.23).
The complete SAT-equation (2.30) for this cyclic single color approach
contains

nclauses(18,18) =

(
18

2

)
∗
(

18

2

)
+

182

4
∗ 7

= 153 ∗ 153 +
324 ∗ 7

4
= 23, 976 (2.31)

clauses for the grid G18,18.

The solution of such a SAT-formula for a quadratic grid of even num-
bers of rows and columns must assign exactly one fourth of the vari-
ables to 1. Such a solution can be used rotated by 90 degrees for the
second color, rotated by 180 degrees for the third color, and rotated
by 270 degrees for the fourth color without any contradiction.

We generated the cnf-�le of this SAT-formula which depends on 324
Boolean variables and contains 23,976 clauses for the grid G18,18. The
Boolean variables are labeled in the cnf-�le by integer numbers. We
assigned the 324 Boolean variables row-by-row starting in the top left
corner of the grid with the variable 1. Hence, the top right corner of
the grid G18,18 belongs to the variables 18, the bottom left corner to
the variable 307, and bottom right corner to the variable 324. The
cnf-format format requires after possible line of comments the line:

p cnf 324 23976

in which the numbers of varibles and the number of clauses are spec-
i�ed. Each following line contains one of the 23,976 disjunctions
(clauses) of the conjunctive form. The end of a clause is indicated
by a number 0 at the end of the line. The variables of a clause are
separated by a space. A minus-sign in front of the number of a variable
indicates a negated variable of the clause.

The �rst clause
-1 -2 -19 -20 0

describes the rectangle of the top two rows and the left two columns.
If all these four variables are equal to 1 then this disjunction is equal to

Cyclic Color Assignments of Four-Colored Grids 115

c clasp version 2.0.0
c Reading from stdin
c Solving...
c Answer: 1
v -1 -2 3 4 -5 -6 7 -8 -9 -10 -11 -12 -13 -14 15 -16 17 -18 -19 -20 -21 -22
v -23 -24 25 -26 -27 -28 29 30 -31 -32 -33 34 -35 36 -37 -38 -39 -40 41 -42
v -43 -44 -45 46 -47 48 -49 50 -51 -52 53 -54 -55 56 -57 58 -59 -60 -61 -62
v 63 -64 -65 66 -67 -68 -69 -70 -71 -72 73 -74 -75 76 -77 78 -79 -80 -81
v -82 -83 -84 -85 86 -87 -88 -89 90 91 92 -93 -94 -95 -96 -97 98 -99 -100
v -101 -102 -103 -104 -105 106 107 -108 109 -110 -111 -112 113 -114 115 -116
v 117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 131
v 132 -133 -134 -135 -136 -137 -138 -139 -140 141 142 -143 -144 -145 146
v -147 -148 -149 150 151 -152 -153 154 -155 -156 157 -158 -159 -160 -161
v -162 -163 164 165 -166 167 -168 -169 -170 -171 -172 -173 -174 -175 -176
v -177 -178 -179 180 -181 -182 -183 -184 -185 -186 -187 188 189 190 -191
v -192 -193 -194 195 -196 -197 198 -199 -200 -201 202 203 -204 -205 206 -207
v -208 209 -210 211 -212 -213 -214 -215 -216 217 -218 -219 -220 -221 -222
v -223 -224 -225 -226 -227 228 229 -230 231 -232 -233 -234 -235 -236 -237
v -238 -239 240 -241 -242 243 -244 245 -246 -247 -248 -249 -250 251 -252
v -253 -254 255 -256 -257 -258 -259 -260 261 -262 -263 -264 265 266 -267
v 268 -269 -270 -271 -272 273 -274 -275 276 -277 278 -279 -280 -281 282 -283
v -284 -285 -286 -287 -288 -289 290 -291 -292 -293 -294 -295 -296 -297 -298
v 299 -300 -301 302 303 -304 -305 -306 307 -308 309 -310 -311 -312 -313 -314
v -315 316 317 -318 -319 -320 -321 -322 -323 -324 0
s SATISFIABLE

c Models : 1+
c Time : 212301.503s

(Solving: 212300.96s 1st Model: 212300.96s Unsat: 0.00s)
c CPU Time : 211867.158s

Figure 2.6. Cyclic reusable single color solution of the grid G18,18 calcu-
lated by the SAT-solver clasp-2.0.0-st-win32.

0 and the whole SAT-formula cannot be satis�ed. This is the wanted
result, because color-1 token form in this case a rectangle in the upper
left range of the grid G18,18.

We tried to �nd a solution using the improved version SAT-solver
clasp. This SAT-solver clasp-2.0.0-st-win32 found the �rst cyclic
reusable solution for the grid G18,18 after 2 days 10 hours 58 min-
utes 21.503 seconds. Figure 2.6 depicts the output of the SAT-solver.

The solution of Figure 2.6 can converted into grid G18,18 of Boolean
values. A minus-sign in front of a variable in this solution speci�es a
value 0 of the associated cell, and otherwise a value 1 must be assigned
to the associated cell. Figure 2.7 shows this solution for the �rst color
of the grid G18,18.

116 Four-Colored Rectangle-Free Grids

0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0

0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0

1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1

0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0

0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

Figure 2.7. Cyclic reusable coloring of grid G18,18.

Using the core solution of Figure 2.7 we have constructed the 4-colored
grid G18,18 of Figure 2.8 by three times rotating around the grid center
by 90 degrees each and assigning the next color.

Many other four-colored rectangle-free grids can be created from the
solution in Figure 2.8 by permutations of rows, columns, and colors.
Several four-colored rectangle-free gridsG17,18 originate from the four-
colored rectangle-free grid G18,18 by removing any single row; and by
removing any single column, we get four-colored rectangle-free grids
G18,17. Obviously, several so far unknown four-colored rectangle-free
grids G17,17 can be selected from the four-colored rectangle-free grid
G18,18 of Figure 2.8 by removing both any single row and any single
column.

The sign '+' in the line 'c Models : 1+' of Figure 2.6 indicates that
there are further cyclic solutions. These solutions can be found by the

Cyclic Color Assignments of Four-Colored Grids 117

2 4 1 1 4 2 1 3 3 4 4 2 2 2 1 3 1 3

4 2 4 3 3 4 1 3 2 2 1 1 2 4 2 1 3 1

2 4 2 2 1 4 3 4 2 1 3 1 3 1 4 3 1 2

4 1 3 1 3 3 2 4 1 3 4 1 4 2 2 3 4 2

1 3 4 1 4 1 2 3 2 3 2 2 3 1 4 2 4 1

1 1 2 3 2 3 3 1 4 2 2 4 4 2 4 1 1 3

1 4 4 4 1 3 1 3 1 2 3 2 4 3 3 4 2 2

3 4 2 3 1 1 2 2 3 3 3 4 2 4 1 1 4 4

3 1 4 2 2 1 1 2 4 1 4 2 1 3 2 3 3 4

2 1 1 4 1 3 4 2 3 2 4 3 3 4 4 2 3 1

2 2 3 3 2 4 2 1 1 1 4 4 3 3 1 4 2 1

4 4 2 1 1 2 4 1 4 3 1 3 1 3 2 2 2 3

1 3 3 2 4 2 2 4 4 2 3 1 1 4 1 4 3 3

3 2 4 2 3 1 4 4 1 4 1 4 3 2 3 2 1 3

4 2 1 4 4 2 3 2 1 3 2 4 1 1 3 1 3 2

4 3 1 2 3 1 3 1 3 4 2 1 2 3 4 4 2 4

3 1 3 4 2 4 3 3 4 4 1 3 2 1 1 2 4 2

1 3 1 3 4 2 2 4 4 1 1 3 4 2 3 3 2 4

Figure 2.8. Cyclic four-colored rectangle-free grid G18,18.

SAT-solver. However, it will take a lot of time because the SAT-solver
needs already almost two and a half day to �nd the �rst solution.

We suggested in [291] a reduced cyclic model which allows us to reduce
the number of needed Boolean variables for the �rst color of the grid
G18,18 form 324 to 162. In the same paper we suggested one more
advanced approach which is the knowledge transfer .

The knowledge transfer utilizes the property that

1. a quadratic cyclic four-colored rectangle-free grid Gm,m contains
a grid Gm−2,m−2 with the same properties that is surrounded
by additional row on the top and on the bottom and additional
columns on both sides,

2. due to the exponentially grow of the search space, a SAT-solver

118 Four-Colored Rectangle-Free Grids

Table 2.7. Cyclic reusable rectangle-free grids G18,18 colored with 81 to-
kens of the �rst color calculated by knowledge transfer from
G16,16 with 64 tokens satisfying the same properties.

days G16,16 G18,18

2 9,900 0
4 20,000 0
6 31,500 4
8 41,700 8
10 51,400 24
20 111,300 85
30 173,900 120
40 238,400 152
50 297,500 180
60 357,200 208

�nds solutions of a grid Gm−2,m−2 much faster than a solution
for the grid Gm,m, and

3. a known solution for the a grid Gm−2,m−2 can be used to �x a
large number of variables in the SAT-equation for the grid Gm,m
so that the solution for the grid Gm,m will be found much faster
by a SAT-solver.

We used both advanced approaches in an experiment over 60 days
to calculate more cyclic reusable rectangle-free grids G18,18 colored
with 81 tokens of the �rst color. Table 2.7 shows the results of this
experiment. It can be seen that only a very small fraction of the
cyclic reusable rectangle-free grids G16,16 can be extended to grids
G18,18 with the same property.

The approach of cyclic reusable assignments of tokens can be applied
to quadratic four-colored grids of an odd number of rows and columns,
too. The di�erence between quadratic girds of an even number of
rows and columns and quadratic girds of an odd number of rows and
columns is that the number of grid elements is a multiple of four in
the even case, but the number of grid elements is equal to 4∗k+ 1 for
odd grids. Figure 2.9 shows that the construction of the quadruples
can also be used for odd grids.

The four corners of the grid are used as the �rst quadruple. Further

Cyclic Color Assignments of Four-Colored Grids 119

r1 s1 t1 u1 r2

u4 v1 w1 v2 s2

t4 w4 x1 w2 t2

s4 v4 w3 v3 u2

r4 u3 t3 s3 r3

Figure 2.9. Cyclic quadruples in the grid G5,5.

quadruples use the next position in clockwise direction. The central
grid position cannot be assigned to a quadruple of positions. Hence,
the rectangle condition must be satis�ed for the central position re-
garding each of the four colors, and the SAT-equation (2.30) must be
extended by a clause that consists only of the variable of the central
position of the grid. In case of Figure 2.9 this clause is equal to x1.

We generated SAT-equation for odd grids from G3,3 to G17,17. The
SAT-solver clasp found the �rst cyclic reusable solution for the G15,15

in less than 0.6 seconds but could not solve this task for grid G17,17

within more than one month. Therefore we adapted the advanced
approaches of the reduced cyclic model and the knowledge transfer to
odd grids and run an experiment over 60 days with the aim to �nd
cyclic reusable rectangle-free grids G17,17 colored with 73 tokens of
the �rst color. Table 2.8 shows the results of this experiment.

In comparison with Table 2.7, it can be seen that the numbers of cyclic
reusable rectangle-free grid G15,15 which are found in the same period
of time are two orders of magnitude larger than the corresponding
gridsG16,16. However, no cyclic reusable rectangle-free gridG17,17 was
found with this advanced approach within 60 days. Hence, it remains
the open problem whether there is a cyclic reusable rectangle-free grid
G17,17.

120 Four-Colored Rectangle-Free Grids

Table 2.8. Cyclic reusable rectangle-free grids G17,17 colored with 73 to-
kens of the �rst color calculated by knowledge transfer form
G15,15 with 57 tokens showing the same properties.

days G15,15 G17,17

2 1,455,000 0
4 2,960,000 0
6 4,435,000 0
8 6,030,000 0
10 7,625,000 0
20 16,150,000 0
30 23,200,000 0
40 29,645,000 0
50 36,600,000 0
60 43,970,000 0

Four-Colored Rectangle-Free Grids of the Size 12× 21 121

2.5. Four-Colored Rectangle-Free Grids of

the Size 12× 21

Bernd Steinbach Christian Posthoff

2.5.1. Basic Consideration

The grid G12,21 consists of 12 rows and 21 columns. Hence, 12 ∗
21 = 252 elements must be colored with tokens of the given four
colors. Due to the pigeonhole principle a rectangle-free assignment of
at least 252/4 = 63 grid elements with one selected color is a necessary
condition for a four-colored rectangle-free grid G12,21.

A �rst simple approach is the unique distribution of the 63 tokens of
one color to the 21 columns of the grid. For this assumption 63/21 = 3
elements of each column of the grid G12,21 have to be colored with
the selected color. At the �rst glance such an assignment �ts well to
the rectangle-free coloring of the grid G12,21 with four colors. The
remaining 12 − 3 = 9 elements of each column can be colored using
each of the other three colors on three positions, too.

However, the evaluation of the color assignments in the rows of the grid
G12,21 avoids this suggested simple approach. Dividing the necessary
63 tokens of one color by the 12 row results in 9 rows of 5 tokens and
3 rows of 6 tokens of the selected color. It must be veri�ed whether
a rectangle-free coloring of a grid G12,6 for one color exists that holds
the following conditions:

1. one row of the grid G12,6 contains 6 tokens of the selected color,

2. each of the 6 columns of the grid G12,6 contains 3 tokens of the
selected color,

3. the 3∗6 = 18 tokens of the selected color hold the rectangle-free
condition (2.9) for m = 12 rows and n = 6 columns.

122 Four-Colored Rectangle-Free Grids

1 1 1 1 1 11
1
1

1
1

1
1

1
1

1
1

1

1 2 3 4 5 6
1
2
3
4
5
6
7
8
9
10
11
12

Figure 2.10. Assignment of color 1 tokens to the grid G12,6 based on the
proof of Theorem 2.6.

Theorem 2.6. There does not exist a rectangle-free coloring of the
grid G12,6 of 12 rows and 6 columns with 3 ∗ 6 = 18 tokens colored by
a single color such that one row is completely covered with tokens of
the selected color and each of the 6 columns contains 3 tokens of the
this color.

Proof. The exchange of any pair of rows or any pair of columns within
each grid does not change the property that the grid satis�es the
rectangle-free condition. Hence, without loss of generality the �rst
row can be chosen to assign one token of the selected color to each of
the 6 positions. For the same reason the required further two tokens
with the same color in the �rst column can be located in the rows
number 2 and 3. Figure 2.10 shows these assignments using tokens of
the color 1.

In order to satisfy the rectangle-free condition no further token of the
given color can be assigned to row 2 and row 3. As shown in Figure
2.10, the required assignments of three tokens in the columns 2, 3, 4,
and 5 �ll up the rows 4 to 11. The rectangle-free condition prohibits
each further assignment of a token of the used color to the rows 2 to
11 to the grid shown in Figure 2.10 and permits only one additional
token of this color in row 12.

Four-Colored Rectangle-Free Grids of the Size 12× 21 123

1
1
1
1

1
1
1
1

1
1
1
1

1 2 3
1
2
3
4
5
6
7
8
9
10
11
12

Figure 2.11. Grid G12,3 of disjoint assignments of color 1 tokens to four
rows in three columns.

Hence, column 6 only contains two tokens of the selected color and
does not satis�es the requirement of three tokens. Each further as-
signment of a token of the selected color to any element of the grid
shown in Figure 2.10 violates the rectangle-free condition.

According to Theorem 2.6, no four-colored rectangle-free grid G12,21

will exist that contains in each column each color three times. Taking
into account that each of the three necessary rows of six tokens of the
same color causes one column of only two tokens of this color, three
columns of four tokens of this color must be used.

There are several possibilities to assign four tokens of the same color to
the three necessary columns. Due to the rectangle-free condition, it is
not correct that these tokens overlap in more than one row. The three
columns of four tokens of the same color cause the smallest restriction
for the remaining columns when these tokens do not overlap in any
row.

Despite of the maximal freedom for further assignments of tokens of
the same color, the chosen distribution of tokens as shown in Figure
2.11 restricts the maximal number of columns in which three tokens
of the same color can be assigned.

124 Four-Colored Rectangle-Free Grids

Theorem 2.7. The grid G12,3 of Figure 2.11 can be extended to a
rectangle-free grid that includes at most 16 additional columns of three
tokens of the same color. Without violating the rectangle-free condi-
tion additional columns can contain only in one token of the same
color.

Proof. Figure 2.12 shows a correct rectangle-free gridG12,19 that holds
the conditions of Theorem 2.7. Without loss of generality only tokens
of the color 1 are used in this proof. Due to the four tokens in column
1, the rectangle-free condition restricts the assignments in rows 1 to 4
to one token in each of columns 4 to 19. Analog restrictions must hold
for the interval of rows 5 to 8 caused by the second column and for
the interval of rows 9 to 12 caused by the third column, respectively.
Hence, the three assignments of tokens in columns 4 to 19 must be
done in the three row intervals 1 to 4, 5 to 8, and 9 to 12.

The rectangle-free condition constrains the assignment to one token in
each column 4 to 19 and each of the three row intervals. Furthermore,
tokens in one row of one row interval require tokens in di�erent rows of
the other row intervals in order to satisfy the rectangle-free condition.
Hence, the assignment of tokens in the �rst row is restricted to four
columns due to the four rows in the second and third row interval.

The well-ordered pattern of tokens in the interval of rows 1 to 4 in
Figure 2.12 can be reached by permutations of columns 4 to 19. The
used assignment of tokens in Figure 2.12 in the interval of rows 5 to
8 in a downstairs order is one simple possible selection. This pattern
can be reached by permutations of columns indicated by tokens in the
same row in the upper row interval.

The rule to be satis�ed is that each assignment in the interval of rows
1 to 4 is combined with one assignment in the interval of rows 5 to
8. These 4 ∗ 4 = 16 combinations restrict the maximal number of
columns with three tokens under the restriction of the assignments in
the �rst three columns to 16 additional columns. This proves the �rst
assertion.

The assignments in the last interval of rows 9 to 12 must cover each
row and each column in intervals 4 to 7, 8 to 11, 12 to 15, and 16

Four-Colored Rectangle-Free Grids of the Size 12× 21 125

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 4 8 12 16
1
2
3
4
5
6
7
8
9
10
11
12

Figure 2.12. Assignment of three color 1 tokens to each of the columns
from 4 to 19 of the grid G12,19 based on Theorem 2.7 using
the Latin square 1 without permutations of rows or blocks.

to 19 exactly once. There are several possible assignments in this
range which hold the rectangle-free condition. One of them is shown
in Figure 2.12.

An exhaustive evaluation of the tokens of the grid G12,19 in Figure
2.12 proves that each pair of rows is covered by two tokens in one of the
19 columns. Other possible assignments do not change this property.
This proves the second assertion that without violating the rectangle-
free condition additional columns can contain only one token of the
same color.

Using permutations of rows and columns the pattern in the upper 8
rows and the left 3 columns of Figure 2.12 can be constructed. The
rectangle-free condition in the remaining region can be achieved by
means of Latin squares [175]. Figure 2.13 shows the four reduced
Latin squares of the size 4 × 4 which have a �xed natural order of
the letters in the �rst row and the �rst column. These reduced Latin
squares are labeled by the values 0, . . . , 3 based on the letters of the
main diagonal in natural order. The mapping rules between a Latin
square and the four 4× 4 blocks, which are indicated by thick lines in
the bottom right of Figure 2.12 are as follows:

126 Four-Colored Rectangle-Free Grids

0
a b c d
b a d c
c d a b
d c b a

1
a b c d
b a d c
c d b a
d c a b

2
a b c d
b c d a
c d a b
d a b c

3
a b c d
b d a c
c a d b
d c b a

Figure 2.13. All four reduced Latin squares 0, . . . , 3 of the size 4× 4.

• one Latin square is used to assign the tokens of one color to all
four 4× 4 blocks in the range of rows 9 to 12 and columns 4 to
19,

• each letter a indicates one token of this color in the leftmost
block,

• each letter b indicates one token of this color in the second block
from the left,

• each letter c indicates one token of this color in the third block
from the left, and

• each letter d indicates one token of this color in the rightmost
block.

All correct patterns of the selected color can be constructed based
on the four Latin squares of Figure 2.13 and permutations restricted
to the last four rows and complete 4 × 4 blocks in these rows. Fig-
ure 2.12 shows the result of the mapping of Latin square 1 without
permutations of rows or blocks.

The grid G12,19 of Figure 2.12 contains 3 ∗ 4 + 16 ∗ 3 = 12 + 48 =
60 tokens. Is it possible to extend this grid to a rectangle-free grid
G12,21 that contains the necessary 63 tokens of one color? Each of
the additional two columns 20 and 21 can contain only one token
of the same color due to Theorem 2.7. Hence, such a grid G12,21

contains only 60 + 2 = 62 tokens, and does not reach the required
limit of 63 tokens of a single color for a possible completely four-
colored rectangle-free grid G12,21.

This observation, however, will not prove that a four-colored rect-

Four-Colored Rectangle-Free Grids of the Size 12× 21 127

1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Figure 2.14. Rectangle-free grid G12,21 that contains 63 tokens of one
color.

angle-free grid G12,21 does not exist. One of the columns 4 to 19
of Figure 2.12 can be replaced by three columns which contain two
tokens of the selected color each. Using column 4 for this split we get
the required

3 ∗ 4 + 3 ∗ 2 + 15 ∗ 3 = 12 + 6 + 45 = 63

tokens of one color to construct a completely four-colored rectangle-
free grid G12,21. Figure 2.14 shows such a grid G12,21 that contains a
rectangle-free assignment of 63 color 1 tokens.

2.5.2. Grid Heads of all Four Colors

The columns of the grid can be classi�ed based on the number of
tokens of one color. We call the six columns of four or two tokens of
the same color the head of the grid . The remaining 15 columns of 3
tokens of the same color are called body of the grid .

Each column of the grid must be completely �lled by tokens of the
four colors. The possible combinations are restricted by the required
numbers of tokens of one color which can be equal to 2, 3, or 4. Four
of these digits must result in the number of the 12 rows. This can be

128 Four-Colored Rectangle-Free Grids

1 2 2 1 1 2
1 2
1 2
1 2
2 1 2 1 2 1

1 2
1 2
1 2

2 2 1 2 1 1
1 2
1 2
1 2

1
2
3
4
5
6
7
8
9
10
11
12

Figure 2.15. Rectangle-free gridG12,6 that merges the heads of two colors.

achieved by

3 + 3 + 3 + 3 = 12 ,

2 + 4 + 3 + 3 = 12 , or

2 + 2 + 4 + 4 = 12 .

The body of the grid G12,21 can be colored using three tokens of each
of the four colors in each of the 15 columns. Based on this assumption
the head of the grid must contain in each column two tokens of two
colors and four tokens of the other two colors. Figure 2.15 shows the
grid head that contains four-token, and two-token columns of the �rst
two colors within six columns.

It can be seen in Figure 2.14 that the rows which contain 6 tokens of
one color include two tokens of columns with two tokens. The grid
head shown in Figure 2.15 contains the tokens of the colors 1 and 2
of the two-token columns within rows 1, 5, and 9. Hence, these three
rows must contain six color 1 tokens, six color 2 tokens, �ve color 3
tokens, and �ve color 4 tokens. Using this assignment, the sum of
necessary tokens in these rows is equal to 22 but only 21 columns
exist. Therefore, the grid head of Figure 2.15 cannot be extended to
a four-colored rectangle-free grid G12,21.

Therefore, each row of the four-colored rectangle-free grid G12,21 must
contain six tokens of one color and �ve tokens of each of the other three

Four-Colored Rectangle-Free Grids of the Size 12× 21 129

2 1 1 2 2 3 3
2 3 4 1 4 2 4

1 1
2 2

3 3
4 4

1 1
2 2

3 3
4 4
1 1

2 2
3 3

4 4

(a)

4 2 2 3 3 1 1
4 4 3 4 1 4 2

1 1 2
3 2 2

1 3 3
4 3 4

1 1 4
4 2 2
3 4 3
2 4 4

1 1 3
2 2 1

3 2 3
4 1 4

(b)

Figure 2.16. Steps to construct a rectangle-free grid G12,6 that merges
the heads of all four colors: (a) assignment of two-token
columns, (b) necessary extension of (a) with one token of
the four-token columns.

colors. That means the tokens of the two-token columns of the four
colors must be assigned to di�erent rows.

The construction of the grid head of six columns of all four colors is the
key to our solution of the four-colored rectangle-free grid G12,21. This
construction requires complicated entanglements of the assignments
of two-token, or four-token columns of the four colors. We explain
our sequence of decisions supported by several �gures and one table
starting with Figure 2.16.

From the trivial merging of the grid heads of two colors in Figure
2.15 we learned that the tokens of the two-token columns of di�erent
colors must be assigned to di�erent rows. There are three two-token
columns of each of the four colors. These 12 columns can be merged
into the 6 columns of the grid head such that two two-token columns
of di�erent colors are assigned to one column of the grid head.

We decided further that the triples of two-token columns overlap in

130 Four-Colored Rectangle-Free Grids

one column. The array on top of Figure 2.16 (a) indicates the columns
which are used for two tokens of the speci�ed color. It can be seen
that the �rst three colors can be assigned in consecutive ranges in a
cyclic manner. Consequently, the columns 2, 4, and 6 must be used
as two-token columns of color number 4.

Figure 2.16 (a) shows that a natural order is used for the rows in
which tokens of the two-token columns are located:

color: 1 - rows: 1, 5, 9,
color: 2 - rows: 2, 6, 10,
color: 3 - rows: 3, 7, 11,
color: 4 - rows: 4, 8, 12.

It is known from the construction of the single-color grid head that
the four-token columns of one color do not overlap with the two-token
columns of the same color. Based on the selected two-token columns
on top of Figure 2.16 (a) the four-token columns of the grid head must
be chosen as shown in the array on top of Figure 2.16 (b). Each of
the six columns of the grid head is either used for a two-token column
or for a four-token column for each of the four colors.

As shown in Figure 2.11, each row must contain exactly one token of
the four-token columns. Figure 2.16 (a) shows that up to now each
row leaves four elements of the grid head free. Hence, each of the four
colors must be assigned exactly once to these four free elements in
each row of Figure 2.16 (a). It can be seen from the array on top of
Figure 2.16 (b) that this rule can be satis�ed in each row by one of
the four colors only in a single position. These necessary positions are
added in Figure 2.16 (b) and labeled by thick boarders.

The necessary tokens of four-token columns are assigned based on
the evaluation of the available colors of four-token columns in the
free positions of the rows. A check of these tokens labeled by thick
boarders in Figure 2.16 (b) shows that each of the two colors of the
four-token columns of the array on top of Figure 2.16 (b) is assigned
exactly once to each column of the grid head. The �rst column of the
array on top of Figure 2.16 (b) speci�es as example that this column
must contain four tokens of the color 2 and four tokens of the color 4.
The necessary tokens are assigned in this column as follows: color 2
to row 8 and color 4 to row 6.

Four-Colored Rectangle-Free Grids of the Size 12× 21 131

4 2 2 3 3 1 1
4 4 3 4 1 4 2

1 1 2
3 2 2

1 3 3
4 3 4

1 1 4
4 2 2
3 4 3
2 4 4

1 1 3
2 2 1

3 2 3
4 1 4

(a)

4 2 2 3 3 1 1
4 4 3 4 1 4 2

1 1 1 2
3 2 2

1 3 3
4 3 4

1 1 4 1
4 2 2
3 4 3
2 4 4

1 1 3 1
2 2 1

3 2 3
4 1 4

(b) s1 = 0

4 2 2 3 3 1 1
4 4 3 4 1 4 2

1 1 1 2
3 2 2

1 3 3
4 3 4

1 1 1 4
4 2 2
3 4 3
2 4 4

1 1 3 1
2 2 1

3 2 3
4 1 4

(c) s1 = 1

Figure 2.17. Alternative assignments to construct rectangle-free grid
G12,6 that merges the heads of all four colors: (a) neces-
sary assignments of four-token columns, (b) �rst choice of
color 1, (c) second choice of color 1.

It is known from Figure 2.14 that each two-token column overlaps in
two rows of the grid head with two di�erent four-token columns of the
same color. There are two possible positions for these assignments
in each row used for the two-token columns. Figure 2.17 shows on
the right two grid heads the possible assignments of color 1 tokens
of four-token columns by bold numbers 1. Figure 2.17 (a) repeats
the necessary assignments of tokens from Figure 2.16 (b) for direct
comparisons.

Figure 2.17 (a) shows that row 1 is used for tokens of color 1 of
two-token columns and includes empty positions for tokens of color
1 of four-token columns in the columns 4 and 5. Bold numbers 1
in the �rst row of Figure 2.17 (b) and (c) depict these two possible
assignments, and this entails further assignments of the color 1 in
four-token columns in rows 5 and 9. Free positions for color 1 in row
5 are given in columns 4 and 6 of Figure 2.17 (a). Column 4 is already
occupied by the color 1 token in row 1 so that the color 1 token of the
four-token column must be assigned in row 5 to column 6 as shown

132 Four-Colored Rectangle-Free Grids

in Figure 2.17 (b). It remains row 9 that includes color 1 tokens of
two two-token columns. Figure 2.17 (a) shows two free positions in
columns 5 and 6 which can be used for color 1 tokens of four-token
columns. Column 6 is already occupied by the color 1 token in row 5
so that the color 1 token of the four-token column must be assigned
in row 9 to column 5 as shown in Figure 2.17 (b).

Figure 2.17 (c) shows the single alternative to this assignment of color
1 tokens of four-token columns to rows which are used for color 1
tokens of two-token columns. The chosen color 1 token in row 1 and
column 5 bans the color 1 token in row 9 and column 5. Hence, the
color 1 token of four-token column 6 must be assigned in row 9. This
color 1 token bans the color 1 token in row 5 so that color 1 token of
four-token column 4 must be assigned to row number 5.

Figure 2.17 (b) and (c) shows the alternative assignments of color 1
tokens to the rows 1, 5, and 9 which are used for color 1 tokens of
two-token columns. A detailed analysis reveals that two alternative
assignments exist for

• color 2 tokens of four-token columns in the rows 2, 6, and 10,

• color 3 tokens of four-token columns in the rows 3, 7, and 11,

• color 4 tokens of four-token columns in the rows 4, 8, and 12.

Table 2.9 enumerates these alternative assignments for each color in
two triples of rows. Bold numbers in the right six columns indicate
the color of the token that overlaps with the same color of a two-
token column. Each of these alternative assignments for one color
can be combined with each alternative assignment for all other col-
ors. Hence, there are 16 combinations. For a further analysis Boolean
variables s1, s2, s3, and s4 are introduced such that the index indi-
cates the associated color. The value 0 of these variables indicates the
left assignment of these tokens in the rows from 1 to 4.

The rows 1, 5, and 9 of Figure 2.17 (b) and (c) contain two empty
elements. These elements must be �lled with tokens of four-token
columns which are missing in these rows. The chosen (bold) color 1
tokens entail necessary assignments of the missing tokens. As can be

Four-Colored Rectangle-Free Grids of the Size 12× 21 133

Table 2.9. Alternative assignments in four-token columns of the grid head.

selection column

color row s1 s2 s3 s4 1 2 3 4 5 6

1 1 0 3 1 4

1 5 0 2 3 1

1 9 0 4 1 2

1 1 1 4 3 1

1 5 1 3 1 2

1 9 1 2 4 1

2 2 0 2 4 1

2 6 0 3 1 2

2 10 0 4 2 3

2 2 1 4 1 2

2 6 1 2 3 1

2 10 1 2 3 4

3 3 0 2 3 4

3 7 0 2 3 1

3 11 0 3 1 4

3 3 1 4 2 3

3 7 1 3 1 2

3 11 1 4 3 1

4 4 0 4 1 2

4 8 0 3 1 4

4 12 0 2 3 4

4 4 1 2 4 1

4 8 1 4 3 1

4 12 1 4 2 3

restrictions

2 1 0 ∗
4 0 1 ∗
2 0 1 ∗
3 1 0 ∗
3 0 0 ∗
4 1 1 ∗
1 0 0 ∗
3 1 1 ∗
1 1 1 ∗
4 0 0 ∗
1 0 1 ∗
2 1 0 ∗

134 Four-Colored Rectangle-Free Grids

4 2 2 3 3 1 1
4 4 3 4 1 4 2

1 1 2
3 2 2

1 3 3
4 3 4

1 1 4
4 2 2
3 4 3
2 4 4

1 1 3
2 2 1

3 2 3
4 1 4

(a)

4 2 2 3 3 1 1
4 4 3 4 1 4 2

1 1 3 1 4 2
3 2 2

1 3 3
4 3 4

1 2 1 3 4 1
4 2 2
3 4 3
2 4 4
4 1 1 3 1 2

2 2 1
3 2 3

4 1 4

(b) s1 = 0

4 2 2 3 3 1 1
4 4 3 4 1 4 2

1 1 4 3 1 2
3 2 2

1 3 3
4 3 4

1 3 1 1 4 2
4 2 2
3 4 3
2 4 4
2 1 1 3 4 1

2 2 1
3 2 3

4 1 4

(c) s1 = 1

Figure 2.18. Extended alternative assignments of color 1 tokens and con-
secutive color 2, color 3, and color 4 tokens to construct a
rectangle-free grid G12,6 that merges the heads of all four
colors: (a) necessary assignments of four-token columns, (b)
�rst choice of color 1, (c) second choice of color 1.

seen in the array on top of Figure 2.18 (b), column 5 can contain only
tokens of the colors 1 or 4 as element of four-token columns. The bold
valued 1 in row 1 indicates that color 1 is already used as element of
a four-token column. Hence, a color 4 token must be assigned to the
column 4 of row 1 as shown in Figure 2.18 (b). This color 4 token
bans a further color 4 token in row 1 and column 3 of Figure 2.18 (b).
The missing color 3 in row 1 of Figure 2.18 (b) is permitted for the
empty position in column 3 so that the �rst row of Figure 2.18 (b) is
completely �lled and satis�es all conditions.

Based on equivalent conditions the color 3 token must be assigned to
the column 4 of row 5 entailed by the assignment of a color 2 token
to the column 2 of row 5. Figure 2.18 (b) shows the �nal assignment
for the rows 1, 5, and 9. The necessary consecutive assignments in
row 9 are �rst a color 2 token in column 6 followed by a color 4 token
in column 1. Analog conditions entail the unique assignment in the
rows 1, 5, and 9 of the second choice of the value 1 as shown Figure

Four-Colored Rectangle-Free Grids of the Size 12× 21 135

2.18 (c).

The four-column tokens of all other colors i are uniquely assigned for
both cases of the selection variable si. The last six columns in the
upper part of Table 2.9 show these entailed assignments by normal
digits with or without a light-gray background.

The two di�erent assignments in the rows belonging to two-color
columns of one color were chosen independent on the analog assign-
ments for the other colors. For that reason 24 = 16 grid heads can be
constructed. Do these 16 grid head satisfy all conditions of the grid
head? We will show as �nal step to construct the grid head that the
answer to this question is NO.

Each column of the grid head combines two two-token columns and
two four-token columns. Hence, a grid head is not correct when one
column contains more than four tokens of one color. Table 2.9 shows
that certain values of four-token columns must be assigned to a column
of the grid head independent on the value of the selection variable si.
These values are marked by light-gray backgrounds in Table 2.9. This
means, for example, within the rows 1, 5, and 9:

• one color 3 token is assigned to the column 4,

• one color 4 token is assigned to the column 5, and

• one color 2 token is assigned to the column 6

independent on the value of s1. These �x assignments cause restric-
tions for the values of the selection variables si.

The evaluation of possible assignments in the �rst column of the grid
head results in two restrictions. It is known from Figure 2.16 (b) that
a color 2 token must be assigned to row 8 of the �rst column. As
indicated by bold numbers 2 in Table 2.9 for column 1 of the grid
head, the second color 2 token must be assigned to the �rst column
independent on the value of s2. The two light-gray marked values 2
of Table 2.9 associated to column 1 of the grid head requires the third
color 2 token that must be assigned to the �rst column independent
on the value of the selection variable s4. There are two more values

136 Four-Colored Rectangle-Free Grids

2 belonging to the column 1 of the grid head. These values will be
chosen by s1 = 1 and s3 = 0. Hence, the solution of the Boolean
equation s1∧s3 = 1 describes a pattern of the grid head that includes
�ve color 2 tokens in the �rst column. Consequently, the combinations
of the grid head must satisfy the restriction

s1 ∧ s3 = 0 .

Analog evaluation for the color 4 in the �rst column of the grid head
lead to the restriction

s1 ∧ s3 = 0 .

Table 2.9 enumerates these restrictions in the lower part for all six
columns of the grid head. A ∗ indicates the evaluated column of the
grid head regarding the value of the color given in the �rst column of
Table 2.9.

Correct combinations of the assignments to the grid head must sat-
isfy the system of Boolean equations (2.32) which are found by the
complete analysis as explained above for all columns.

s1 ∧ s3 = 0

s1 ∧ s3 = 0

s1 ∧ s4 = 0

s1 ∧ s4 = 0

s1 ∧ s2 = 0

s1 ∧ s2 = 0

s2 ∧ s4 = 0

s2 ∧ s4 = 0

s2 ∧ s3 = 0

s2 ∧ s3 = 0

s3 ∧ s4 = 0

s3 ∧ s4 = 0 (2.32)

The system of Boolean equations can be simpli�ed to the Boolean
equation:

(s1⊕ s3)∨ (s1⊕ s4)∨ (s1 ⊕ s2)∨ (s2 ⊕ s4)∨ (s2 ⊕ s3)∨ (s3⊕ s4) = 0 .
(2.33)

Four-Colored Rectangle-Free Grids of the Size 12× 21 137

2 1 1 2 2 3 3
2 3 4 1 4 2 4

1 1 0 0 0 0
0 0 2 2 0 0
0 0 0 0 3 3
0 4 0 4 0 0
1 0 1 0 0 0
0 0 2 0 2 0
3 0 0 0 3 0
0 4 0 0 0 4
0 1 1 0 0 0
0 0 0 2 2 0
3 0 0 0 0 3
0 0 0 4 0 4

(a)

4 2 2 3 3 1 1
4 4 3 4 1 4 2

1 1 3 1 4 2
4 3 2 2 1 2
2 3 4 1 3 3
4 4 3 4 1 2
1 2 1 3 4 1
4 2 2 3 2 1
3 2 4 3 3 1
2 4 3 1 4 4
4 1 1 3 1 2
2 3 4 2 2 1
3 2 3 1 4 3
2 3 4 4 1 4

(b)

4 2 2 3 3 1 1
4 4 3 4 1 4 2

1 1 4 3 1 2
2 3 2 2 4 1
4 2 3 1 3 3
2 4 3 4 4 1
1 3 1 1 4 2
4 3 2 1 2 2
3 3 4 1 3 2
2 4 4 3 1 4
2 1 1 3 4 1
4 2 3 2 2 1
3 2 4 3 1 3
4 2 3 4 1 4

(c)

Figure 2.19. Rectangle-free grid G12,6 of all four colors: (a) assignment of
two-token columns, (b) �rst extension of (a) with four-token
columns for the solution s = (0100), (c) second extension of
(a) with four-token columns for the solution s = (1011).

This equation has only two solutions:

(s1, s2, s3, s4) = {(0, 1, 0, 0), (1, 0, 1, 1)} . (2.34)

Hence, there are only two grid heads which satisfy all requirements.
Figure 2.19 shows these grid heads which are constructed based on
Figure 2.16 (b), the content of Table 2.9, and the solution of the
Boolean equation (2.33).

2.5.3. Extended Models to Solve the Grid Using a
SAT-solver

The SAT-formula (2.20) describes the recangle-free condition of four
colors for grids of m rows and n columns. This Boolean equation
can be adapted to (2.35) for the grid G12,21. The SAT-formula (2.35)
depends on 12 ∗ 21 ∗ 2 = 504 Boolean variables and contains

(
12
2

)
∗

138 Four-Colored Rectangle-Free Grids

(
21
2

)
∗ 4 = 55, 440 clauses.

11∧
i=1

12∧
j=i+1

20∧
k=1

21∧
l=k+1

fecb(ari,ck , bri,ck ,

ari,cl , bri,cl , arj ,ck , brj ,ck , arj ,cl , brj ,cl) = 1 . (2.35)

Using the grid head of Figure 2.19 (b) or (c) 12 ∗ 6 ∗ 2 = 144 Boolean
variables can be used with �xed values. The 6 ∗ 2 additional clauses
for the �rst row of Figure 2.19 (b) are, e.g.,

a1,1 ∧ b1,1 ∧a1,2 ∧ b1,2 ∧a1,3 ∧ b1,3 ∧a1,4 ∧ b1,4 ∧a1,5 ∧ b1,5 ∧a1,6 ∧ b1,6 .
These 144 clauses of single variables simplify the problem by a factor
of 2144 ≈ 2.23 ∗ 1043.

SAT-solvers are able to �nd a solution for a SAT-formula with a large
number of Boolean variables if many solutions exist. Recall from Table
2.6, the SAT-solver clasp found a solution for the grid G14,14 of 392
free variables within 0.559 seconds. The number of free variables of the
gridG12,21 with a �x grid head of 6 columns is equal to 12∗15∗2 = 360.
Hence, due to the further simpli�cation, it could be expected that
the used SAT-solver clasp-2.0.0-st-win32 �nds the solution very
quickly. However, the additional restrictions of the grid head exclude
so many color patterns that after a runtime of one month no solution
was found.

In the next experiment we tried to guide the SAT-solver using our
knowledge of the structure of a possible solution. The 15 columns
from number 7 to number 21 must contain exactly three tokens of each
of the four colors. Hence, it is incorrect that the same color occurs
four times in these columns.

(
12
4

)
= 495 clauses of eight variables are

needed to specify this requirement of one color in one column of the
grid body.

We generated a SAT-formula that contains the 55,440 clauses for the
rectangle rule (2.35), the 144 clauses of the constant values of the
grid head and additionally

(
12
4

)
∗ 15 ∗ 4 = 29, 700 clauses for the color

restriction in the body of the grid G12,21. Unfortunately, the SAT-
solver did not �nd a solution for this more precise SAT-formula of 504
Boolean variables and 85,284 clauses within one month.

Four-Colored Rectangle-Free Grids of the Size 12× 21 139

Due to the very large runtime of the SAT-solver, we restricted the
search space of the problem in the next experiment even more. We
mapped the potential solution of the body of the grid G12,21 for the
�rst color as shown in Figure 2.14 to the entangled position based on
both grid heads of Figure 2.19 (b) and (c). The SAT formula of 504
Boolean variables contains with this extension 85,374 clauses, but the
free variables are restricted to 15 ∗ 9 ∗ 2 = 270. The SAT-solver solves
this restricted problem for the grid head of Figure 2.19 (b) within only
0.608 seconds and for the grid head of Figure 2.19 (c) within only 0.069
seconds, respectively. However, the answer of the SAT-solver was in
both cases UNSATISFIABLE.

Does this result mean that no four-colored rectangle-free grid G12,21

exists? Our answer to this question is NO. We explored both unsat-
is�able SAT problems more in detail. The embedded grid heads of
Figure 2.19 (b) and (c) can be transformed by permutation of rows
and columns in such a way that the patterns of the color 1 is equal
to the pattern of this color shown in the �rst six columns of Figure
2.14. The pattern of the color 1 in the remaining columns 7 to 21 and
rows 1 to 8 can be transformed into the pattern of this range given
in Figure 2.14 using only permutations of columns. Hence, it remains
a region of several choices of color 1 in the region of columns 7 to 21
and rows 9 to 12.

Due to these alternatives we removed the 15 assignments of color 1
tokens in this region and get a SAT formula of 504 Boolean variables
and 85,344 clauses that includes 300 free variables. It took 343.305
seconds to solve this problem for the grid head of Figure 2.19 (b) and
577.235 seconds for the grid head of Figure 2.19 (c) using the SAT-
solver clasp-2.0.0-st-win32. Figure 2.20 shows these solutions of
four-colored rectangle-free grids G12,21 for both grid heads of Figure
2.16. Hence, we found solutions for this problem for both grid heads.

2.5.4. Classes of Rectangle-free Grids G12,21

Both permutations of rows and columns of the four-colored rectangle-
free grids G12,21 of Figure 2.20 generate other four-colored rectangle-
free grids G12,21. Such a set of grids constructed from one given four-

140 Four-Colored Rectangle-Free Grids

1 1 3 1 4 2 1 1 1 3 4 3 2 4 2 3 2 4 3 4 2
4 3 2 2 1 2 1 3 3 2 2 1 3 4 4 4 1 1 3 2 4
2 3 4 1 3 3 2 4 4 1 1 1 1 4 3 3 3 2 4 2 2
4 4 3 4 1 2 4 2 1 1 4 2 3 3 1 2 3 2 4 1 3
1 2 1 3 4 1 4 4 3 1 3 2 4 1 4 3 2 1 2 2 3
4 2 2 3 2 1 1 3 4 3 1 4 4 2 1 2 3 4 1 3 2
3 2 4 3 3 1 3 1 2 2 4 1 4 3 2 1 4 2 3 1 4
2 4 3 1 4 4 3 3 4 2 3 2 2 2 3 4 4 1 1 1 1
4 1 1 3 1 2 2 4 2 4 1 3 3 2 3 1 4 3 2 4 1
2 3 4 2 2 1 4 2 1 3 3 4 1 3 2 4 1 3 2 4 1
3 2 3 1 4 3 2 2 3 4 2 4 2 1 1 1 1 3 4 3 4
2 3 4 4 1 4 3 1 2 4 2 3 1 1 4 2 2 4 1 3 3(a)

1 1 4 3 1 2 2 2 3 1 4 4 3 1 2 4 3 1 3 4 2
2 3 2 2 4 1 4 2 1 4 2 1 4 3 1 3 3 1 2 4 3
4 2 3 1 3 3 2 4 2 4 2 4 3 2 3 3 4 1 1 1 1
2 4 3 4 4 1 1 3 3 1 3 4 2 2 2 2 1 4 4 1 3
1 3 1 1 4 2 1 1 1 2 3 2 3 2 4 4 4 3 2 3 4
4 3 2 1 2 2 3 3 2 1 1 1 1 4 3 2 2 4 3 4 4
3 3 4 1 3 2 4 4 3 3 2 3 2 1 1 1 1 2 4 2 4
2 4 4 3 1 4 1 3 2 2 1 3 4 4 1 3 4 2 1 3 2
2 1 1 3 4 1 2 4 4 3 4 2 1 4 3 1 2 3 1 2 3
4 2 3 2 2 1 3 1 4 3 1 2 4 1 2 4 3 2 4 3 1
3 2 4 3 1 3 3 1 4 4 3 1 2 3 4 1 2 4 2 1 2
4 2 3 4 1 4 4 2 1 2 4 3 1 3 4 2 1 3 3 2 1(b)

Figure 2.20. Four-colored rectangle-free grids G12,21: (a) extension of the
grid head of Figure 2.19 (b); (b) extension of the grid head
of Figure 2.19 (c)

colored rectangle-free gridsG12,21 is an equivalence class. A conjecture
of the long runtime of the SAT-solver without �nding a solution is
that only a small subset of color patterns satis�es the rectangle-free
condition. This conjecture implies the interesting question, how many
di�erent classes of four-colored rectangle-free grids G12,21 exist for the
grid heads of Figure 2.19.

This problem can be solved in such a way that all solutions of the �-
nally constructed SAT-formula of 504 variables and 85,344 clauses for
both grid heads are calculated and evaluated regarding their equiva-

Four-Colored Rectangle-Free Grids of the Size 12× 21 141

lence class. The complete calculation takes only 453.880 seconds for
the grid head of Figure 2.19 (b) and 745.700 seconds for the grid head
of Figure 2.19 (c). There are 38,926 di�erent solutions for each of
these grid heads.

These 38,926 di�erent solutions for each of these grid heads can be
classi�ed regarding

• the four Latin squares used in the region of rows 9 to 12 and
columns 7 to 21 of Figure 2.14

• the permutations of the three blocks in these rows and columns
10 to 21, and

• the permutations of the three rows 10 to 12.

This taxonomy originates 4 ∗ 3! ∗ 3! = 4 ∗ 6 ∗ 6 = 144 permutation
classes (equivalence classes) of four-colored rectangle-free grids G12,21

for each grid head. The result of our detailed evaluation is that for
each of both grid heads 100 of these permutation classes are empty
and only the remaining 44 permutation classes contain equivalence
classes of four-colored rectangle-free grids G12,21.

Figure 2.21 shows the distribution of the found 44 permutation classes
regarding the possible permutations of the four Latin squares for the
grid head of Figure 2.19 (b). The distribution of the 38,926 di�erent
equivalence classes of four-colored rectangle-free grids G12,21 for grid
head of Figure 2.19 (c) is shown in Figure 2.22.

The values in the eight tables of Figures 2.21 and 2.22 indicate the
number of di�erent assignments of color 2, color 3, and color 4 tokens
for a certain �xed assignment of color 1 tokens. A value 0 in these
tables means that no four-colored rectangle-free grid G12,21 exists for
the chosen assignment of the color 1 tokens. The unsatis�able SAT-
formulas which extends the grid heads of Figure 2.19 (b) and (c) by
all assignments of the color 1 tokens in the columns from 7 to 21 as
shown in Figure 2.14 belong to the class of the top left corner in Table
(b1) of Figure 2.21 or Table (a2) of Figure 2.22.

Finally, the fraction of four-colored rectangle-free grids G12,21 of all

142 Four-Colored Rectangle-Free Grids

(a1) numbers of permutation classes for the Latin square 0

permutation of permutation of blocks

rows 123 132 213 312 231 321

123 875 0 0 0 0 16
132 0 16 0 70 0 0
213 15720 0 0 0 0 875
312 0 0 0 0 0 0
231 0 875 0 16 0 0
321 0 0 0 0 0 0

(b1) numbers of permutation classes for the Latin square 1

permutation of permutation of blocks

rows 123 132 213 312 231 321

123 0 184 0 16 0 0
132 10 0 0 0 0 48
213 0 5488 0 185 0 0
312 0 0 0 0 0 0
231 822 0 0 0 0 10
321 0 0 0 0 0 0

(c1) numbers of permutation classes for the Latin square 2

permutation of permutation of blocks

rows 123 132 213 312 231 321

123 185 0 2 0 0 10
132 0 185 0 16 0 0
213 5488 0 0 0 0 822
312 0 2 32 0 20 0
231 0 10 0 48 0 0
321 0 0 0 20 0 0

(d1) numbers of permutation classes for the Latin square 3

permutation of permutation of blocks

rows 123 132 213 312 231 321

123 5488 0 0 0 0 184
132 0 16 20 48 0 0
213 822 0 0 0 0 10
312 0 0 2 0 0 32
231 0 184 32 10 4 0
321 0 0 0 0 4 4

Figure 2.21. Number of permutation classes of four-colored rectangle-free
grids G12,21 for the grid head of Figure 2.19 (b).

Four-Colored Rectangle-Free Grids of the Size 12× 21 143

(a2) numbers of permutation classes for the Latin square 0

permutation of permutation of blocks

rows 123 132 213 312 231 321

123 0 70 0 16 0 0
132 16 0 0 0 0 875
213 0 0 0 0 0 0
312 875 0 0 0 0 15720
231 0 0 0 0 0 0
321 0 16 0 875 0 0

(b2) numbers of permutation classes for the Latin square 1

permutation of permutation of blocks

rows 123 132 213 312 231 321

123 48 0 0 0 0 10
132 0 16 0 184 0 0
213 0 0 0 0 0 0
312 0 185 0 5488 0 0
231 0 0 0 0 0 0
321 10 0 0 0 0 822

(c2) numbers of permutation classes for the Latin square 2

permutation of permutation of blocks

rows 123 132 213 312 231 321

123 0 16 0 185 0 0
132 10 0 0 0 2 185
213 0 0 20 2 32 0
312 822 0 0 0 0 5488
231 0 20 0 0 0 0
321 0 48 0 10 0 0

(d2) numbers of permutation classes for the Latin square 3

permutation of permutation of blocks

rows 123 132 213 312 231 321

123 0 48 0 16 20 0
132 184 0 0 0 0 5488
213 32 0 0 0 2 0
312 10 0 0 0 0 822
231 4 0 4 0 0 0
321 0 10 4 184 32 0

Figure 2.22. Number of permutation classes of four-colored rectangle-free
grids G12,21 for the grid head of Figure 2.19 (c).

144 Four-Colored Rectangle-Free Grids

color patterns of this grid size can be determined. The number of all
four-colored rectangle-free grids G12,21 is equal to the sum of all 12!
permutations of the row and 21! permutations of the columns of the
38,926 permutation classes of two grid heads:

nrf4c(12, 21) = 2 ∗ 12! ∗ 21! ∗ 38, 926 = 1.90524 ∗ 1033 . (2.36)

The number of di�erent color patterns ncp of the grids G12,21 is equal
to 5.23742 ∗ 10151 (2.11). Hence, the ratio of four-colored rectangle-
free grids G12,21 regarding all color patterns of this grid size is equal
to

1.90524 ∗ 1033

5.23742 ∗ 10151
= 3.6377 ∗ 10−119 . (2.37)

Hence, almost all four-colored gridsG12,21 do not satisfy the rectangle-
free condition (2.9).

3. Theoretical and Practical

Concepts

3.1. Perceptions in Learning Boolean

Concepts

Ilya Levin Gabi Shafat

Hillel Rosensweig Osnat Keren

3.1.1. Boolean Concept Learning

The section deals with Human Concept Learning (HCL). Learning
concept by humans may utilize various approaches to study how con-
cepts are learned. Speci�cally, the perception and the recognition of
Boolean concepts by humans are considered.

Concepts are the atoms of thought and they are therefore at the nu-
cleus of cognition science [105]. People begin to acquire concepts
from infancy and continue to acquire and plan new concepts through-
out their entire lives [192, 193]. One way to create a new concept is
by utilizing existing concepts in di�erent combinations. One of the
problems in learning concepts is determining the concepts' subjective
di�culty. An important aspect of a concept learning theory is the
ability to predict the level of di�culty in learning di�erent types of
concepts.

There are classes of concepts of a special interest. One of the most
popular and signi�cant class of concepts of special interest is a class of

146 Theoretical and Practical Concepts

Boolean concepts. Boolean concepts are concepts that are formed by
Boolean functions of existing concepts which themselves can be not
Boolean. The modern technological environment has been intensively
digitized during the last two decades. The environment mainly has
a Boolean nature and, naturally, puts human learning of Boolean
concepts on the research agenda. Human concept learning of Boolean
concepts is called Boolean Concept Learning (BCL).

The di�culty of learning some Boolean concepts by humans can be
referred to as the cognitive complexity of the corresponding concepts.
One of the important research �elds of BCL concerns the factors that
determine the subjective di�culty of the concepts. This research �eld
addresses the question why some concepts are simple to learn, while
others seem to be quite di�cult?

In general, the problem of complexity of Boolean concepts was associ-
ated with the synthesis of digital systems [131]. The complexity mea-
sures were purely technological and mainly related to hardware imple-
mentations of corresponding Boolean concepts. Examples of techno-
logical tasks, sensitive to Boolean complexity, may be the quantity of
computer hardware, its reliability, testability, level of the power dissi-
pation etc. Nowadays, new criteria of complexity of Boolean concepts
have moved to the center of the research agenda due to the intensive
dissemination of computer means into the everyday life. Not only
computer specialists are involved in Boolean concepts evaluation, but
also psychologists, sociologists and cognitive scientists. The new cri-
teria address the human perception of concepts, and in particular -
Boolean concepts.

Recent technology trends put the human personality in the center. A
contemporary problem is actually how the human personality develops
its abilities to exist in a new informational society full of intellectual
artifacts. Scientists have become interested in a simply formulated
question: are there properties of Boolean functions that would allow
a human to e�ectively (i.e., with minimal e�orts) learn (understand)
tasks corresponding to such functions?

In 2000, J. Feldman published a work [97] showing that the cogni-
tive complexity of a Boolean concept is proportional to the number of
literals in the minimized (NOT-AND-OR) Boolean expression corre-

Perceptions in Learning Boolean Concepts 147

sponding to the Boolean concept (minimal description length). The
pioneer work of Feldman in the �eld of Boolean cognitive complexity
accelerated research activity in that �eld.

One of the problems with the minimal description length criterion
is how to determine the set of primitive connectives (functions) (like
NOT-AND-OR) that are allowed in formulating descriptions. Indeed,
by inclusion of just one additional function (connective) - exclusive
OR - into the basic set of primitives, one can decrease the length of
description and simplify perception of the function by a human, so
that the Boolean function is recognized quite easily [96, 122]. An
important research question then rises: are there other connectives
(functions) that can be successfully used by humans in solving logic
problems?

A di�erent way to measure the cognitive complexity is to take into ac-
count the ability of learners to recognize speci�c properties of Boolean
concepts. For example, learners easily recognize such property as sym-
metry, though symmetric Boolean functions have a quite high minimal
description length complexity.

There are various types of tasks connected with BCL [60, 93, 145,
178]. These tasks may be very di�erent from the point of human
cognitive ability to solve them. They correspond, for example, to
analytic or synthetic ways of thinking. More speci�cally, two types
of tasks are of a special interest: recognition and reverse engineering.
It is quite natural to assume that di�erent types of tasks have to be
studied di�erently in the context of BCL [178]. One of the important
issues in the �eld of BCL is the evaluation of solutions provided by
learners to the above di�erent tasks.

The cognitive complexity of a Boolean concept clearly depends on the
number of Boolean variables belonging to the corresponding concept.
The majority of works deals with concepts described by a small num-
ber of variables (two-three) and actually, the question "How learners
recognize Boolean concepts of relatively large number of variables"
was never raised. One perspective way to address this question is to
use so-called non-exact reasoning in solving BCL tasks. Analyzing
non-exact or approximated solutions given by learners was presented
in [179]. Obtaining non-exact solutions for BCL tasks does not yet

148 Theoretical and Practical Concepts

mean obtaining wrong solutions. Indeed, considering such solutions
as wrong may result in evaluation of the corresponding task as cogni-
tively complex, and may further lead to incorrect conclusions about
humans abilities in BCL. Moreover, we believe that the non-exactness
allows humans to successfully solve Boolean tasks with a great number
of variables.

This section addresses the above issues and presents a novel research
methodology for studying the above issues. Speci�cally, we focus on
the following three speci�c research methodologies: recognizing spe-
ci�c properties of Boolean functions when solving BCL tasks; solving
di�erent types of BCL tasks (such as recognition and reverse engi-
neering); non-exact reasoning in solving BCL tasks.

3.1.2. Complexity of Boolean Concepts

Cognitive Complexity of Boolean Concepts. Boolean concepts can
be de�ned by a Boolean expression composed of basic logic operations:
negation, conjunction, and disjunction. Such types of Boolean con-
cepts have been studied extensively by [39, 42, 224, 274]. These stud-
ies were focused on Boolean concepts with small number of variables.
Shepard, Hovland, and Jenkins (SHJ) de�ned 70 possible Boolean
concepts that can be categorized into six subcategories.

The results of [274] are highly in�uential since SHJ proposed two
informal hypotheses. The �rst one is that the number of literals in
the minimal expression predicts the level of di�culty. The second
hypothesis is that ranking the di�culty among the concepts in each
type depends on the number of binary variables in the concept. It is
interesting to note that these two relations were originally introduced
by Shannon and Lupanov in the context of (asymptotic) complexity
of Boolean functions [276].

Feldman [97], based on the conclusions from the SHJ study, de�ned
a quantitative relationship between the level of di�culty of learning
Boolean concepts and the complexity of Boolean concepts. The com-
plexity measure of a Boolean concept as de�ned by Feldman is the
number of literals in the minimal SOP expression. An alternative ap-

Perceptions in Learning Boolean Concepts 149

proach for calculating the cognitive-complexity measure of a Boolean
concept was proposed in [328] and called a structural-complexity .

The majority of works in the �eld of BCL builds a computational
model of complexity that is supposed to approximate a natural, hu-
man cognitive complexity of a BCL task. In other words, most re-
searchers intend to translate the cognitive BCL complexity into the
quantitative form by proposing various computational models which
in turn correspond to computational complexity of the correspond-
ing Boolean functions. Preliminary studies [179, 180] con�rm this
idea - non-exactness in solving BCL tasks allows to enrich the tra-
ditional quantitative approach and to study the cognitive complexity
also qualitatively.

Computational Complexity of Boolean Functions. Two types of the
computational complexity of Boolean functions are known: informa-
tion complexity and algorithmic complexity .

The information complexity is usually associated with the name of
Claude Shannon who de�ned a quantitative approach to measure the
complexity. Actually, the information approach says that the com-
plexity is strongly connected with the quantity of information that
the concept comprises. The Shannon complexity of Boolean functions
mostly measures the number of speci�c components in representa-
tions or implementations of Boolean functions. It may be the number
of: literals in an expression, gates in a circuit, nodes or paths in the
corresponding decision diagram, etc. [97, 107].

For people, studying the computational complexity of Boolean func-
tions, one of the most interesting of Shannon's results can be for-
mulated as follows: Most functions are hard, but we don't have any
bad examples [274]. Such a result has to be considered as an opti-
mistic one. It demonstrates perspectives of research in the �eld of
BCL, since despite the fact of high computational complexity of an
arbitrary Boolean function, it declares feasibility of studying a lot of
really existing Boolean tasks.

The algorithmic approach for measuring the computational complex-
ity of Boolean functions has to be connected with the name of Kol-
mogorov [164]. According to Kolmogorov, the complexity of a concept

150 Theoretical and Practical Concepts

is the complexity of an algorithm producing the concept. The algo-
rithmic complexity is estimated based on regularities existing in the
concept. Sometimes these regularities correspond to known properties
of functions; but sometimes there may be nontrivial regularities that
individuals are able to recognize. For example, symmetric Boolean
functions form a well-known example of functions, which, while having
high information complexity, are easily recognized by humans owing
to their regularity. Obviously, symmetric functions have high infor-
mation complexity and relatively low algorithmic complexity.

The majority of works in HCL studies the cognitive complexity by
applying computational models of the �rst type, i.e., of the informa-
tion complexity type. At the same time, the algorithmic complexity
of Boolean concepts is not su�ciently studied. The algorithmic com-
plexity may become an especially e�ective tool to study speci�c regu-
larities allowing humans to solve concept recognition problems despite
the fact of their high information complexity.

3.1.3. The Problem of Studying the Human Concept
Learning

In the majority of known studies, the cognitive complexity of Boolean
concepts is assessed quantitatively, by using various computational
models. Each of the models is associated with a corresponding compu-
tational complexity of the Boolean concepts. These methods/models,
being mathematically di�erent, are intended to achieve the same goal:
to qualitatively re�ect human ability to recognize, describe, analyze
and synthesize systems corresponding to the Boolean concepts.

The methodology presented in this section aims to go deeper in the
above research rational. In our opinion, BCL has to be studied by
taking into account a combination of factors, which relate to:

1. non-exactness of human reasoning in recognition of Boolean con-
cepts, as well as in ways of human approximation of Boolean
concepts

2. recognizing properties of Boolean concepts by humans

Perceptions in Learning Boolean Concepts 151

3. study of di�erent types of Boolean tasks to be solved, such as:
recognition and reverse engineering.

The factors are presented in the above order to re�ect the role of the
�rst factor non-exactness as the most important due to its method-
ological value. According to our approach, both other factors have to
be studied by using the methodology of non-exact reasoning in solving
BCL tasks.

These new principles are based on considering a BCL task as a non-
exact task that requires non-exact reasoning for solving it. A non-
exact or approximate reasoning of a learner may very often re�ect
his/her generalized understanding of a Boolean concept. The corre-
sponding non-exact solution has to be considered as at least better
than not understanding the concept at all, but sometimes - even bet-
ter than the accurate understanding of the concept. By studying the
non-exact reasoning, the cognitive complexity of Boolean concepts can
be understood deeper than in previous studies.

By using the suggested approach, it would be possible to answer the
following important question:

How and in which proportion the two kinds of computational
complexity (information and algorithmic) should serve as mea-
sures of the cognitive complexity?

For this purpose, the study can be conducted by suggesting two types
of tasks to the learners. These two types of tasks are:

1. recognition tasks, and

2. reverse engineering tasks.

Using these two types of tasks allows studying and estimating the
cognitive complexity of Boolean concepts deeper than it was done
before.

Another important research question that can be answered by using
the proposed methodology is the following.

152 Theoretical and Practical Concepts

What is the correlation between solutions of the same Boolean
problems being de�ned in two di�erent forms according to the
two types of tasks?

3.1.4. New Methodology for Studying Human
Learning of Boolean Concepts

Three-dimensional Model. In our approach based on a three-dimen-
sional model, where axes of the model correspond to the mentioned
groups of factors:

• the �rst axis of the model will be formed by non-exactness of
human reasoning,

• the second axis will re�ect properties of Boolean functions af-
fecting human learning, and

• the third one will correspond to the type of a Boolean task (such
as: recognition, reverse engineering) proposed to the learners.

the �rst axis of the model will be formed by non-exactness of human
reasoning, the second axis will re�ect properties of Boolean functions
a�ecting human learning; and the third one will correspond to the
type of a Boolean task (such as: recognition, reverse engineering)
proposed to the learners.

Non-exact Reasoning and Approximation in BCL. To date, the
research in the �eld of Human Concept Learning was concentrated
on studying cognitive complexity by using rather simple logic. In
the case that a Boolean concept can be presented as a simple logic
expression, the majority of learners �nds this simple solution and,
consequently, the complexity of the task is evaluated as low. In the
opposite case, where the Boolean expression is complex (for example,
comprises a great number of literals) the majority of the learners fails
to �nd a solution. They either provide a wrong solution, or do not
give any solution at all; in the best case the student(s) �nd(s) a correct
solution but with a high value of latency. Such tasks are evaluated as
cognitively complex.

Perceptions in Learning Boolean Concepts 153

It should be noted that in many BCL tasks the situation is much more
complex. A BCL task often has a number of di�erent solutions. The
best (exact, minimal) solution exists among these solutions and, most
probably, it satis�es the criterion of minimal complexity (Feldman).
However, alternative solutions very often re�ect important properties
of human cognition, and they should not be considered as wrong. It
may so happen that a cognitively simple solution, which we actually
are looking for, can be found among non-minimal solutions. Such cog-
nitively simple, though sometimes non-trivial solutions may be those
which comprise properties of Boolean concepts that have been recog-
nized by a learner. Such solutions are de�nitely interesting for scien-
ti�c research since they not only clarify the term cognitive complexity ,
but also may shed light on some more intimate properties of human
cognition (intuition, creativity).

Moreover, among wrong answers to complex BCL tasks, simple and
elegant solutions can be found (though they are non-exact). It may
happen that a learner preferred the simplicity and the elegance of
the solution to its exactness. The simple answer may be not so far
from the correct one in its Boolean sense: i.e., the two answers may
coincide in the major correct points (nodes) of the Boolean space. For
example, the learner, being asked to recognize a Boolean function

f = x y z ∨ x y z ∨ x y z

of three variables, can give a wrong but short answer f = z: adding
only one point (node) (x y z) to the ON-set of the initial function.
In such an example the student has actually rounded o� the answer
by approximating it, and that action is close to such an important
function of the human intellect as generalization.

Our approach is based on the following basic ideas:

• one should not reject all non-minimal solutions as cognitively
complex human's approximation of Boolean concepts

• one should not consider any non-exact (approximate) solution
as incorrect

• one should develop new metrics of cognitive complexity, taking

154 Theoretical and Practical Concepts

into account properties of a non-minimal and/or an approxi-
mate.

One of the main goals of our methodology is to provide the study of
principles of the non-exactness in BCL and ways of approximation
made by humans. For this aim, it is important to present several data
sets to the learners, and ask them to generalize each set according to
some rule. For example, the set Bongard Problems [39, 107] can be
used as data sets. Each of Bongard Problems comprises two diagrams:
BPright and BPleft. The set of elements of the BPright diagram has
a common characteristic, which does not exist in the BPleft diagram.
The learners have to �nd and to formulate a convincing distinction
rule between both sides.

There are 100 Bongard problems (BPs), ordered by their di�culty.
For each Bongard Problem the learner is told to describe a speci�c
common attribute (derived rule) for the items of BPright, and to do a
similar thing for BPleft, such that both sides are dissimilar. In order
to analyze the thought process, each learner will be asked to describe
a way of reaching a �nal conclusion. The point is to understand not
only the distinction de�ned by the learner, but also to be able to
trace what other items in the BP were perceived. In this fashion, we
retrace the structures evident to the learner and understand his/her
simpli�cation process through Boolean analysis. The presence of both
BPright and BPleft in the Bongard problems is signi�cant and even
scienti�cally more correct than in the standard case based on present-
ing just positive what is yes? patterns, since it allows discussing not
only what is yes? but also what is no? in the patterns characteristics
[180]. It also allows evaluating the learners solutions more accurate
than in a standard case. However, exactly in such Bongard-like dually
formulated tasks, there is great place of non-exactness.

In [179], we demonstrated that usually Boolean functions correspond-
ing to Bongard problems contain considerable redundancy which in
turn allows obtaining a number of correct but di�erent solutions of
the same task. Study of redundancy contained in Boolean descriptions
opens a way for understanding the phenomenon of non-exactness in
BCL. Speci�cally, the redundancy inserts a potential level of subjec-
tivity to any formulation of a unifying or a distinguishing rule. Some
of our preliminary results in this direction are published in [179, 180].

Perceptions in Learning Boolean Concepts 155

Recognizing Properties of Boolean Functions. Several properties of
Boolean functions have to be studied in the BCL in order to investigate
the human ability to recognize some features of the Boolean functions,
and as a result - their ability to reduce the cognitive complexity of
the problem. Such properties as monotony, linearity, and symmetry
of Boolean concepts have to be studied in the above context.

It is assumed that learning and understanding a certain concept is
connected with identi�cation of patterns and regularities in their char-
acteristics. This connection can be measured using an analytical func-
tion that applies a series of learner solutions of a Boolean task.

Our methodology is intended to study the learner's ability to solve
logic tasks formulated by a set of cards. Each of the cards represents
from one to three contours. The cards di�er from each other by one
or two characteristics from the following three: size, �ll, and number
of the contours. For our experiments, we choose a set of cards which
are in one-to-one correspondence with nodes of a speci�c algebraic
structure: Boolean Cube, Lattice, etc. For example, the Set game can
be used for our purpose. The correlation between speci�c regularities
in subsets of cards on the one hand, and students' success in solving
logic tasks de�ned by the subsets on the other hand should be studied.
It can be carried out by:

1. measuring the complexity using a speci�c analytical function
expressing regularities

2. measuring the complexity by using known approaches, mostly
connected with the number of literals, and

3. an empirical method, by analyzing the corresponding students
answers.

Recognition vs. Reverse Engineering in BCL. As it was mentioned
above, a number of di�erent types of Boolean problems exist, which
types have to be di�erently and separately studied in the context
of Boolean Concepts Learning. These types of problems correspond
to di�erent kinds of human thinking activities, such as analytic or
synthetic thinking.

156 Theoretical and Practical Concepts

Usually the problem of Human Concept Learning is considered as the
problem of recognizing relations between visually represented objects.
Solving the recognition problem/task may thus be interpreted as rec-
ognizing a visually represented Boolean concept, with further formu-
lation of the concept. The recognition problems can be perceived as a
parallel process, so the recognition problems are considered as prob-
lems of a parallel type. Recognizing patterns is one of the important
functions of human consciousness. The concept of cognitive complex-
ity usually relates to complexity of the recognition task. Nevertheless,
there is a number of Boolean tasks of di�erent types the cognitive
complexity of which also requires estimation. Speci�cally, such types
of problems as recognition, reverse engineering and fault detection
are all of a special interest. The process of �nding and reconstruct-
ing operating mechanisms in a given functional system of a digital
electronic device is de�ned as Reverse Engineering (RE) [60]. RE is
applied in a wide variety of �elds: competition in manufacturing new
products, from electronic components to cars, among competing com-
panies without infringing upon the competing company's copyright,
replacing system components with refurbished or spare parts [145],
solving problems and defects in a system [93]. RE can be referred to
as a certain type of problem solving.

In the BCL case the RE problem is a problem of reconstructing a
Boolean function implemented within a given black box. Since such
a reconstruction is typically performed sequentially, step-by-step, this
problem is considered to be of a sequential type. While the recognition
task is usually presented as a pattern containing geometric shapes,
the RE task is usually presented in a form of a blackbox that can be
used to control via it (there-through) a bulb, by using independent
switches.

Our methodology is based on studying both the Recognition and the
Reverse Engineering types of problems. It is based on conducting
experiments on the Boolean tasks in two scenarios: recognition and
reverse engineering and compare the corresponding students solutions.
To make it possible, two environments should be developed: a stan-
dard one for recognition tasks, and another one in the form of black
box comprising some switches and a bulb for the reverse engineer-
ing tasks. Boolean functions for the recognizing and for the reverse
engineering analysis should be presented in two separate groups of

Perceptions in Learning Boolean Concepts 157

students. The two groups may then exchange the environments.

We hypothesize that the study of BCL on di�erent types of problems
allows broadening the �eld of expertise and bringing an additional
dimension to the concept of cognitive complexity. Our preliminary
results [274] indicate a correlation between complexities of problems
of di�erent types for the same Boolean concept.

3.1.5. Research Methodology

We have presented a new research methodology in the �eld of Hu-
man Concept Learning, more speci�cally in learning Boolean con-
cepts. The main idea of the methodology can be expressed by using a
three-dimensional model for estimating cognitive complexity of learn-
ing, where axes of the model correspond to three directions of the
research: non-exactness of human reasoning when solving Boolean
tasks, properties of Boolean functions a�ecting the learning of Boolean
concepts; and di�erent types of Boolean tasks (recognition and reverse
engineering tasks) presented to the learners.

The above three-dimensional research model was never proposed be-
fore, though considerable attempts were undertaken to study mecha-
nisms of Human Concept Learning. The aim of the section is to view
the problem at a new angle, by adding the qualitative character to the
research. We believe that using the non-exactness as a methodologi-
cal basis to study principles of Boolean concept learning by humans
will provide deeper understanding of how the concepts are learned,
and will open a way for future research in the �eld of Human Concept
Learning.

158 Theoretical and Practical Concepts

3.2. Generalized Complexity of ALC
Subsumption

Arne Meier

Description logics (DL) play an important role in several areas of
research, e.g., semantic web, database structuring, or medical ontolo-
gies [15, 43, 44, 220]. As a consequence there exists a vast range of
di�erent extensions where each of them is highly specialized to its
own �eld of application. Nardi and Brachman describe subsumption
as the most important inference problem within DL [223]. Given two
(w.l.o.g. atomic) concepts C,D and a set of axioms (which are pairs of
concept expressions A,B stating A implies B), one asks the question
whether C implies D is consistent with respect to each model satisfy-
ing all of the given axioms. Although the computational complexity
of subsumption in general can be between tractable and EXP [87,
88] depending on which feature1 is available, there exist nonetheless
many DL which provide a tractable (i.e., in P) subsumption reasoning
problem, e.g., the DL-Lite and EL families [10, 11, 13, 14, 57]. One
very prominent application example of the subsumption problem is
the SNOMED CT clinical database which consists of about 400.000
axioms and is a subset of the DL EL++ [65, 251].

In this section we investigate the subsumption problem with respect to
the most general (in sense of available Boolean operators) description
logic ALC. It is known that the unrestricted version of this prob-
lem is EXP-complete due to reducibility to a speci�c DL satis�ability
problem [15], and is therefore highly intractable. Our aim is to un-
derstand where this intractability comes from or to which Boolean
operator it may be connected to. Therefore we will make use of the
well understood and much used algebraic tool, Post's lattice [239].
At this approach one works with clones which are de�ned as sets of
Boolean functions which are closed under arbitrary composition and
projection. For a good introduction into this area consider [37]. The

1These features, for instance, can be existential or universal restrictions, avail-
ability of disjunction, conjunction, or negation. Furthermore, one may extend
a description logic with more powerful concepts, e.g., number restrictions, role
chains, or epistemic operators [15].

Generalized Complexity of ALC Subsumption 159

main technique is to investigate fragments of a speci�c decision prob-
lem by means of allowed Boolean functions; in this section this will
be the subsumption problem. As Post's lattice considers any possi-
ble set of all Boolean functions, a classi�cation by it always yields an
exhaustive study. This kind of research has been done previously for
several di�erent kinds of logics, e.g., temporal, hybrid, modal, and
non-monotonic logics [30, 70, 71, 133, 268, 269].

Main results. The most general class of fragments, i.e., those which
have both quanti�ers available, perfectly show how powerful the sub-
sumption problem is. Having access to at least one constant (true or
false) leads to an intractable fragment. Merely for the fragment where
only projections (and none of the constants) are present it is not clear
if there can be a polynomial time algorithm for this case and has
been left open. If one considers the cases where only one quanti�er
is present, then the fragments around disjunction (case ∀), respec-
tively, the ones around conjunction (case ∃) become tractable. With-
out quanti�ers conjunctive and disjunctive fragments are P-complete
whereas the fragments which include either the a�ne functions (exclu-
sive or), or can express x∨ (y∧z), or x∧ (y∨z), or self-dual functions
(i.e., f(x1, . . . , xn) = f(x1, . . . , xn)) are intractable. Figure 3.1 de-
picts how the results directly arrange within Post's lattice. Due to
space restrictions the proof of Theorem 3.10 is omitted and can be
found in the technical report [194].

3.2.1. Preliminaries

In this section we will make use of standard notions of complexity
theory [234]. In particular, we work with the classes NLOGSPACE,
P, coNP, EXP, and the class ⊕LOGSPACE which corresponds to non-
deterministic Turing machines running in logarithmic space whose
computations trees have an odd number of accepting paths. Usually
all stated reductions are logarithmic space many-one reductions ≤log

m .
We write A ≡log

m B i� A ≤log
m B and B ≤log

m A hold.

Post's Lattice. Let >, ⊥ denote the truth values true, false. Given
a �nite set of Boolean functions B, we say the clone of B contains

160 Theoretical and Practical Concepts

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

BF

R1 R0

R2

M

M1 M0

M2 S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

SUBS98(B):

EXP-c.
coNP-hard, 2 EXP

P-hard, 2 EXP

SUBS9(B):

EXP-c.
coNP-hard, 2 EXP
P-hard, 2 EXP

P-complete

SUBS8(B):
EXP-complete

coNP-hard, 2 EXP
P-hard, 2 EXP

P-complete

SUBS;(B):
coNP-complete
P-complete
�LOGSPACE-hard

NL-complete

1

Figure 3.1. Post's lattice showing the complexity of SUBSQ(B) for all sets
∅ ⊆ Q ⊆ {∃, ∀} and all Boolean clones [B].

Generalized Complexity of ALC Subsumption 161

Table 3.1. All clones and bases relevant for this classi�cation

Base Base Base

BF {x ∧ y, x} S00 {x ∨ (y ∧ z)} S10 {x ∧ (y ∨ z)}
D1 {maj{x, y, z}} D2 {maj{x, y, z}} M0 {x ∧ y, x ∨ y,⊥}
L {x⊕ y,>} L0 {x⊕ y} L1 {x↔ y}
L2 {x⊕ y ⊕ z} L3 {x⊕ y ⊕ z ⊕>}
V {x ∨ y,>,⊥} V0 {x ∨ y,⊥} V2 {x ∨ y}
E {x ∧ y,>,⊥} E0 {x ∧ y,⊥} E2 {x ∧ y}
N {x,>} N2 {x}
I0 {id,⊥} I1 {id,>} I2 {id}

all compositions of functions in B plus all projections; the smallest
such clone is denoted with [B] and the set B is called a base of [B].
The lattice of all clones has been established in [239] and a much
more succinct introduction can be found in [37]. Table 3.1 depicts all
clones and their bases which are relevant for this classi�cation. Here
maj denotes the majority, and id denotes identity. Let f : {>,⊥}n →
{>,⊥} be a Boolean function. Then the dual of f , in symbols dual(f),
is the n-ary function g with g(x1, . . . , xn) = f(x1, . . . , xn). Similarly,
if B is a set of Boolean functions, then dual(B) := {dual(f) | f ∈ B}.
Further, abusing notation, de�ne dual(∃) := ∀ and dual(∀) = ∃; if
Q ⊆ {∃,∀} then dual(Q) := {dual(a) | a ∈ Q}.

Description Logic. Usually a Boolean function f is de�ned as map-
pings f : {0, 1}n → {0, 1} wherefore the appearance within formulas
may not be well-de�ned. Therefore we will use the term of a Boolean
operator whenever we talk about the to a function corresponding part
within a concept description. This approach extends the upper de�-
nition of clones to comprise cover operators as well.

We use the standard syntax and semantics of ALC as in [15]. Ad-
ditionally we adjusted them to �t the notion of clones. The set of
concept descriptions (or concepts) is de�ned by

C := A | ◦f (C, . . . , C) | ∃R.C | ∀R.C ,

where A is an atomic concept (variable), R is a role (transition rela-
tion), and ◦f is a Boolean operator which corresponds to a Boolean

162 Theoretical and Practical Concepts

function f : {>,⊥}n → {>,⊥}. For a given set B of Boolean opera-
tors and Q ⊆ {∃,∀}, we de�ne that a B-Q-concept uses only operators
from B and quanti�ers from Q. Hence, if B = {∧,∨} then [B] = BF,
and the set of B-concept descriptions is equivalent to (full) ALC. Oth-
erwise if [B] (BF for some set B, then we consider proper subsets of
ALC and cannot express any (usually in ALC available) concept.

An axiom is of the form C v D, where C and D are concepts; C ≡ D
is the syntactic sugar for C v D and D v C. A TBox is a �nite set
of axioms and a B-Q-TBox contains only axioms of B-Q-concepts.

An interpretation is a pair I = (∆I , ·I), where ∆I is a nonempty set
and ·I is a mapping from the set of atomic concepts to the power set
of ∆I , and from the set of roles to the power set of ∆I × ∆I . We
extend this mapping to arbitrary concepts as follows:

(∃R.C)I =
{
x ∈ ∆I

∣∣ {y ∈ CI | (x, y) ∈ RI} 6= ∅
}
,

(∀R.C)I =
{
x ∈ ∆I

∣∣ {y ∈ CI | (x, y) /∈ RI} = ∅
}
,(

◦f (C1, . . . , Cn)
)I

=
{
x ∈ ∆I

∣∣ f(||x ∈ CI1 ||, . . . , ||x ∈ CIn ||) = >
}
,

where ||x ∈ CI || = 1 if x ∈ CI and ||x ∈ CI || = 0 if x /∈ CI . An
interpretation I satis�es the axiom C v D, in symbols I |= C v D, if
CI ⊆ DI . Further I satis�es a TBox, in symbols I |= T , if it satis�es
every axiom therein; then I is called a model .

Let Q ⊆ {∃,∀} and B be a �nite set of Boolean operators. Then for
the TBox-concept satis�ability problem, TCSATQ(B), given a B-Q-
TBox T and a B-Q-concept C, one asks if there is an I s.t. I |= T and
CI 6= ∅. This problem has been fully classi�ed w.r.t. Post's lattice in
[196]. Further the Subsumption problem, SUBSQ(B), given a B-Q-
TBox and two B-Q-concepts C,D, asks if for every interpretation I
it holds that I |= T implies CI ⊆ DI .

As subsumption is an inference problem within DL some kind of con-
nection in terms of reductions to propositional implication is not de-
vious. In [29] Beyersdor� et al. classify the propositional implica-
tion problem IMP with respect to all fragments parameterized by all
Boolean clones.

Generalized Complexity of ALC Subsumption 163

Theorem 3.8 ([29]). Let B be a �nite set of Boolean operators.

1. If C ⊆ [B] for C ∈ {S00,D2,S10}, then IMP(B) is coNP-

complete w.r.t. ≤AC0

m
2.

2. If L2 ⊆ [B] ⊆ L, then IMP(B) is ⊕LOGSPACE-complete w.r.t.

≤AC0

m .

3. If N2 ⊆ [B] ⊆ N, then IMP(B) is in AC0[2].

4. Otherwise IMP(B) ∈ AC0.

3.2.2. Interreducibilities

The next lemma shows base independence for the subsumption prob-
lem. This kind of property enables us to use standard bases for every
clone within our proofs. The result can be proven in the same way as
in [195, Lemma 4].

Lemma 3.1. Let B1, B2 be two sets of Boolean operators such that
[B1] ⊆ [B2], and let Q ⊆ {∃,∀}. Then SUBSQ(B1) ≤log

m SUBSQ(B2).

The following two lemmas deal with a duality principle of subsump-
tion. The correctness of contraposition for axioms allows us to state a
reduction to the fragment parameterized by the dual operators. Fur-
ther having access to negation allows us in the same way as in [197]
to simulate both constants.

Lemma 3.2. Let B be a �nite set of Boolean operators and Q ⊆
{∀,∃}. Then SUBSQ(B) ≤log

m SUBSdual(Q)(dual(B)).

Proof. Here we distinguish two cases. Given a concept A de�ne with
A¬ the concept ¬A in negation normal form (NNF).

2A language A is AC0 many-one reducible to a language B (A ≤AC0

m B) if there
exists a function f computable by a logtime-uniform AC0-circuit familiy such
that x ∈ A i� f(x) ∈ B (for more information, see [330]).

164 Theoretical and Practical Concepts

First assume that ¬ ∈ [B]. Then (T , C,D) ∈ SUBSQ(B) if and
only if for any interpretation I s.t. I |= T it holds that CI ⊆
DI if and only if for any interpretation I s.t. I |= T ′ := {F¬ v
E¬ | E v F ∈ T } it holds that (¬D)I ⊆ (¬C)I if and only if
(T ′, D¬, C¬) ∈ SUBSdual(Q)(dual(B)). The correctness directly fol-
lows from dual(¬) = ¬.

Now assume that ¬ /∈ [B]. Then for a given instance (T , C,D) it
holds that for the contraposition instance ({F¬ v E¬ | E v F ∈
T }, D¬, C¬) before every atomic concept occurs a negation symbol.
Denote with ({F¬ v E¬ | E v F ∈ T }, D¬, C¬)pos the substi-
tution of any such negated atomic concept ¬A by a fresh concept
name A′. Then (T , C,D) ∈ SUBSQ(B) i� ({F¬ v E¬ | E v F ∈
T }, D¬, C¬)pos ∈ SUBSdual(Q)(dual(B)).

Lemma 3.3. Let B be a �nite set of Boolean operators such that N2 ⊆
[B] and Q ⊆ {∃,∀}. Then it holds that SUBSQ(B) ≡log

m SUBSQ(B ∪
{>,⊥}).

Using Lemma 4.2 in [29] we can easily obtain the ability to express the
constant > whenever we have access to conjunctions, and the constant
⊥ whenever we are able to use disjunctions.

Lemma 3.4. Let B be a �nite set of Boolean operators and Q ⊆
{∀,∃}. If E2 ⊆ [B], then SUBSQ(B) ≡log

m SUBSQ(B ∪ {>}). If
V2 ⊆ [B], then SUBSQ(B) ≡log

m SUBSQ(B ∪ {⊥}).

The connection of subsumption to the terminology of satis�ability and
propositional implication is crucial for stating upper and lower bound
results. The next lemma connects subsumption to TCSAT and also
to IMP.

Lemma 3.5. Let B be a �nite set of Boolean operators and Q ⊆
{∀,∃} be a set of quanti�ers. Then the following reductions hold:

1. IMP(B) ≤log
m SUBS∅(B) .

2. SUBSQ(B) ≤log
m TCSATQ(B ∪ {9}) .

3. TCSATQ(B) ≤log
m SUBSQ(B ∪ {⊥}) .

Generalized Complexity of ALC Subsumption 165

Proof.

1. It holds (ϕ,ψ) ∈ IMP(B) i� (Cϕ, Cψ, ∅) ∈ SUBS∅(B), for con-
cept descriptions Cϕ = f(ϕ), Cψ = f(ψ) with f mapping propo-
sitional formulas to concept descriptions via

f(>) = >, and f(⊥) = ⊥,
f(x) = Cx, for variable x,

f(g(C1, . . . , Cn)) = ◦g(f(C1), . . . , f(Cn))

where g is an n-ary Boolean function and ◦g is the corresponding
operator.

2. (T , C,D) ∈ SUBSQ(B) i� (T , C9D) ∈ TCSATQ(B ∪ {9})
[15].

3. (T , C) ∈ TCSATQ(B) i� (C,⊥, T) ∈ SUBSQ(B ∪ {⊥}) [15].

3.2.3. Main Results

We will start with the subsumption problem using no quanti�ers and
will show that the problem either is coNP-, P-, NLOGSPACE-complete,
or is ⊕LOGSPACE-hard.

Theorem 3.9 (No quanti�ers available.). Let B be a �nite set of
Boolean operators.

1. If X ⊆ [B] for X ∈ {L0, L1, L3,S10,S00,D2}, then SUBS∅(B) is
coNP-complete.

2. If E2 ⊆ [B] ⊆ E or V2 ⊆ [B] ⊆ V, then SUBS∅(B) is P-complete.

3. If [B] = L2, then SUBS∅(B) is ⊕LOGSPACE-hard.

4. If I2 ⊆ [B] ⊆ N, then SUBS∅(B) is NLOGSPACE-complete.

All hardness results hold w.r.t. ≤log
m reductions.

166 Theoretical and Practical Concepts

Proof.

1. The reduction from the implication problem IMP(B) in Lemma
3.5 (1.) in combination with Theorem 3.8 and Lemma 3.1 proves
the coNP lower bounds of S10,S00,D2. The lower bounds for
L0 ⊆ [B] and L3 ⊆ [B] follow from Lemma 3.5 (3.) with
TCSAT∅(B) being coNP-complete which follows from the NP-
completeness result of TCSAT∅(B) shown in [195, Theorem 27].
Further the lower bound for L1 ⊆ [B] follows from the duality
of '⊕' and '≡' and Lemma 3.2 with respect to the case L0 ⊆ [B]
enables us to state the reduction

SUBS∅(L0) ≤log
m SUBSdual(∅)(dual(L0)) = SUBS∅(L1) .

The upper bound follows from a reduction to TCSAT∅(BF) by
Lemma 3.5 (2.) and the membership of TCSAT∅(BF) in NP by
[195, Theorem 27].

2. The upper bound follows from the memberships in P for the
fragments SUBS∃(E) and SUBS∀(V) in Theorem 3.10.

The lower bound for [B] = E2 follows from a reduction from the
hypergraph accessibility problem3 HGAP: set T = {u1 u u2 v
v | (u1, u2; v) ∈ E}, assume w.l.o.g. the set of source nodes as
S = {s}, then (G,S, t) ∈ HGAP i� (T , s, t) ∈ SUBS∅(E2). For
the lower bound of V2 apply Lemma 3.2.

3. Follows directly by the reduction from IMP(L2) due to Theo-
rem 3.8 and Lemma 3.5 (1.).

4. For the lower bound we show a reduction from the graph ac-
cessibility problem4 GAP to SUBS∅(I2). Let G = (V,E) be a

3In a given hypergraph H = (V,E), a hyperedge e ∈ E is a pair of source
nodes src(e) ∈ V × V and one destination node dest(e) ∈ V . Instances of
HGAP consist of a directed hypergraph H = (V,E), a set S ⊆ V of source
nodes, and a target node t ∈ V . Now the question is whether there exists
a hyperpath from the set S to the node t, i.e., whether there are hyperedges
e1, e2, . . . , ek such that, for each ei, there are ei1 , . . . , eiν with 1 ≤ i1, . . . , iν < i
and

⋃
j∈{i1,...,iν} dest(ej)∪src(ej) ⊇ src(ei), and src(e1) = S and dest(ek) = t

[283].
4Instances of GAP are directed graphs G together with two nodes s, t in G asking
whether there is a path from s to t in G.

Generalized Complexity of ALC Subsumption 167

undirected graph and s, t ∈ V be the vertices for the input. Then
for T := {(Au v Av) | (u, v) ∈ E} it holds that (G, s, t) ∈ GAP
i� (T , As, At) ∈ SUBS∅(I2).

For the upper bound we follow the idea from [195, Lemma 29].
Given the input instance (T , C,D) we can similarly assume that
for each E v F ∈ T it holds that E,F are atomic concepts, or
their negations, or constants. Now (T , C,D) ∈ SUBS∅(N) holds
i� for every interpretation I = (∆I , ·I) and x ∈ ∆I it holds that
if x ∈ CI then x ∈ DI holds i� for the implication graph GT
(constructed as in [195, Lemma 29]) there exists a path from vC
to vD.

Informally if there is no path from vC to vD then D is not
implied by C, i.e., it is possible to construct an interpretation
for which there exists an individual which is a member of CI

but not of DI .

Thus we have provided a coNLOGSPACE-algorithm which �rst
checks accordingly to the algorithm in [195, Lemma 29] if there
are not any cycles containing contradictory axioms. Then we
verify that there is no path from vC to vD implying that C is
not subsumed by D.

Using some results from the previous theorem we are now able to
classify most fragments of the subsumption problem using only either
the ∀ or ∃ quanti�er with respect to all possible Boolean clones in the
following two theorems.

Theorem 3.10 (Restricted fragments). Let B be a �nite set of Bool-
ean operators, a ∈ {∃,∀}.

1. If C ⊆ [B] for C ∈ {N2, L0, L1}, then SUBSa(B) is EXP-com-
plete.

2. If C ⊆ [B] for C ∈ {E2,S00}, then SUBS∀(B) is EXP-complete.

168 Theoretical and Practical Concepts

3. If C ⊆ [B] for C ∈ {V2,S10}, then SUBS∃(B) is EXP-complete.

4. If D2 ⊆ [B] ⊆ D1, then SUBSa(B) is coNP-hard and in EXP.

5. If [B] = L2, then SUBSa(B) is P-hard and in EXP.

6. If [B] ⊆ V, then SUBS∀(B) is P-complete; if [B] ⊆ E, then
SUBS∃(B) is P-complete

All hardness results hold w.r.t. ≤log
m reductions.

Proof. Theorem 3.10 is proven in [194].

Finally the classi�cation of the full quanti�er fragments naturally
emerges from the previous cases to EXP-complete, coNP-, and P-hard
cases.

Theorem 3.11 (Both quanti�ers available). Let B be a �nite set of
Boolean operators.

1. Let X ∈ {N2,V2,E2}. If X ⊆ [B], then SUBS∃∀(B) is EXP-
complete.

2. If I0 ⊆ [B] or I1 ⊆ [B], then SUBS∃∀(B) is EXP-complete.

3. If D2 ⊆ [B] ⊆ D1, then SUBS∃∀(B) is coNP-hard and in EXP.

4. If [B] ∈ {I2, L2}, then SUBS∃∀(B) is P-hard and in EXP.

All hardness results hold w.r.t. ≤log
m reductions.

Proof.

1. Follows from the respective lower bounds of SUBS∃(B), resp.,
SUBS∀(B) in Theorem 3.10.

2. The needed lower bound follows from Lemma 3.5(3.) and en-
ables a reduction from the EXP-complete problem TCSAT∃∀(I0)

Generalized Complexity of ALC Subsumption 169

[196, Theorem 2 (1.)]. The case SUBS∃∀(B) with I1 ⊆ [B] fol-
lows from the contraposition argument in Lemma 3.2.

3.+4. The lower bounds carry over from SUBS∅(B) for the respective
sets B (see Theorem 3.9).

3.2.4. Discussion of the Very Di�cult Problem

The classi�cation has shown that the subsumption problem with both
quanti�ers is a very di�cult problem. Even a restriction down to
only one of the constants leads to an intractable fragment with EXP-
completeness. Although we achieved a P lower bound for the case
without any constants, i.e., the clone I2, it is not clear how to state
a polynomial time algorithm for this case: We believe that the size
of satisfying interpretations always can be polynomial in the size of
the given TBox but a deterministic way to construct it is not obvious
to us. The overall interaction of enforced concepts with possible roles
is not clear (e.g., should a role edge be a loop or not). Further it is
much harder to construct such an algorithm for the case L2 having a
ternary exclusive-or operator.

Retrospectively, the subsumption problem is much harder than the
usual terminology satis�ability problems visited in [196]. Due to the
duality principle expressed by Lemma 3.2 both halves of Post's lattice
contain intractable fragments plus it is not clear if there is a tractable
fragment at all. For the fragments having access to only one of the
quanti�ers the clones which are able to express either disjunction (for
the universal quanti�er) or conjunction (for the existential case) be-
come tractable (plus both constants). Without any quanti�er allowed
the problem almost behaves as the propositional implication problem
with respect to tractability. The only exception of this rule refers to
the L-cases that can express negation or at least one constant. They
become coNP-complete and therewith intractable.

Finally, a similar systematic study of the subsumption problem for
concepts (without respect to a terminology) would be of great interest

170 Theoretical and Practical Concepts

because of the close relation to the implication problem of modal
formulas. To the best of the author's knowledge, such a study has not
been done yet and would enrich the overall picture of the complexity
situation in this area of research. Furthermore, it would be interesting
to study the e�ects of several restrictions on terminologies to our
classi�cation, e.g., acyclic or cyclic TBoxes.

Using a Recon�gurable Computer 171

3.3. Using a Recon�gurable Computer to

Compute Algebraic Immunity

M. Eric McCay Jon T. Butler

Pantelimon St nic

3.3.1. Why do we Need Algebraic Immunity?

The bene�ts we enjoy from the internet depend critically on our ability
to communicate securely. For example, to bank online we depend
on the encoding of plaintext messages (our personal identi�cations
numbers, for instance), which, if divulged, could result in signi�cant
loss of personal funds. Unfortunately, the theft of credit/debit card
numbers is one of the most common crimes in the internet age. Such
a theft is especially enticing since the individual committing the theft
is likely to be far away from the victim, therefore feeling immune to
prosecution.

Encryption is a process of converting a plaintext (cleartext) message
into a scrambled message, called ciphertext. With the internet as
is typically con�gured now, actual interception of a message is easy;
anyone with access to a server and some programming skills can easily
acquire the communication. However, in the case of an encrypted
message, it is necessary to then decrypt the message, and in so doing
extract the original plaintext message. The present bene�ts of the
internet depend critically on the degree of di�culty associated with
the discovery of the plaintext message.

For example, one could encrypt a message by exclusive ORing a code
(the same code) on each ASCII character in the message. In this case,
`A' is always transformed into some other letter, like `K', `B' is always
transformed to say `T', etc. Breaking such a code is easy, by using
statistical analysis, since one can guess that the most common letter
represents an `E', while a rare letter represents a `Z'. Although the
guess may be wrong, with enough computing power and enough of
the encrypted message, a dedicated thief would eventually succeed.

172 Theoretical and Practical Concepts

Present day encryption algorithms are signi�cantly more sophisticated
than this simple example. However, in addition to much better en-
cryption algorithms, there has also been a signi�cant increase in com-
puting power. Indeed, we live in an era of the supercomputer on the
desk, in which thousands of processors exist within the space that
recently housed only one processor. Therefore, there is an enhanced
ability to try out many guesses and to analyze huge quantities of ci-
phertext.

An attempt to decipher a message is called a (cryptographic) attack, or
cryptanalysis. An attack is often predicated on a perceived weakness
in the encoding algorithm. For example, one of the earliest attacks,
called the linear attack, is most successful when the encoding algo-
rithm uses a not too complicated approximation of a linear (or a�ne)
Boolean function. A linear (a�ne) function is the exclusive OR of lin-
ear terms only (or their complement). For example, f1 = x1⊕x3⊕x4 is
a linear function (both f1 and f1⊕1 are a�ne), while f2 = x1x2⊕x3x4
is not linear (nor a�ne as it has degree two). In a linear attack, the
attacker takes advantage of an a�ne approximation of the action of
the cipher. If the function used in some step of the cipher is linear or
even `close to linear', such an attack is likely to succeed. To mitigate
against such attacks, Boolean functions that are highly nonlinear are
used in the encryption instead. This led to interest in bent functions,
Boolean functions whose nonlinearity exceeds that of all others. For
a tutorial description of bent functions, see [55].

Since Rothaus' seminal contribution on bent functions in 1976 [250],
there has been much work on the cryptographic properties of Boolean
functions [73]. Such properties include strict avalanche criterion [106,
332], propagation criteria [241], and correlation immunity [279]. How-
ever, within the past 10 years an e�ective attack that uses Gaussian
elimination has emerged [67, 68].

Any stream or block cipher can be described by a system of equations
expressing the ciphertext as a function of the plaintext and the key
bits. An algebraic attack is simply an attempt to solve this system of
equations for the plaintext. If the system happens to be overde�ned,
then the attacker can use linearization techniques to extract a solution.
However, in general, this approach is di�cult, and not e�ective, unless
the equations happen to be of low degree. That is (somewhat) ensured

Using a Recon�gurable Computer 173

if, for instance, the nonlinear Boolean function combiner in an LFSR-
based generator (a widely used encryption technique) has low degree
or the combiner has a low algebraic immunity (de�ned below) [67, 68].

Let be f(x1, x2, . . . , xn) a Boolean function that depends on the bits
{x1, x2, . . . , xn} of a linear feedback shift register (LFSR). Let be L
another function that de�nes the LFSR. Speci�cally,

L : {0, 1}n → {0, 1}n

de�nes how the values of the LFSR bits at some clock period de-
pend on the bit values in the previous clock period. Suppose the
keystream z0, z1, z2, . . . is computed from some initial secret state
(the key) given by n bits a0, a1, . . . , an−1 in the following way. Let
a = (a0, a1, . . . , an−1) be the initial state and de�ne the keystream
bits by

z0 = f(a)

z1 = f(L(a))

z2 = f(L2(a))

...
...

zt = f(Lt(a)) .

The problem of extracting the plaintext message in this context is
equivalent to the problem of �nding the initial key a, knowing L and
f , and intercepting zi. Assume that f is expressed in its algebraic
normal form (ANF). Speci�cally,

f(x1, x2, . . . , xn) = c0 ⊕ c1x1 ⊕ c2x2 ⊕ . . . c2n−1x1x2 . . . xn ,

where ci ∈ {0, 1} is uniquely determined by c. Let deg(f) = d be the
number of variables in the term of the ANF with the largest number
of variables. Since deg(f) = d, every term on the right hand side of
any equation in the above set of equations has d or fewer variables.
Therefore, there are M =

∑d
i=0

(
n
i

)
or fewer of these terms, and we

de�ne a variable yj for each one of them. If a cryptanalyst has access
to at least N ≥ M keystream bits zt, then he/she can solve the
linear system of N equations for the values of the variables yj , and
thus recover the values of a0, a1, . . . , an−1. If d is not large, then the
cryptanalyst may well be able to acquire enough keystream bits so

174 Theoretical and Practical Concepts

that the system of linear equations is highly overde�ned (that is, N
is much larger than M).

If we use Gaussian reduction to solve the linear system, then the
amount of computation required is O

((
n
d

)ω)
, where ω is the well�

known exponent of Gaussian reduction (ω = 3 (Gauss-Jordan [303]);
ω = log2 7 = 2.807 (Strassen [304]); ω = 2.376 (Coppersmith-Wino-
grad [63])). For n ≥ 128 and d ∼ n, we are near the upper limits for
which this attack is practical for actual systems, since the complexity
grows with d.

Courtois and Meier [67] showed that if one can �nd a function g
with small degree dg such that fg = 0 or (1 ⊕ f)g = 0, then the
number of unknowns for an algebraic attack can be reduced from

(
n
df

)
to
(
n
dg

)
. We say that g is an annihilator of f . That is easy to see, since

f(Li(a)) = zi becomes g(Li(a)) · f(Li(a)) = 0 = zi g(Li(a)), and so,
we get the equations g(Li(a)) = 0, whenever the intercepted zi 6= 0.
That gives us a reduction in complexity, from

O

((
n

df

)ω)
to O

((
n

dg

)ω)
.

Therefore, it is necessary to have a fast computation of a low(est)
degree annihilator of the combiner f .

3.3.2. Why do we Need a Recon�gurable Computer?

Although the computations needed in an attack or a defense can
be done by a conventional computer, a signi�cant speedup can be
achieved by using a recon�gurable computer. For example, it has
been shown that a recon�gurable computer can compute bent func-
tions for use in encryption at a speed that is 60,000 times faster than
by a conventional computer [275]. The speedup is achieved because
a recon�gurable computer can implement many copies of basic logic
elements, like adders and comparators, which can then execute si-
multaneously. However, in a conventional computer, there are fast
logic elements, like adders, but there are relatively few of them. A
conventional computer is limited in what it can e�ciently compute be-
cause its architecture is limited. As another example, the e�ectiveness

Using a Recon�gurable Computer 175

of a recon�gurable computer has been shown in computing Boolean
functions with high correlation immunity, which are more immune to
correlation immunity attacks [95]. A speedup of about 190 times was
achieved.

In this section, we show that a recon�gurable computer is e�ective in
computing the algebraic immunity of a Boolean function. This study
represents a departure from the two studies involving a recon�gurable
computer described above. That is, compared to nonlinearity and
correlation immunity, the computation of the algebraic immunity of a
Boolean function is more complex. Given human inclinations, it would
seem that algebraic immunity computations should be relegated to
conventional computers rather than recon�gurable computers. How-
ever, we show that his intuition is wrong; recon�gurable computers
still hold an advantage over conventional computers.

3.3.3. Background and Notation

We start with a combinatorial property of a Boolean function that
also plays an important role in the cryptographic world (see [73] for
more cryptographic properties of Boolean functions).

De�nition 3.6. The degree d of a term xi1xi2 . . . xid is the number
of distinct variables in that term, where ij ∈ {1, 2, . . . , n}, and n is
the total number of variables.

De�nition 3.7. The algebraic normal form or ANF of a Boolean
function f(x1, x2, . . . , xn) consists of the exclusive OR of terms; specif-
ically, f(x1, x2, . . . , xn) = c0 ⊕ c1x1 ⊕ c2x2 ⊕ . . . ⊕ c2n−1x1x2 . . . xn,
where ci ∈ {0, 1}.

The ANF of a function is often referred to as the positive polarity
Reed-Muller form.

De�nition 3.8. The degree, deg(f), of function f(x1, x2, . . . , xn) is
the largest degree among all the terms in the ANF of f .

176 Theoretical and Practical Concepts

Table 3.2. Functions that annihilate the 3-variable majority function f
and their degree

x1x2x3 f α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15

000 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
001 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
010 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
011 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
101 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Degree 2 3 3 2 3 2 2 3 3 2 2 3 2 3 3

Example 3.1. The ANF of the 3-variable majority function is

f(x1, x2, x3) = x1x2 ⊕ x1x3 ⊕ x2x3 .

Its degree is 2.

De�nition 3.9. Function a 6= 0 is an annihilator of function f if
and only if a · f = 0.

Note that f̄ is an annihilator of f . Further, if a is an annihilator of f ,
so also is α, where α ≤ a ('≤' is a partial order on the set of vectors
of the same dimension, that is, (αi)i ≤ (βi)i if and only if αi ≤ βi, for
any i).

De�nition 3.10. Function f has algebraic immunity k where

k = min{deg(a) | a is an annihilator of f or f̄} .

Example 3.2. The annihilators of the 3-variable majority function
f(x1, x2, x3) = x1x2⊕x1x3⊕x2x3 include f̄ and all g such that g ≤ f̄ ,
excluding the constant 0 function. In all, there are 15 annihilators of
f and 15 annihilators of f̄ . Among these 30 functions, the minimum
degree is 2. Thus, f(x1, x2, x3) = x1x2⊕x1x3⊕x2x3 has algebraic im-
munity 2. Table 3.2 shows all 15 annihilators (labeled α1, α2, . . . , α15)
of the 3-variable majority function. Table 3.3 shows all 15 annihilators

Using a Recon�gurable Computer 177

Table 3.3. Functions that annihilate the complement of the 3-variable ma-
jority function

x1x2x3 f̄ β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 β14 β15

000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
001 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
010 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
011 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
101 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
110 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
111 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Degree 2 3 3 2 3 2 2 3 3 2 2 3 2 3 3

(labeled β1, β2, . . . , β15) of the complement of the 3-variable majority
function. Across both of these tables, one can verify that the minimum
degree among annihilators is 2. It follows that the algebraic immunity
of the 3-variable majority function is equal to 2.

Example 3.3. Let n = 4. The function f = x1x2x3x4 has the highest
degree, that is equal to 4. Function a = x̄1 = x1⊕1 annihilates f , since
a · f = x̄1x1x2x3x4 = 0. Since, x̄1 has degree 1 and there exists no
annihilator of f of degree 0, the algebraic immunity of f is equal to 1.
To reach this conclusion, it is not necessary to check the annihilators
of f̄ , since the only annihilator of f̄ is f , which has degree 4.

We can immediately state the following lemmas.

Lemma 3.6. The algebraic immunity of a function f(x1, x2, . . . , xn)
is identical to the algebraic immunity of f̄ .

Lemma 3.7. The algebraic immunity of a function f(x1, x2, . . . , xn)
is min{deg(α)|α ≤ f̄ or α ≤ f}.

Proof. The hypothesis follows immediately from the observation that
{α|α ≤ f̄ or α ≤ f} is the set of all annihilators of f .

178 Theoretical and Practical Concepts

Lemma 3.7 is similar to De�nition 3.10. However, there is an im-
portant di�erence. Lemma 3.7 admits an algorithm for determining
the algebraic immunity of a function f . Speci�cally, examine the de-
gree of each function α such that α ≤ f̄ and determine the minimum
degree of the ANF among all α. This requires the examination of
22
n−wt(f)− 1 functions, where wt(f) is the number of 1's in the truth

table of f , since f̄ has 2n − wt(f) 1's in its truth table. In forming an
annihilator, each 1 can be retained or set to 0. The `−1' accounts for
the case where all 1's are set to 0, which is not an annihilator. The
following result is essential to the e�cient computation of algebraic
immunity.

Lemma 3.8. [67, 198] The algebraic immunity AI(f) of a function
f(x1, x2, . . . , xn) is bounded above; speci�cally, AI(f) ≤ dn2 e.

3.3.4. Computation of Algebraic Immunity

Row Echelon Reduction Method. The computation of algebraic im-
munity is more complex than nonlinearity and correlation immunity,
two cryptographic properties that have been previously computed by
a recon�gurable computer. There are several methods for computing
the algebraic immunity of a Boolean function f . In the brute force
method, one checks every function to see if it is an annihilator of the
given f , or its complement. In another approach, one can identify
directly the annihilators with high degree. Since our attempt is to
implement the algebraic immunity computation on a recon�gurable
computer, we have not implemented the more recent algorithm of
Armchnecht et al. [9], which also deals with fast algebraic attack is-
sues. Our approach is based on a simpler version of that linear algebra
approach. This enabled us to implement it on the SRC-6 recon�g-
urable computer and to display the algebraic immunity pro�les for
all functions on n variables, for 2 ≤ n ≤ 5. A similar approach has
been used to compute algebraic immunity on a conventional processor
[67, 198]. Our implementation is the �rst known using Verilog on an
FPGA.

Here, we create the ANF of a minterm corresponding to each 1 in the
truth table of the function. Our approach to solving this system is to

Using a Recon�gurable Computer 179

express this in reduced row echelon form using Gaussian elimination.
It is based on two elementary row operations: (1) interchange two
rows, and (2) add one row to another row. A simple test applied to
the reduced row echelon form determines if there is an annihilator of
some speci�ed degree.

Our approach is to express the system of linear equations in reduced
row echelon form, and, from this, determine if there exists a solution
of some speci�ed degree. A matrix is in row echelon form if it satis�es
the following conditions:

1. the �rst nonzero element (leading entry) in each row is 1

2. each leading entry is in a column to the right of the leading entry
in the previous row

3. rows with all zero elements (if any) are below rows having a
nonzero element.

To put the matrix in reduced row echelon form, one simply uses elim-
ination on nonzero entries above each pivot.

Example 3.4. To illustrate, consider solving the algebraic immunity
of the majority function f(x1, x2, x3) = x1x2 ⊕ x1x3 ⊕ x2x3. The top
half of Table 3.4 shows the minterm canonical form of f̄ . Here, the
�rst (leftmost) column represents all binary three tuples on three vari-
ables. The second column contains the truth table of the complement
function f̄ , which is expressed as x̄1x̄2x̄3 ∨ x̄1x̄2x3 ∨ x̄1x2x̄3 ∨ x1x̄2x̄3,
or more compactly, as the sum of minterms m0 ∨m1 ∨m2 ∨m4. This
represents the annihilator of f with the most 1's.

The columns are labeled by all possible terms in the ANF of an anni-
hilator. Then, 1's are inserted into the table to represent the ANF of
the minterms. For example, since the top minterm, m0 = x̄1x̄2x̄3 =
(x1⊕1)(x2⊕1)(x3⊕1) = x1x2x3⊕x2x3⊕x1x3⊕x1x2⊕x3⊕x2⊕x1⊕1,
its ANF has all possible terms, and so, there is a 1 in every column
of this row.

Note that we can obtain the ANF of some combination of minterms
as the exclusive OR of various rows in the top half of Table 3.4. This

180 Theoretical and Practical Concepts

Table 3.4. Functions that annihilate the 3-variable majority function

ANF Coe�cient → c7 c6 c5 c4 c3 c2 c1 c0 Minterms

Index x1x2x3 f̄ x1x2x3 x2x3 x1x3 x1x2 x3 x2 x1 1

Original

0 000 1 1 1 1 1 1 1 1 1 m0

1 001 1 1 1 1 0 1 0 0 0 m1

2 010 1 1 1 0 1 0 1 0 0 m2

3 011 0 0 0 0 0 0 0 0 0
4 100 1 1 0 1 1 0 0 1 0 m4

5 101 0 0 0 0 0 0 0 0 0
6 110 0 0 0 0 0 0 0 0 0
7 111 0 0 0 0 0 0 0 0 0

Reduced Row Echelon Form

0 - - 1 0 0 0 1 1 1 0 m1⊕m2⊕m4

1 - - 0 1 0 0 1 1 0 1 m0 ⊕m4

2 - - 0 0 1 0 1 0 1 1 m0 ⊕m2

3 - - 0 0 0 1 0 1 1 1 m0 ⊕m1

4 - - 0 0 0 0 0 0 0 0
5 - - 0 0 0 0 0 0 0 0
6 - - 0 0 0 0 0 0 0 0
7 - - 0 0 0 0 0 0 0 0

follows from the observation that mi ∨ mj = mi ⊕ mj due to the
orthogonality of the minterms. For example, one annihilator a is

a = x̄1x2x̄3 ∨ x̄1x̄2x̄3 ,

and so the ANF of a is generated by simply exclusive ORing the rows
associated with these two minterms.

Elementary Row Operations. Consider a 0− 1 matrix and two row
operations:

1. interchange one row with another, and

2. replace one row by the exclusive OR of that row with any other
row.

Using a Recon�gurable Computer 181

Using elementary row operations, we seek to create columns, starting
with the left column with only one 1 (called a pivot).

De�nition 3.11. A 0−1 matrix is in row echelon form if and only
if all nonzero rows (if they exist) are above any rows of all zeroes, and
the leading coe�cient (pivot) of a nonzero row is always strictly to the
right of the leading coe�cient of the row above it.

De�nition 3.12. [342] A 0−1 matrix is in reduced row echelon

form if and only if it is in row echelon form and each leading 1 (pivot)
is the only 1 in its column.

Consider Table 3.4. The top half shows the truth table of f̄ . For
each value 1 (minterm � m0, m1, m2, and m4) in the f̄ column (third
column), the ANF of that minterm is expressed across the rows. To
form an annihilator of f , we must combine one or more minterms using
the exclusive OR operation. The bottom half of Table 3.4 shows the
reduced row echelon form of the top half. The row operations we used
to derive the bottom half from the top half can be inferred from the
rightmost column. For instance, the entry m0 ⊕ m1 in the bottom
half of the table indicates that the rows labeled m0 and m1 in the top
half of the table were combined using the exclusive OR operation.

Note that, like the top half of Table 3.4, the rows in the reduced row
echelon form combine to form any annihilator of the original function.
This follows from the fact that any single minterm can be formed
as the exclusive OR of rows in the reduced row echelon form. For
example, m1 is obtained as the exclusive OR of the top three rows of
the reduced row echelon form.

The advantage of the reduced row echelon form is that we can simply
inspect the rows to determine the annihilators of lowest degree. For
example, in the reduced row echelon form, the top row represents an
annihilator of degree 3, since there is a value 1 in the column associated
with x1x2x3. Since the pivot point has the only value 1 in this row,
the only way to form an annihilator of degree 3 is to include this row.

The other three rows each have a pivot in a column associated with
a degree 2 term. And, the only way to have a degree 2 term is to
involve at least one of these rows. Since there are no other rows with

182 Theoretical and Practical Concepts

a pivot point in a degree 1 or 0 term, we can conclude that there
exist no annihilators of degree 1 or 0. Thus, the lowest degree of an
annihilator of f (= x1x2 ⊕ x1x3 ⊕ x2x3) is equal to 2.

Steps to Reduce the Computation Time. The matrices for which
we seek a reduced row echelon form can be large. For example, each
matrix has 2n rows, of which we manipulate only those with 1's in
the function. Potentially, there are also 2n columns. However, we can
reduce the columns we need to examine by a few observations. Recall
that no function has an AI greater than dn2 e. Thus, we need consider
only those columns corresponding to ANF terms where there are dn2 e
or fewer variables. However, it is not necessary to consider columns
corresponding to terms with exactly dn2 e variables. This is because
if no annihilators are found for a function f (or its complement) of
degree dn2 e − 1 or less, it must have an AI of dn2 e.

We can reduce the computation of the AI of a function by another
observation. If a degree 1 annihilator for a function is found, there is
no need to analyze its complement. Even if the complement has no
annihilators of degree 1, the function itself has AI of 1. On the other
hand, �nding an annihilator of degree dn2 e requires the analysis of its
complement for annihilators of smaller degree.

3.3.5. Results and Comments

Approach. A Verilog program was written to implement the row
echelon conversion process described above. It runs on an SRC-6 re-
con�gurable computer from SRC Computers, Inc. and uses the Xilinx
Virtex2p (Virtex2 Pro) XC2VP100 FPGA with Package FF1696 and
Speed Grade -5. Table 3.5 compares the average time in computing
the AI of an n-variable function on this FPGA with that of a typi-
cal microprocessor. In this case, we chose the IntelrCoreTM2 Duo
P8400 processor running at 2.26 GHz. This processor runs Windows
7 and has 4 GB of RAM. The code was compiled using Code::Blocks
10.05. The data shown is from a C program that also implements the
row echelon conversion process. For ease of presentation, we compute
the rate of computation, as measured by the number of functions per
second.

Using a Recon�gurable Computer 183

Table 3.5. Comparison of the computation times for enumerating the AI
of n-variable functions on the SRC-6 recon�gurable computer
versus an Intelr CoreTM2 Duo P8400 microprocessor

SRC-6 Recon�gurable Comp.

Clocks per Functions

n function per second # of samples Speedup

2 46.3 2,162,162 16,000,000* 0.5

3 70.7 1,414,130 25,600,000* 1.1

4 75.5 880,558 65,536,000* 1.9

5 348.4 287,012 4,294,967,296* 4.9

6 78.0 12,823 25,000,000 0.7

IntelrProcessor

2 4,186,290 16,000,000*

3 1,317,076 25,600,000*

4 458,274 65,536,000*

5 59,029 4,294,967,296*

6 17,699 500,000,000

* Exhaustive enumeration of all n-variable functions

Computation Times. Table 3.5 compares the computation times for
AI when done on the SRC-6 recon�gurable computer and on an Intelr
CoreTM2 Duo P8400 processor.

The second, third, and fourth columns in the upper part of Table 3.5
show the performance of the SRC-6 and the middle two columns in the
lower part of this table show the performance on the Intelr CoreTM2
Duo P8400 processor. The last column shows the speedup of the
SRC-6 over the Intelr CoreTM2 Duo P8400 processor.

The second column shows the average number of 100 MHz clocks
needed by the SRC-6. The third column shows the average number
of functions per second. The fourth column shows the number of
functions. The term samples is used here to indicate that, for smaller
n, we had to repeat the computation of the same function to achieve
a su�cient number of functions between each measuring point so that

184 Theoretical and Practical Concepts

Table 3.6. Comparing the brute force method with the row echelon
method on 4-variable functions

Brute Force Row Echelon

Functions 65,536 65,536

Total Time (sec.) 0.807 0.050

Total Clocks 80,748,733 4,946,111

Clocks Per Function 1,232.1 75.5

Functions Per Second 81,160 1,325,000

the time of computation was accurate. In the case of n ≤ 5, all
functions were enumerated, and in the case of n = 6, a subset of
random functions was enumerated.

The second column in the lower part of Table 3.5 shows the average
number of functions per second on the Intelr CoreTM2 Duo P8400
processor, while the third column of this table shows the number of
functions. The last column shows the speedup of the recon�gurable
computer over the Intelr CoreTM2 Duo P8400 processor.

For example, for n = 5, the SRC-6 recon�gurable computer is 4.9
times faster than the Intelr processor. For n = 4, the SRC-6 is 1.9
times faster. However, for n = 6, the processor is actually faster than
the recon�gurable computer. In the case of n = 6, a sample size of
25,000,000 was used for the SRC-6 and 500,000,000 for the Intelr
CoreTM2 Duo P8400 processor. For all lower values of n, exhaustive
enumeration was performed.

Comparing the Row Echelon Method to Brute Force. Table 3.6
compares the row echelon method, which involves the solution of si-
multaneous equations with the brute force method discussed earlier
for the case of n = 4.

In both cases, 65,536 functions were considered, all 4-variable func-
tions. The last row shows that the row echelon method is able to pro-
cess 1,325,000 functions per second verses 81,160 functions per second
for the brute force method, resulting in 16.3 times the throughput.

Using a Recon�gurable Computer 185

Table 3.7. The number of n-variable functions distributed according to
algebraic immunity for 2 ≤ n ≤ 6

AI\n 2 3 4 5

0 2 2 2 2

1 14 198 10,582 7,666,550

2 0 56 54,952 4,089,535,624

3 0 0 0 197,765,120

Total 16 256 65,536 4,294,967,296

AI\n 6

0 (2) 0

1 (1,081,682,871,734) 1,114,183,342,052

2 1,269,840,659,739,507,264

3 17,176,902,299,786,702,300

Total 18,446,744,073,709,551,616

Bold entries are previously unknown.
Bold and italicized entries are estimates to previously unknown values.

Distribution of Algebraic Immunity to Functions. Table 3.7 shows
the number of functions with various algebraic immunities for 2 ≤
n ≤ 6. This extends the results of [320] to n = 5. In our case, the use
of a recon�gurable computer allows this extension.

The entries shown in bold in the column for AI = 5 are exact values
for previously unknown values. The entries shown in bold and italics

for AI = 6 are approximate values for previously unknown values. In
this case, the approximate values were determined by a Monte Carlo
method in which 500,000,000 random 6-variable functions were gen-
erated (or 2.7 × 10−9% of the total number of functions) and their
algebraic immunity computed. For n = 5 and n = 6, the number of
functions with algebraic immunity 1 are known. However, Table 3.7
shows the value 0 for the number of functions with algebraic immunity
0 (there are actually 2, the exclusive OR function and its complement).
This is because the Monte Carlo method produced no functions with

186 Theoretical and Practical Concepts

Table 3.8. Frequency and resources used to realize the AI computation on
the SRC-6's Xilinx Virtex2p (Virtex2 Pro) XC2VP100 FPGA

n Freqency # of Total # of # of occupied
(MHz) LUTs slice FFs slices

2 103.1 2,066(2%) 2,977(3%) 2,089(4%)
3 113.0 2,199(2%) 3,011(3%) 2,157(4%)
4 109.4 2,343(2%) 2,760(3%) 2,120(4%)
5 100.9 5,037(5%) 4,110(4%) 3,780(8%)
6 87.5 8,990(10%) 3,235(3%) 5,060(11%)

an AI of 0. The italicized value, 1,114,183,342,052, in Table 3.7 is an
estimate of the number of 6-variable functions with algebraic immu-
nity 1. To show the accuracy of the Monte Carlo method, compare
this to the previously known exact value 1,081,682,871,734 [320]. The
estimated value is 3% greater than the exact value.

Resources Used. Table 3.8 shows the frequency achieved on the
SRC-6 and the number of LUTs and �ip-�ops needed in the realiza-
tion of the AI computation for various n. The frequency ranges from
113.0 MHz at n = 3 to 87.5 MHz for n = 6. Since the SRC-6 runs
at 100 MHz, the 87.5 MHz value is cause for concern. However, the
system works well at this frequency. For all values of n, the number
of LUTs, slice �ip-�ops, and occupied slices were well within FPGA
limits. Indeed, among all three parameters and all values of n, the
highest percentage was 11%.

Cryptographic Properties. We show that a recon�gurable computer
can be programmed to e�ciently compute the algebraic immunity of a
logic function. Speci�cally, we show a 4.9 times speedup over the com-
putation time of a conventional processor. This is encouraging given
that algebraic immunity is one of the most complex cryptographic
properties to compute. This is the third cryptographic property we
have concentrated on that has bene�ted from the highly e�cient, par-
allel nature of the recon�gurable computer. The interested reader may
wish to consult two previous papers on nonlinearity [275] and corre-
lation immunity [95].

Digital Circuits

4. Design

4.1. Low-Power Design Techniques for

State-of-the-Art CMOS Technologies

Vincent C. Gaudet

4.1.1. Power Dissipation and the Continuing Rule of
Moore's Law

Energy consumption has become one of the main issues when de-
signing microelectronic circuits. Circuit designers used to focus their
e�orts primarily on functionality and on meeting clock speed tar-
gets. However, in sub-65-nm complementary metal oxide semicon-
ductor (CMOS) technologies, many more design considerations must
be taken into account, including power optimization. To underline
the importance of these challenges, a roundtable discussion on how to
achieve a 10x reduction in energy consumption in electronic devices
was recently held during the plenary session of the 2011 IEEE Inter-
national Solid-State Circuits Conference [243]. Other presentations
in previous editions of the conference have also highlighted the need
for new approaches [40].

The 2011 edition of the Silicon Industry Association (SIA) Interna-
tional Technology Roadmap for Semiconductors (ITRS) [147] projects
that by 2020, lithography will allow the fabrication of devices with di-
mensions of 10 nm. Next-generation semiconductor technologies will
of course have a much greater packing density with better-performing
transistors, potentially leading to exciting breakthroughs in comput-
ing. However, the transistors that are available in those technologies

190 Design

will exhibit a very large variation in electric parameters such as device
threshold, which will require new design approaches to maximize yield.
Furthermore, while power consumption in traditional integrated cir-
cuits was dominated by switching power (namely, the power required
to switch a wire between di�erent logic values), sub-threshold leakage
currents are becoming far more signi�cant than ever before.

Power consumption is a crucial design consideration for many reasons.
In portable devices, battery life is determined by the average power
consumption, and any reduction in power leads to a commensurate
increase in battery life. Power is typically dissipated as heat, and this
can lead to several problems.

In compute server farms, the heat generated by computing devices
must be removed from server rooms, leading to high air conditioning
cost. On a much smaller scale, transistors themselves do not work
well at high temperatures, so integrated circuits must be cooled down
through expensive heat sinks.

In some cases, e.g., in biomedical applications, there are environmental
concerns as well; for instance, biomedical implants can only support
a limited power consumption; at a rate of 40mW/cm2, the increase in
localized body temperature can kill cells [76]; furthermore, biomedical
implants do not have access to a convenient source of energy [135]. Of
course, there is the largest environmental concern of all: the power
used to run integrated circuits must come from somewhere; on a global
scale, the International Energy Agency estimates that in 2007, 70%
of electricity was generated from fossil fuels [146].

In this section, we begin by reviewing some basics of integrated circuit
design and the main sources of power consumption. Then, we outline
some of the more common practices in low-power design, starting
at a high level of abstraction (software, architectural), and moving
towards lower levels of abstraction (circuit, device). We also look
at some promising techniques to deal with upcoming issues in power
consumption, and present some design examples. Finally, we conclude
the section by exploring one of the most fundamental questions in
power consumption:

Does there exist a lower bound on power consumption?

Low-Power CMOS Design 191

4.1.2. Models for Power Consumption

Microelectronic Circuits: the Basics

In order to get to an understanding of power consumption in inte-
grated circuits, we begin with a quick overview of transistor models,
notation, and basic logic gate design.

Although there are dozens of reliable textbooks on digital CMOS cir-
cuit design, we recommend reading the ones by Weste and Harris
[334], and by Rabaey, Chandrakasan, and Nikolic [244]. Also recom-
mended is the widely used textbook on microelectronic circuit design
by Sedra and Smith [272].

The metal-oxide-semiconductor �eld-e�ect transistor (MOSFET, but
usually abbreviated MOS) is the basic building block of CMOS tech-
nologies. Designers can inexpensively prototype two types of MOS
transistors: n-type enhancement MOS (NMOS) and p-type enhance-
ment MOS (PMOS). Both types of transistors can be modeled as
3-terminal devices with terminals known as the gate (G), drain (D),
and source (S). Note that in this context the gate refers to a transis-
tor's terminal and not a logic gate. To di�erentiate between the two
concepts and to prevent confusion, we often speak of a transistor gate
or gate terminal , and a logic gate.

vG

iG = 0

G

vD

vS

D

S

iD

iS

Figure 4.1. NMOS transistor with terminal labels, voltages, and currents.

At each terminal, we wish to know the terminal voltage (with respect
to the common node, or ground), and the current �owing into (or out
of, depending on convention) the terminal (see Figure 4.1). Without

192 Design

going into complicated device physics (which gets even more compli-
cated with every new generation of CMOS technology!), a high-level
explanation of transistor terminal behavior is as follows.

The gate terminal is a high-impedance node, which implies that it
draws no current (i.e., iG = 0), no matter what voltage (vG) is applied
to the node; the transistor gate is often seen as a circuit's input (it
may even be the input to the logic gate!).

At a high level of abstraction, the gate voltage vG controls the value of
iD and iS in a nonlinear way. When |vG − vS | falls below a threshold
value, known as the transistor threshold Vt, there is an open circuit
between the source and drain, and therefore iS = iD = 0, no matter
what the source and drain voltages are; in this case we say that the
transistor is OFF.

When vG exceeds Vt (note that we often use a small v for signal
quantities and a capital V for constant values), the transistor acts as
a current source between the source and drain terminals; here, we say
that the transistor is ON.

Although the current is highly nonlinear, it generally increases for
larger values of |vD − vS | and |vG − vS |. Since iG = 0, and due to
Kirchho�'s current law, we must have iD = iS .

The main di�erence between NMOS and PMOS transistors is that an
NMOS requires a voltage vG−vS > Vtn to turn on the transistor, and
iD ≥ 0, while a PMOS transistor requires a voltage, vS − vG > |Vtp|
to turn on the transistor, and iD ≤ 0. Note the added n and p to
di�erentiate between the NMOS and PMOS threshold voltages (and
just to confuse everyone, Vtp is usually reported as a negative value,
hence the absolute value symbols).

Finally, circuit designers can control a transistor's length L and width
W . In general, iD grows linearly with the ratio W/L. Since W/L
really represents the only aspect of a transistor that designers can
modify, these values tend to be reported in many circuits papers.
However, in practice most digital designs use the smallest value of L
available in a CMOS technology, which is usually close to the name
of the technology node (e.g., in a 65 nm CMOS technology, minimum

Low-Power CMOS Design 193

(a)

vIN vOUT

VDD

i

PMOS

NMOS

(b)

vOUT

VDD

vINVDD

PMOS ON

NMOS ON

i

vINVDD

Figure 4.2. CMOS inverter: (a) circuit schematic, and (b) transfer char-
acteristics.

transistor lengths tend to be approximately 65 nm).

Logic Gate Operation

A logic gate is built out of several transistors. For instance, an inverter
is constructed using one NMOS transistor, one PMOS transistor, a
DC voltage source (usually called VDD), and several wires (see Figure
4.2).

As we sweep the input voltage vIN from 0 V to VDD, each transistor
goes through several modes of operation. For vIN < Vtn, the NMOS
transistor is OFF whereas the PMOS transistor is ON. This creates
a conducting channel between VDD and vOUT while leaving an open
circuit to the ground node; hence vOUT = VDD, i.e., the output is at a
HIGH voltage, which is used to represent a logic value 1. Similarly, for
vIN > VDD−|Vtp|, the NMOS transistor is ON, the PMOS transistor
is OFF, and vOUT = 0 V, which represents a logic value 0. For
Vtn < vIN < VDD − |Vtp|, both transistors are ON, current �ows
directly from VDD to the ground node, and vOUT is at an intermediate
voltage. In this intermediate region, δvOUT /δvIN < −1, which means
that the circuit acts like an ampli�er. This behavior is known as the
regenerative property of a logic gate, and is seen by most designers
as a necessary condition for a functional gate. When a gate acts as

194 Design

an ampli�er, it can overcome voltage disruptions due to crosstalk and
other noise sources. Note the complementarity of the NMOS and
PMOS operation: the PMOS produces a logic 1 at the output and
the NMOS produces a logic 0.

For brevity, we will not look at the design of more complex gates. Suf-
�ce to say, series connections of transistors produce ANDing e�ects,
and parallel connections produce ORing e�ects.

So far we have only looked at the static behavior of a circuit, namely
the behavior when no voltages are changing. Let us now look at the
dynamic behavior, which will lead to the discussion of power con-
sumption. To do this, we introduce a load capacitor CL between the
output of the logic gate and the ground node (see Figure 4.3 (a)).
This capacitance may be due to many sources: the input parasitic
capacitances of transistors external to the logic gate, the parasitic ca-
pacitances of wires connected to the output of the gate (e.g., wires
delivering logic values to subsequent gates), and even some parasitic
capacitances from the transistors internal to the gate. In practice,
CL grows substantially when there is a large fan-out , i.e., when many
external gates are being driven, or when the distance between the
driving gate and a load gate is large (for many reasons, long wires are
bad!).

Consider the following scenario. For t < 0, vIN is held at VDD, and
so the output vOUT is at 0 V; the NMOS transistor is ON and the
PMOS transistor is OFF. At t = 0, the input instantaneously drops
to 0 V, turning ON the PMOS transistor and turning OFF the NMOS
transistor. What happens? Of course, we expect that the output will
rise to VDD, but this cannot happen instantaneously since this would
require in�nite current to �ow onto CL, which is clearly impossible.
In reality, recall that a nonlinear resistance now appears between the
source and drain of the PMOS transistor, creating an RC circuit. The
current �owing through the PMOS transistor eventually charges up
the voltage to VDD as t → ∞. Since this is a nonlinear process,
derivation of an analytical equation for vOUT (t) is often impossible.
Hence, circuit designers usually rely on numerical simulators such as
SPICE to verify circuit functionality.

Later on, when vIN returns to VDD, the NMOS turns ON again, the

Low-Power CMOS Design 195

PMOS turns OFF, the output gradually decreases back to 0 V.

Now we can move on to a discussion on energy consumption.

Power Consumption in CMOS Circuits

There are three main sources of power consumption in microelectronic
circuits. The �rst two: switching power and short-circuit power, de-
pend on the frequency of signal transitions. The last, leakage power,
is constant over time.

Switching Power. Recall that a capacitor C with voltage V stores
an amount of electrical energy E = 1

2CV
2. Therefore, as the output

goes from logic 0 to logic 1 and back to logic 0, the load capacitance
goes from storing Elogic0 = 0 to storing Elogic1 = 1

2CLV
2
DD, and back

to 0 again, which clearly implies an energy transfer.

It can be demonstrated analytically that as the output switches from
0 to 1, 1

2CLV
2
DD of energy is dissipated through the PMOS transistor

as heat. As the output switches back to 0, the 1
2CLV

2
DD that was

stored on CL is dissipated through the NMOS as heat. Therefore,
over the course of one 0-to-1-to-0 cycle, a total of CLV

2
DD of energy

is drawn from the power supply and dissipated as heat. Since power
consumption represents the rate at which energy is consumed (or dis-
sipated), we need to calculate the frequency at which we observe the
switching events.

Suppose there is a probability P0→1 that over the course of one clock
cycle, a circuit node i switches from logic 0 to 1. For notational
simplicity and to avoid confusion with power P, we replace P0→1 with
α, a term known as the switching activity of a node. For a clock
frequency fCLK , the average power Pswitch,i dissipated at the node
is:

Pswitch,i = αifCLKCL,iV
2
DD . (4.1)

The subscript i is used for switching activity and load capacitance, to
represent the notion that the values may be di�erent at each circuit

196 Design

node. Clock frequency and supply voltage tend to be held constant
for large parts of a circuit, so the subscript is not used in Equation
(4.1).

Total switching power is the sum of the switching power at each circuit
node i:

Pswitch,total =
∑
i

Pswitch,i . (4.2)

Switching power is by far the most well-understood form of power
consumption, and it is therefore the target of most power-reduction
techniques.

Short-circuit Power. As evidenced by Figure 4.2 (b), there is a volt-
age range Vtn < vIN < VDD − |Vtp| where both transistors in an
inverter are ON. This implies that there is a direct current path from
VDD to the ground node, also indicated in Figure 4.2 (a). This extra
current, often denoted Isc, i.e., a short-circuit current, does not con-
tribute to charging nor discharging the load capacitance. Since this
current �ows over a voltage drop of VDD, the instantaneous power
(that is, the power drawn from VDD as a function of time), is as
follows:

Psc,i(t) = VDDIsc,i(t) . (4.3)

As was the case with switching power, total short-circuit power is the
sum of short-circuit power at each node:

Psc,total(t) =
∑
i

Psc,i(t) . (4.4)

The value of Isc,i(t) is highly dependent on the slope of the input
signal vIN , and due to the nonlinear nature of the circuit, analytical
equations for Isc,i(t) are rarely available. Instead, numerical simula-
tion using tools such as SPICE are required. Due to the requirement
for simulation and the dependence of Isc,i(t) on VDD, short-circuit
power is much more di�cult to analyze and optimize than switching
power. However, we note that Isc(t) is only non-zero when there is

Low-Power CMOS Design 197

an output signal transition, and hence average short-circuit power is
proportional to fCLK and α, even though the terms do not appear in
Equations (4.3) and (4.4).

Leakage Power. Earlier, we stated that when |vG − vS | < |Vt|, then
iD = iS = 0, i.e., a transistor turns OFF and does not draw current.
In reality, as the voltage drop between the gate and source approaches
the transistor threshold, a subthreshold current, which is exponentially
dependent on |vG−vS |, begins to dominate, and therefore iD is never
exactly 0.

Consider an inverter with vIN = 0 V. The NMOS transistor is clearly
OFF, and the PMOS is ON so vOUT approaches VDD. The minute
subthreshold current iD that remains in the NMOS transistor �ows
over a voltage drop of nearly VDD, and hence power is dissipated
through the NMOS transistor.

Historically, this source of power was only a tiny fraction of overall
power, so it was not studied in depth. However, in modern CMOS
technologies, especially in technology nodes below 90 nm, these sub-
threshold currents can amount to a signi�cant fraction of total power
consumption. As with short-circuit power, leakage power is rather
di�cult to characterize and to optimize. Subthreshold currents vary
exponentially with |vG − vS |, but they also vary exponentially with
|vD − vS | (for small values of |vD − vS |) and exponentially with tem-
perature (just to make matters interesting)!

Following the previous discussion, we can calculate instantaneous leak-
age power as:

Plk,i(t) = VDDIlk,i(t) , (4.5)

and total instantaneous leakage power as:

Plk,total(t) =
∑
i

Plk,i(t) . (4.6)

However, these equations provide little useful insight, so we will move
on to another topic, for now.

198 Design

Table 4.1. Taxonomy of sources of power consumption

Source Determining Optimization
factors approaches

Switching CL, V
2
DD, architectural and algorithmic

power fCLK , α optimizations,
minimization of circuit
activity,
minimization of capacitance
through placement,
lower VDD

Short-circuit VDD di�cult to optimize;
power (nonlinear), minimization of circuit

fCLK , α, activity,
input rise minimization of input rise
and fall times and fall times

Leakage VDD di�cult to optimize;
power (nonlinear), optimizations mostly at the

temperature, the circuit and device
independent of levels
of fCLK

Power Taxonomy. Table 4.1 presents a list of sources of power con-
sumption, their main dependencies, and potential optimization ap-
proaches.

Figure 4.3 shows examples of power consumption waveforms for a
CMOS inverter whose input switches from 1 to 0 and back to 1. Fig-
ure 4.3 (c) shows the instantaneous current drawn from the power
supply. For most of the duration, the current is small, albeit non-
zero, representing the leakage current. Then, there are two impulses;
the larger represents a switching event where the output rises from 0 V
to VDD, and where the current has three components: the current re-
quired to charge up the capacitor (switching power), the short-circuit
current, and the leakage current. The smaller impulse represents a
switching event where the output falls back to 0 V, and where the
current only has two components: the short-circuit current and the
leakage current.

Low-Power CMOS Design 199

(a)

vIN vOUT

CL

VDD

i

PMOS

NMOS

(b)

vIN

t

(c)

vOUT

t

(d)

i

t

(e)

P

t

Figure 4.3. Power consumption waveforms: (a) CMOS inverter with load
capacitance CL, (b) input vIN , (c) corresponding output
vOUT , (d) current i drawn from power supply, and (e) total
instantaneous power.

4.1.3. Power Optimization

High-level Thoughts on Power Optimization

Now that we have some understanding of the sources of the power
consumption, we can begin a discussion of power optimization ap-
proaches.

It would be enticing to formulate an optimization problem as a search
for the argmin over the set of all potential design speci�cations of total
power consumption of a circuit. Unfortunately, this would be unfea-
sible. Consider the dimensionality of the problem: integrated cir-
cuits contain millions of transistors (projected by the ITRS roadmap
to reach 10 billion transistors for state-of-the-art microprocessors in
2020 [147]), where each transistor can be independently sized for W
and L. Not only that, but the transistor-level netlist for any particu-
lar algorithm is not unique: several architectures can solve the same
problem.

200 Design

(a)

vIN
f(x)

vOUT

CL
(b)

vIN

f(x)

vIN f(x)
vOUT

CL

vOUT

Figure 4.4. Architectural voltage scaling: (a) computational unit f(x),
and (b) two parallel units where supply voltage can be de-
creased.

But that is only the start. Once a particular architecture and circuit
topology are selected, integrated circuit designers must choose the
placement of each transistor in two-dimensional space. The distance
between connected transistors is important: the parasitic capacitance
of a wire is proportional to its length, so minimizing switching power
requires that total wire length be kept to a minimum. There are also
additional constraints: minimizing power consumption does not nec-
essarily produce a design that meets throughput requirements. Joint
optimization is necessary!

For these reasons, global solutions are not usually sought for power
optimization problems. Rather, solutions that satisfy design con-
straints are usually found using heuristic techniques that are often
very problem-speci�c. In the next few subsections, we explore some
approaches at the architectural and circuit levels. We caution the
reader, though, that low-power design is a huge area of active re-
search, and that only a small sample of techniques are explored in
this section.

Leveraging Parallelism to Reduce Switching Power

The second-most-highly cited paper in the history of the IEEE Journal
of Solid-State Circuits was published by Chandrakasan et al. [59] in
1992 and describes a technique known as architectural voltage scaling .
The technique leverages parallelism to reduce switching power.

Consider a circuit that must perform computation f(x) at a rate of

Low-Power CMOS Design 201

one computation every Ts seconds, as illustrated in Figure 4.4 (a).
Suppose this computation is done using a circuit that runs on a supply
voltage of VDD and that it drives a load capacitance CL, and that its
switching activity is α. The switching power of this circuit is given
by:

Pswitch,cct1 = αCLV
2
DD/Ts . (4.7)

Now consider the circuit in Figure 4.4 (b), where two copies of the
circuit have been created, and where computations are alternately
assigned to each unit. In this case, each unit can take twice the amount
of time to complete the calculation. This might seem unwise: more
than twice as many transistors are used, so the circuit obviously costs
more. Ignoring the incremental cost of the multiplexer/demultiplexer,
the switching power is the same:

Pswitch,cct2 = αCLV
2
DD/2Ts + αCLV

2
DD/2Ts = Pswitch,cct1 . (4.8)

However, consider the following proposition. Delay of a logic gate is
inversely proportional to VDD. In other words, since each computa-
tional unit has twice as much time as before to calculate its outputs,
the supply voltage can be reduced by a factor of 2. A revised equation
is:

Pswitch,cct3 = αCLV
2
DD/8Ts + αCLV

2
DD/8Ts = Pswitch,cct1/4 . (4.9)

In other words, switching power has been reduced by a factor of 4! In
reality, this represents a bound on achievable power reduction, since
the extra multiplexer/demultiplexer incur a penalty. Also, the noise
margins for the circuit will be signi�cantly reduced, i.e., the circuit
will not be able to tolerate as much noise and crosstalk.

However, we learn a valuable lesson: exploiting parallelism can be
useful in reducing supply voltage, which leads to an overall decrease
in switching power. This is one of the main reasons for the push
towards multicore and manycore microprocessors [115].

202 Design

Minimizing Supply Voltage

There is also another underlying lesson: optimizing for power con-
sumption and for throughput may be contradictory goals. To this
end, circuit designers have de�ned several useful metrics beyond av-
erage power (P) and delay (D). As its name implies, the power-delay
product (PDP) is the product of P and D, and represents the average
amount of energy E required to perform a computation. However, a
circuit with low PDP (i.e., a very energy-e�cient one) may be very
slow in performing its computation. A metric that is much more
preferable is the energy-delay product (EDP), which is the product of
E and D (or P and D2)

Recall that the switching energy, and hence the PDP for a 0-to-1-
to-0 computation cycle is CLV

2
DD. Lowering VDD thus lowers PDP.

Delay is inversely proportional to VDD and hence EDP is proportional
to VDD; hence, lowering VDD also has a bene�cial e�ect on EDP. A
reasonable question to ask, therefore, is: how low can VDD go? The
answer is not as easy as it might seem.

Lowering Voltage While Meeting Throughput Requirements. The
obvious answer is to choose the minimum value of VDD such that the
circuit is fast enough to meet throughput speci�cations.

As we will see later on, though, in modern CMOS processes there are
huge variations in transistor threshold voltages. These variations lead
to �uctuations in logic gate delays, so we must build in some margin
for error.

On the other hand, there may be an opportunity to do even better.
Consider the circuit in Figure 4.5, where two parallel computation
paths f(a) and g(b) converge onto a third computation block h(c, d).
If we know, for example, that path f(a) takes twice as long to compute
than path g(b), we can lower the supply voltage to the circuit that
computes g(b) in half, saving energy. Indeed, there is value in reducing
the supply voltage to any non-critical computation path.

However, there is a minor issue. A circuit that operates at a certain
value of VDD likes its inputs to be at more or less 0 V for a logic 0

Low-Power CMOS Design 203

f(a)

g(b)

h(c, d)

Figure 4.5. Logic circuit with two paths.

and VDD for a logic 1. A higher voltage for logic 1 could break down
the transistor gates. A lower voltage could be mistakenly interpreted
as a logic 0 (e.g., if a logic gate operating at 1 V supply feeds a
logic 1 to another gate that operates on a 3 V supply, and where
the transition between logic 0 and logic 1 may be around 1.5 V).
The solution is to use extra voltage-shifting circuits at any transition
point. Of course, there is a penalty for using these circuits: extra cost,
delay, and power. Computer-aided design (CAD) tools such as Power
Compiler R© by Synopsys Inc. [309], are good at �nding optimizations.

Subthreshold Logic. For some applications, it is more important to
minimize PDP than EDP. Examples include signal processing for im-
plantable biomedical devices, where signals tend to be slow and where
energy to supply a circuit is scarce. In this case, voltage scaling may
be used quite aggressively, i.e., to a point where the supply voltage is
so low that transistors are never really ON. This is called subthreshold
logic and is currently a very active area of research (see e.g., [247]).

Consider the CMOS inverter of Figure 4.2 (a), and suppose

VDD < min(Vtn, |Vtp|) .

Classically, we would consider that neither transistor can turn ON,
and that the output is therefore left �oating (i.e. unde�ned). Re-
member, though, that transistors never fully shut OFF. Indeed, for
an NMOS transistor operating in the subthreshold region we have:

iD = Ise
(|vG−vS |)/(n

kBT

q)(1− e−(|vD−vS |)/(
kBT

q)) . (4.10)

where Is is a scaling current that is proportional to W/L, kB is the
Boltzmann constant, T is temperature, and n is a unitless constant
that depends on transistor geometry and whose value is often close

204 Design

to 1.5. Several studies (see e.g., [331, 347]) have investigated the
minimum supply voltage VDD,min such that certain design constraints,
e.g., satisfying the regenerative property, are met.

Assuming balanced transistors (where the Is values are equal between
the NMOS and PMOS devices), and setting the PMOS and NMOS
currents to be equal, we �nd that the minimum value of VDD such
that an inverter satis�es the regenerative property is about 2-to-3
times the thermal voltage kBT/q, which is approximately 26 mV at
room temperature. In other words, logic gates should be functional at
supply voltages as low as around 70 mV. However, due to component
variations in modern CMOS processes, larger supplies, e.g. 200-to-300
mV are typically required.

We note in passing the striking similarity between this result and the
one �rst posited by Landauer in 1961 [173], which argues that the
minimum cost of destroying one bit of information is kBT ln(2), but
that there is no known lower bound on the energy cost of reversible
computation. We will come back to this later.

Encoding Schemes that Minimize Switching

In 1995, Stan and Burleson published a paper [285] on bus-invert
coding , a technique that uses encoding to minimize switching activity
on a bus. A bus typically contains a bundle of wires that transmits
n bits per cycle. Since buses tend to run over long distances, their
load capacitance CL tends to be large, and hence there is value in
reducing switching power, even if it means a bit of extra (low-cost)
computation at the sending and receiving ends.

Consider a bus with n parallel wires, as illustrated in Figure 4.6 (a).
Assuming consecutive data are equiprobable and independent, then
the switching activity on each wire is 1/4, and we can expect an
average of n/4 0-to-1 transitions per clock cycle. Assuming a load
capacitance CL, the switching power of the bus is:

Pswitch,bus1 =
n

4
fCLKCLV

2
DD . (4.11)

Low-Power CMOS Design 205

(a)

tr
a
n
sm

it

re
ce
iv
e

(b)

en
co
d
e

tr
a
n
sm

it

invert

re
ce
iv
e

d
ec
o
d
e

Figure 4.6. Bus-invert coding: (a) conventional bus with n wires, and (b)
bus with one additional invert wire to indicate whether data
has been inverter by the encoder.

Now consider the slightly modi�ed bus shown in Figure 4.6 (b). Here,
an extra bus line, called invert, is added. A logic circuit at the trans-
mitter side calculates the number of signal transitions. If it is less
than n/2, then data is sent onto the bus as-is, with invert = 0. If
there are more than n/2 transitions, then each bit is inverted before
it is sent to the bus, with invert = 1, resulting in fewer than n/2
transitions. Note that the invert line consumes switching power.

Using random data, the authors of [285] claim about an 18% reduction
in switching activity for n = 8, and hence a reduction in switching
power.

Clocking: a Huge Consumer of Switching Power

Consider a clock signal that must be distributed throughout an in-
tegrated circuit while minimizing skew (the error in the arrival time
of a clock edge with respect to its intended arrival time). Since the
clock must be sent to every latch and �ip-�op, it is likely a very high-
capacitance wire: the wires are long and there are many transistors
loading it. Furthermore, every single clock cycle, the clock goes from
0 to 1 and back to 0. Therefore the clock signal has α = 1, the high-
est possible value for switching activity. In other words, the switching
power (and yes, the short-circuit power) consumption due to the clock
is enormous, and may in fact represent a sizeable fraction of the over-
all power consumption of a chip, even though the clock itself performs
no actual computation!

206 Design

Some design approaches try to relax the constraints on the clock, or to
eliminate it altogether. Asynchronous processing refers to a broad cat-
egory of computational styles that eliminate a clock and replace it with
local control and handshaking. The main reason that is often cited
for the use of asynchronous techniques is that they eliminate synchro-
nization overhead - extra time that is required to properly set up �ip
�ops and to allow signals to propagate through them [334]. Another
advantage is that the power consumption of the clock is eliminated,
but is replaced by power consumption due to handshaking signals.

A communication processor for error-control coding and decoding that
uses asynchronous circuits is reported in [227]. Based on simulation
results, the circuit is projected to increase throughput by a factor of
approximately 3 and to reduce the energy consumption per processed
bit by a factor of 2 (see Table V in [227]). We caution, however, that
asynchronous circuits tend to be di�cult to design and require a lot
of handcrafting by experienced designers.

Designing for the Worst Case: Bad for Power Consumption

In paragraph Subthreshold Logic (page 203), we explored the use of
low-voltage techniques to lower switching power. Lowering supply
voltages even further may be bene�cial for power consumption, but
can lead to a dramatic increase in the soft failure rate of computations.
For good reason, integrated designers have historically avoided doing
this and have produced circuits that can handle worst-case scenarios.
An active area of research is on the use of fault-tolerant computing
techniques to alleviate these soft errors, while still leading to an overall
reduction in energy consumption. Example papers include [129] and
[339].

4.1.4. Application Example: Baseband
Communication Circuits

Based on the previous subsection, we see that power optimizations are
available at many levels of hierarchy (algorithm, architecture, circuit,

Low-Power CMOS Design 207

device), and that these optimizations often tend to be speci�c to a
particular application domain.

In this subsection, we take a look at an application, namely the design
of energy-e�cient high-throughput forward error control encoders and
decoders, and we see how several power optimization techniques can
be used.

A Brief Historical Overview

In 1948, Claude Shannon published his famous paper on the capac-
ity limit for communication channels that are impaired by random
noise [277]. Shannon's fundamental results have since been used to
design communication equipment, whether information is to be com-
municated in space (wireless, wireline) or in time (memory). On noisy
channels, channel coding can be applied to protect a data transmission
against transmission errors. One form of coding, known as forward
error control (FEC) introduces controlled redundancy that can be
used to recover incorrectly transmitted bits. Over the additive white
Gaussian noise (AWGN) channel, a bound exists on the minimum
signal-to-noise ratio (SNR) required to achieve a given bit error rate
(BER).

Early FEC schemes included Hamming codes [128] and BCH codes
[41]. However, these codes operate several dB away from the Shannon
bound. In other words, much more energy must be expended at the
transmitter that what the Shannon bound postulates. In 1955, Elias
introduced convolutional codes [94], a trellis-structured code; Viterbi
later published a well-known, e�cient maximum-likelihood decoding
algorithm [329]. However, even the most powerful convolutional codes
operate several dB from the Shannon bound.

Low-Density Parity-Check (LDPC) codes were �rst proposed by Gal-
lager in the early 1960s [109], and were the �rst family of error-control
codes to approach the Shannon bound. Unfortunately, maximum like-
lihood decoding techniques are not appropriate to use with LDPC
codes and their close cousins, Turbo codes. One of Gallager's propos-
als was to use an iterative decoding algorithm (in FEC-based systems,

208 Design

decoding is usually a far more complicated process than encoding),
but since iterative decoding requires complicated numerical process-
ing, the �rst practical implementations of LDPC codes did not emerge
until the early 2000s [36], well after Turbo codes had been discovered
by Berrou et al. in 1993 [27], and after several implementations of
Turbo decoders had been reported (see e.g., [28]).

After having been long forgotten, LDPC codes were rediscovered by
MacKay and Neal in the mid-1990s [184], which sparked a signi�cant
research e�ort on the theoretical and implementation fronts. Since
then, LDPC and Turbo codes have been included in several commu-
nication standards, including: IEEE 802.3an (10GBASE-T Ethernet)
[143], IEEE 802.11n (WiFi) [141], IEEE 802.16m (WiMax) [142], and
LTE [1].

Turbo and LDPC decoders use various formulations of the sum-pro-
duct algorithm [170], an iterative algorithm that processes a posteriori
probabilities over graph-based models of a code. Due to their nu-
merically intensive nature and seeming randomness of the underlying
data�ow diagram, iterative decoders often consume signi�cant power,
especially for high-speed implementations. Furthermore, Turbo and
LDPC codes are now being considered for ever-higher throughput ap-
plications such as 40 and 100 Gb/s Ethernet [144], and beyond. Since
switching power and short-circuit power increase with clock frequency,
these new speed requirements will make it extremely di�cult for cir-
cuit designers to produce energy-e�cient decoder circuits.

Energy-e�cient Decoding

Unlike convolutional codes, it is not computationally feasible to per-
form maximum-likelihood decoding for LDPC and Turbo codes. The
trellis structure that underlies convolutional codes is not available.
A maximum-likelihood LDPC decoding algorithm would essentially
have to calculate the distance between a received data vector and
each possible codeword. The LDPC code used in the 10GBASE-T
standard has 21723 codewords, so this approach is clearly unfeasible.

On the other hand, iterative techniques such as the sum-product al-

Low-Power CMOS Design 209

gorithm (SPA) are near-optimal in terms of BER performance. For
brevity, we will not go into the details of the SPA; a good description
can be found in [267]. Instead, we focus on those speci�c aspects of
the algorithm that lend themselves well to energy-e�cient designs. Of
course, the reader is cautioned that only the tip of the iceberg can be
examined!

Exploiting Parallelism. There is a very large degree of parallelism in
the SPA. For instance, an n-bit code with k parity-check constraints
can be implemented using a bank of n variable node processors (VNPs)
and k parity-check node processors (PCNPs), where each processor
performs a simple operation on probabilities or log-likelihood ratios.
During even clock cycles, the n VNPs have no data inter-dependencies
and hence they can perform their operations in parallel. Similarly,
during odd clock cycles, the k PCNPs have no data inter-dependencies
so they also can perform their operations in parallel. To give an
example, the LDPC code in the 10GBASE-T standard has n = 2048
and k = 325.

The di�culty in using this parallelism is that from one clock cycle to
the next, each processor must communicate its outputs to a seemingly
random set of other processors. Since the processors are laid out in
two-dimensional silicon space, there is a certain likelihood that some
messages have to be sent across the entire chip. This is a slow process,
but it is also energy-ine�cient (remember: long wires are bad!).

One of the �rst published LDPC decoder circuits exploited parallelism
[36], and consumed approximately 1.4 nJ per uncoded bit, for n =
1024 and k = 512. The decoder operates at 500 Mb/s (uncoded).
More recently, other decoders have been reported that signi�cantly
improve upon the earlier results [315].

Reducing Switching Activity. Due to the iterative nature of the
SPA, messages that are computed by each computational node tend
to converge over time. This property can be exploited to produce
wires with low switching activity, but a suitable architecture must be
chosen.

Consider Figure 4.7 and suppose the SPA messages in (a) are encoded

210 Design

(a) Sequence: 1, 4, 6, 8, 9, 9, 9, 9

(b) Unidirectional parallel wires: seven switching events

0 0 0 1 1 1 1 1
0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 1 1 1 1

(c) Bidirectional parallel wires: expect 30 switching events

0 X 0 X 1 X 1 X 0 X 0 X 1 X 1 X
0 X 1 X 0 X 0 X 0 X 1 X 0 X 0 X
0 X 1 X 0 X 0 X 0 X 1 X 0 X 0 X
1 X 0 X 1 X 1 X 1 X 0 X 1 X 1 X

(d) Bidirectional parallel wires: 17 switching events

0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

Figure 4.7. Switching activity dependence on architecture: (a) example
sequence, (b) sequence transmitted over four wires, (c) se-
quence transmitted over four wires that transmit messages
in both directions, and where opposite-direction messages are
unknown, and (d) sequence transmitted bit-serially over one
wire.

as unsigned binary sequences. Figure 4.7 (b) shows an example where
4-bit messages are transmitted over a unidirectional bundle of 4 wires.
Since the messages converge, eventually there is no more switching,
and a total of seven switching events occur.

Figure 4.7 (c) shows an example where messages are sent from one
type of node to the other during odd cycles, and backwards during
even cycles. Since consecutive bits are from unrelated messages, we
expect to see 30 switching events. This is a more than 4x increase
even though only twice as much data is sent, so this architecture does
not lead low switching activity.

Finally, Figure 4.7 (d) shows an example where messages are sent bit-
serially. Here, consecutive bits are from di�erent bit positions, so once
again convergence does not lead to lower switching activity. A total of
17 switching events are observed. Although there are a greater number
of switching events, only one wire is used, and many researchers have
investigated these types of decoders due to their compactness [46, 75].

Research on reducing the switching activity of LDPC decoders has

Low-Power CMOS Design 211

been reported in [72, 112, 113].

Controlling Leakage Power. A recent paper by Le Coz et al. [176]
reported an LDPC decoder that was implemented in two di�erent 65
nm technologies: a conventional low-power bulk CMOS (LP CMOS)
process and a low-power partially depleted silicon-on-insulator (LP
PD-SOI) process. Not only was the throughput for the LP PD-SOI de-
coder approximately 20% higher than that of the LP-CMOS decoder,
but at comparable operating frequencies the LP PD-SOI decoder had
lower switching and short-circuit power, and up to 50% lower leakage
power. These results demonstrate convincingly that the choice of im-
plementation (device) technology can also have a signi�cant impact
on power consumption.

4.1.5. How Low Can Power Go?

In this section, we have seen that power consumption optimizations
are available at the algorithmic, architectural, circuit, and device lev-
els. A valid question to ask is: how low can power consumption go?
Are there any known tight lower bounds? The unfortunate answer is
that we simply do not know.

Earlier we alluded to the Landauer bound, which states that zero-
energy computation can only be done using a reversible process, and
that any bit that is destroyed incurs an energy cost of kBT ln(2). We
also reported a strikingly similar result: that the lowest supply voltage
at which a logic gate can operate while still acting as an ampli�er is
only a few times larger than kBT/q. These two results should not
be confused. The latter result does not imply any minimum level of
energy dissipated as heat; in fact the dissipated heat could conceivably
be very large if the load capacitance CL driven by the gate is big.

Furthermore, at room temperature, kBT ln(2) is about 2.9× 10−21J ,
whereas CLV

2
DD at VDD = 70mV and using CL = 1fF is still about

5×10−18J , more or less three orders of magnitude larger. We conclude
that there is a lot of room for improvement. We must also conclude
that processes that rely on switching voltages on capacitances, i.e.,
exactly what CMOS circuits do and will continue to do even in 10

212 Design

nm technologies, will remain far from the Landauer limit unless load
capacitances can be signi�cantly reduced through scaling. Even then,
noise variations in device performance may require supply voltages
that are signi�cantly higher than the minimum.

Clearly, more research is required to achieve a breakthrough in power
consumption. There is possibly a lesson to be learned from the his-
tory of advances in error control coding. More than 40 years sepa-
rated Claude Shannon's 1948 paper on channel capacity and Claude
Berrou's 1993 discovery of capacity-approaching Turbo codes. In the
meantime, several families of codes were proposed. None, other than
Gallager's rapidly forgotten LDPC codes, approached the limit; for
the longest time coding theorists believed that there might be some
other unknown bound on communication. The reality was that Shan-
non's bound was in fact quite close to what was practically achievable,
and the problem just required some thought by curious and creative
people.

Perhaps the same will happen with low-power design. However, it
will require some fundamental research in the �elds of mathematics,
physics, and engineering. We also point to the exciting �eld of re-
versible computing, explored later in this book.

Permuting Variables to Improve Iterative Re-Synthesis 213

4.2. Permuting Variables to Improve

Iterative Re-Synthesis

Petr Fi²er Jan Schmidt

4.2.1. Iterative Logic Synthesis

Basic principles of logic synthesis of Boolean networks have been es-
tablished already in 1960's. The synthesis consists of two subsequent
steps: the technology independent optimization and technology map-
ping.

The technology independent optimization process starts from the ini-
tial circuit description (sum of products, truth table, multi-level net-
work) and tries to generate a minimum multi-level circuit description,
such as a factored form [126], And-Inverter-Graph (AIG) [151, 213]
or a network of BDDs [7, 50]. Then the technology mapping follows
[214, 215, 217, 222].

The synthesis process, where the forms of description of its input and
output are the same (Boolean networks, AIGs, mapped design, lay-
out), is called re-synthesis [216]. Thus, by re-synthesis we understand
a process modifying the combinatorial circuit in some way, while keep-
ing the format of its description.

The academic state-of-the-art logic synthesis tool is ABC [23, 47]
from Berkeley, a successor of SIS [273] and MVSIS [110]. Individ-
ual re-synthesis processes in SIS and ABC are represented by com-
mands. Since the number of available re-synthesis processes is large
(e.g., don't care-based node simpli�cation [266], re-writing [213], re-
factoring, re-substitution [212, 216], it is di�cult to determine a uni-
versal sequence of these commands leading to optimum results. Thus,
di�erent synthesis scripts were proposed (e.g., script.rugged and
script.algebraic in SIS, resyn scripts, choice, and dch in ABC).
These scripts are supposed to produce satisfactory results.

214 Design

The re-synthesis process may be iterated, to further improve the re-
sults. Iteration of re-synthesis was proposed in ABC [23, 47] too. The
authors of ABC suggest repeating the sequence of technology inde-
pendent optimization (e.g., the choice script) followed by technology
mapping several times. Also the synthesis process of SIS can be ef-
�ciently iterated. Iterating the complete synthesis process (i.e., the
technology independent optimization and technology mapping) will
be denoted as high-level iteration, in contrast to low-level iteration
used, e.g., as a part of individual synthesis steps.

The necessary condition for using high-level iteration is that the net-
work structure must not be completely destroyed in the process, e.g.,
by collapsing it into a two-level (SOP) form or turning it into a global
BDD [7], [50]. Then all the e�ort made in previous iteration would
be in vain. Fortunately, this is not the case of the synthesis scripts
mentioned above.

In a typical iterative re-synthesis algorithm, the result quality (area,
delay) gradually improves in time, until it converges to a stable solu-
tion. In an ideal case, it reaches the global optimum. However, the
process usually quickly converges to a local optimum, which is some-
times far from the global one. Thus, introducing some kind of di-
versi�cation, as known in other iterative optimization processes [117,
118, 159], could be bene�cial. One way of �painlessly� introducing
diversity into the iterative process is the topic of this section.

4.2.2. Randomness in Logic Synthesis

Most of synthesis processes in ABC are greedy and not systematic.
They use some heuristic functions to guide the search for the solution.
Even though the heuristic is usually deterministic, there are often
more equally valued choices. In such situations, the �rst occurrence
is taken. Note that these choices are equally valued just at the point
of decision and they will most likely in�uence the subsequent decisions.
Therefore, di�erent choices can produce di�erent results. A typical
example of such a behavior is the topological traversal of AIG nodes in
algorithms employed in ABC, where there are usually many nodes at
the same topological level. Then the node with the lowest ID (the �rst

Permuting Variables to Improve Iterative Re-Synthesis 215

one encountered) is usually taken [212, 213]. Since di�erent orderings
of input and output variables will involve di�erent AIGs or di�erently
arranged networks (in sense of their internal representation), the result
can be signi�cantly in�uenced by the ordering [101].

Because of this observation, di�erent runs of one process with di�erent
variable orderings produce di�erent results. We can take advantage
of this, in order to diversify the search for the solution.

A method of using random permutations of input and output variables
is described in this section. The order of variables is randomly changed
at the beginning of each iteration. Thus, randomness is painlessly
introduced into the process; the very synthesis and optimization al-
gorithms need not be modi�ed.

A similar approach, where randomness was introduced from outside,
was published in [102, 103]. Here randomly extracted large parts of
the circuit are synthesized separately, in an iterative way, too. The
method presented here is a special case of this, therefore it is inferior
to [102, 103], in terms of the result quality. However, extraction of
the parts involves some computational overhead. Since the random
permutations are made in time linear with the number of variables,
no noticeable time overhead is involved. Therefore, the main message
of this section is to document that using random permutations just
pays o�.

4.2.3. The In�uence of the Source File Structure

As it was stated above, we can observe that many synthesis processes
are not immune to the structure of the source �le, like the ordering
of variables [101, 104] and ordering and syntax of HDL statements
[242]. Therefore, di�erent runs of one process with di�erently struc-
tured source �le produce di�erent results. Possible reasons for it will
be discussed in this subsection and some quantitative results will be
given.

Typically, variables in the synthesis algorithms are processed in a
lexicographical order, which is de�ned a priori, usually by their order

216 Design

in the source �le. Then, di�erent orderings of variables can make
heuristic algorithms run di�erently, possibly producing di�erent (but
de�nitely still correct) results. A typical and well known example of
such a behavior are BDDs [7, 50]. Here the ordering of variables is
essential; the BDD size may explode exponentially with the number
of variables under a �bad� ordering [7].

Computing the optimum ordering of variables is NP-hard itself [38],
thus infeasible in practice. Even though there are e�cient heuristics
for determining a possibly good variable ordering [252], they consume
some time, whereas do not guarantee any success, and thus they are
usually not employed in practice. Typically, the default variable or-
dering in the BDD manipulation package CUDD [282] (which is used
in SIS and ABC too) is just equal to the ordering of variables in the
source �le�no reordering technique is employed.

Another, and more important example, is the topological traversal
of nodes in algorithms implemented in ABC and SIS. Even di�erent
orderings of input and output variables will involve di�erent AIGs or
di�erently arranged networks (in sense of their internal representa-
tion), see Subsection 4.2.2.

Also the well-known two-level Boolean minimizer ESPRESSO [48]
(which is used both in SIS and ABC too) is sensitive to the ordering
of variables. There are many essential parts of the overall algorithm,
where decisions are made in a lexicographical way. Some decisions do
not in�uence the result quality; they just can in�uence the run-time
(e.g., in the tautology checking process), some do in�uence the result
as well (e.g., the irredundant phase) [48].

Therefore, even changing the variable ordering in the input �le header
(be it PLA [48] for ESPRESSO or BLIF [22] for ABC) can signi�cantly
a�ect the algorithms runs and induce di�erent results. It will be
documented here, how serious di�erences there are in practice.

Also, some commercial synthesis tools are sensitive even to the order
of nodes (which are coordinate RTL statements). This issue will be
documented here as well, without any attempt for explanation. For
another experimental study of the in�uence of small modi�cations
of the RTL code on the result, see [242].

Permuting Variables to Improve Iterative Re-Synthesis 217

Experimental evaluation of several basic optimization and technology
mapping commands in ABC [23], technology independent optimiza-
tion scripts (which comprise of the basic synthesis commands), and
complete synthesis scripts, targeted to standard cells (the strash;
dch; map script) and look-up tables (4-LUTs), the strash; dch; if;
mfs script, will be presented here. Finally, results of ESPRESSO [48]
and even ESPRESSO-EXACT are shown. The dependency on both
the input and output variables ordering will be studied. No in�uence
of the PLA terms ordering or nodes ordering in BLIF was observed
in ESPRESSO or any of the studied ABC processes.

The ABC experiments were conducted as follows: 228 benchmarks
from the IWLS and LGSynth benchmarks sets [191, 344] were pro-
cessed. Given a benchmark, its inputs and/or outputs were randomly
permuted in the source BLIF �le [22] (or PLA for ESPRESSO), the
synthesis command was executed, and the number of AIG nodes,
gates, LUTs or literals, respectively, was measured. This was repeated
1,000-times for each circuit. In order to compactly represent all the
results, the maximum and average percentages of size di�erences (min-
imum vs. maximum) were computed, over all the 228 circuits. The
results are shown in Tables 4.2, 4.3, and 4.4.

We can observe striking size di�erences (up to more than 95%), es-
pecially for the complete synthesis processes. Even the numbers of
literals obtained by ESPRESSO-EXACT di�er, since ESPRESSO EX-
ACT guarantees minimality of the number of terms only, nothing is
guaranteed for literals.

Distributions of frequencies of occurrence of solutions of a given size
are shown in Figure 4.8 for the apex2 and cordic circuits [344]. The
complete 4-LUT synthesis script (strash; dch; if; mfs) was exe-
cuted, for 100,000 di�erent orderings of variables. The result obtained
using the original ordering is indicated by the bold vertical line.

We can see a Gaussian-like distribution for the apex2 circuit, or actu-
ally, a superposition of two Gaussian distributions. Even the original
ordering of variables falls to the �better� part of the chart.

For the cordic circuit, we can observe two completely isolated regions.
There are apparently two or more classes of similar implementations

218 Design

Table 4.2. The in�uence of permutation of variables � permuted inputs

Process Unit Max. Avg.

Technology balance AIG 7.69% 1.04%

independent rewrite AIG 15.38% 0.68%

optimization: refactor AIG 12.07% 0.36%

commands resub AIG 2.50% 0.06%

Technology resyn2 AIG 44.53% 4.60%

independent resyn3 AIG 13.56% 1.57%

optimization: choice AIG 34.40% 7.17%

scripts dch AIG 60.53% 10.42%

Technology map gates 17.09% 1.35%

mapping fpga LUTs 0.00% 0.00%

if LUTs 0.00% 0.00%

Complete strash; dch; map gates 74.38% 8.67%

synthesis strash; dch; if; mfs LUTs 92.14% 11.50%

Two-level ESPRESSO literals 34.90% 1.51%

optimization ESPRESSO-EXACT literals 0.63% 0.02%

(similar in size, probably similar in structure too), which synthesis
produce depending on the ordering of variables. This phenomenon
is still under examination, reasons for it are disputable. Note that
the apex2 case also shows hints of two structurally di�erent classes of
solutions.

Dependency of the result quality on the ordering of variables was
observed in commercial tools too. Two tools were studied and both
were found to be very sensitive to the structure of the HDL statements.
Surprisingly enough, the tools were also sensitive to a mere reordering
of the gates instantiation, i.e., coordinate statements in the HDL code,
which was not the case of any examined process in ABC.

The experiment started with BLIF [22] descriptions and after per-
muting the variables (and nodes in the BLIF �le), each benchmark
was converted to VHDL and processed by commercial LUT mapping
synthesis. The numbers of 4-LUTs in the results were measured. Sum-

Permuting Variables to Improve Iterative Re-Synthesis 219

0

200

400

600

800

1000

1200

1400

1450 1500 1550 1600 1650 1700 1750

F
re
q
u
en
cy

LUTs

apex2

Original ordering
(1587 LUTs)

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

F
re
q
u
en
cy

LUTs

cordic

Original
ordering

(178 LUTs)

Figure 4.8. Distribution of solutions for the circuits apex2 and cordic.

220 Design

Table 4.3. The in�uence of permutation of variables � permuted outputs

Process Unit Max. Avg.

Technology balance AIG 11.48% 1.60%

independent rewrite AIG 19.30% 2.41%

optimization: refactor AIG 29.73% 2.49%

commands resub AIG 20.83% 1.70%

Technology resyn2 AIG 52.75% 5.58%

independent resyn3 AIG 22.50% 2.74%

optimization: choice AIG 38.14% 7.14%

scripts dch AIG 40.39% 9.33%

Technology map gates 12.28% 1.93%

mapping fpga LUTs 5.26% 0.29%

if LUTs 2.88% 0.24%

Complete strash; dch; map gates 70.47% 10.52%

synthesis strash; dch; if; mfs LUTs 85.42% 12.60%

Two-level ESPRESSO literals 11.82% 1.04%

optimization ESPRESSO-EXACT literals 6.06% 0.23%

mary results of the 228 benchmarks [191, 344] are shown in Table 4.5.
Again, maximum and average di�erences of the obtained LUT counts
are shown.

4.2.4. The Proposed Method

Keeping all the above observations in mind, all the studied algorithms
that claim to be deterministic are not deterministic at all, actually.
The initial variable ordering shall be considered as random as any
other random ordering. But anyway, the algorithms should be de-
signed to succeed under any ordering. Therefore, introducing random
ordering to the synthesis process should not make the process perform
worse. From the search space point of view, the global optimum is
approached from di�erent sides.

Permuting Variables to Improve Iterative Re-Synthesis 221

Table 4.4. The in�uence of permutation of variables � permuted in-
puts & outputs

Process Unit Max. Avg.

Technology balance AIG 12.50% 2.27%

independent rewrite AIG 19.13% 2.78%

optimization: refactor AIG 29.73% 2.79%

commands resub AIG 20.83% 1.71%

Technology resyn2 AIG 52.69% 7.38%

independent resyn3 AIG 22.66% 3.72%

optimization: choice AIG 36.17% 10.13%

scripts dch AIG 60.50% 13.50%

Technology map gates 17.09% 2.84%

mapping fpga LUTs 5.26% 0.29%

if LUTs 2.88% 0.24%

Complete strash; dch; map gates 86.27% 13.40%

synthesis strash; dch; if; mfs LUTs 95.07% 14.81%

Two-level ESPRESSO literals 42.95% 2.11%

optimization ESPRESSO-EXACT literals 6.06% 0.24%

Next we may also think about exploiting these facts to systematically
improve logic synthesis. In particular, in iterative re-synthesis.

The state-of-the-art high-level iterative process, as it can be used,
e.g., in ABC, can be described as follows: �rst, an internal repre-
sentation (SOP, AIG, network of gates, network of BDDs, etc.) for
the technology independent optimization is generated from the ini-
tial description or a mapped network (e.g., from a BLIF �le [22]).
Then a technology independent optimization, followed by technology
mapping is performed. The process is repeated (iterated), until the
stopping condition (number of iterations, result quality, timeout, etc.)
is satis�ed, see Figure 4.9.

The general aim of the process is to transform the initial circuit
description into the target technology (ASIC library gates, FPGA
LUTs), while trying to optimize the quality (size, delay, power con-

222 Design

Table 4.5. The in�uence of permutation of variables and nodes � commer-
cial tools

Tool #1 #2

Permuted inputs Max. 0.00% 43.62%
Avg. 0.00% 4.71%

Permuted outputs Max. 0.00% 52.19%
Avg. 0.00% 5.57%

Permuted nodes Max. 15.76% 38.81%
Avg. 0.21% 3.40%

Permuted all Max. 17.26% 66.62%
Avg. 0.22% 9.23%

sumption) of the solution.

Assuming that each iteration does not deteriorate the solution, the
solution quality improves in time. This needs not be true in practice,
however. For such cases, several options are possible:

1. to hope that the overall process will �recover� from a small de-
terioration,

2. to accept only improving (non-deteriorating) iterations,

3. to record the best solution ever obtained and return it as the
�nal result,

4. combination of 1. and 3.

The �rst and the last options are usually used in practice.

Usually it happens that the iterative process quickly converges to a
stable solution, which does not improve any more in time. In an ideal
case, it is the best possible solution (global optimum). However, this
is usually not the case in practice; such an iterative process tends to
get stuck in a local optimum [102, 104]. Just a slight modi�cation of
the algorithm from Figure 4.9 might help to escape local optima and
thus improve the iterative power of the re-synthesis, see the algorithm

Permuting Variables to Improve Iterative Re-Synthesis 223

do
generate_internal_representation
technology_independent_optimization
technology_mapping

while (!stop)

Figure 4.9. The iterative re-synthesis.

do
randomly_permute_variables
generate_internal_representation
technology_independent_optimization
technology_mapping

while (!stop)

Figure 4.10. The iterative re-synthesis with random permutations.

in Figure 4.10.

Here only the randomly_permute_variables step was added, where
random reordering of variables (input, output, or both) is performed.
This step can be executed in a time linear with the number of vari-
ables, hence it does not bring any signi�cant time overhead.

Note that, unlike in the previous subsection, the reordering of vari-
ables is performed in each iteration, not only at the beginning of the
iterative synthesis process. Therefore, the permutations e�ects may
accumulate.

4.2.5. Experimental Results

Very exhaustive experiments were performed in order to justify the
bene�t of using random permutation of variables in the high-level iter-
ation process. There were processed 490 benchmark circuits, coming
from academic IWLS [344] and LGSynth93 [191] benchmark suites,

224 Design

as well as from large industrial designs from OpenCores [228] (having
up to 100,000 LUTs after synthesis). The 4-LUTs mapping process
was chosen for testing purposes. However, the same behavior can be
expected for any target technology.

The most recent LUT-mapping synthesis script suggested by the au-
thors of ABC was used: strash; dch; if; mfs; print_stats -b
as a reference. Then, the ABC command permute randomly per-
muting both inputs and outputs was employed, yielding the script
permute; strash; dch; if; mfs; print_stats -b. Both scripts
were executed 20-, 100-, 1,000-, and 5,000-times for each circuit, while
the best result ever obtained was recorded and returned as the solu-
tion (this is accomplished by the print_stats -b command). The
numbers of resulting 4-LUTs and the delay (in terms of the length
of the longest path�the circuit levels) were measured.

Results for all the 490 circuits are shown in Figure 4.11 and Fig-
ure 4.12, for area (4-LUTs) and delay (levels), respectively. The
scatter-graphs visualize the relative improvements w.r.t. no permu-
tations used. Positive values indicate an improvement, the negative
ones deterioration. The size of the original mapped circuit, in terms
of 4-LUTs, is indicated on the x-axis. Two border cases, 20 and 5,000
iterations are shown here only. Results of 100 and 1,000 iterations lay
in-between.

We see that a signi�cant improvement can be reached even when the
process is run for 20 iterations only. However, also more deteriorating
cases are observed. When iterated more, the results become more
positive, especially for larger circuits. This is quite obvious, since
these circuits usually converge slower (see Subsection 4.2.6).

Summary statistics are shown in Tables 4.6 and 4.7, for the number of
LUTs and levels, respectively. Only 290 circuits, whose resulting im-
plementation exceeded 100 LUTs, were accounted in these statistics,
to make the practical impact more credible. The minimum, maxi-
mum and average percentage improvements for both area and delay
are given. Also the percentages of cases, where the improvement is
positive (Better in) and negative (Worse in), are shown. The comple-
ment to 100% of the sum of these two values represents cases where
solutions of equal quality (LUTs, levels) were obtained.

Permuting Variables to Improve Iterative Re-Synthesis 225

-60 %

-40 %

-20 %

0 %

20 %

40 %

60 %

1 10 100 1000 10000 100000

Im
p
ro
v
em

en
t
[%

]

LUTs

20 iterations

-60 %

-40 %

-20 %

0 %

20 %

40 %

60 %

1 10 100 1000 10000 100000

Im
p
ro
v
em

en
t
[%

]

LUTs

5000 iterations

Figure 4.11. Area improvements w.r.t the standard iterative process.

226 Design

-60 %

-40 %

-20 %

0 %

20 %

40 %

60 %

1 10 100 1000 10000 100000

Im
p
ro
v
em

en
t
[%

]

LUTs

20 iterations

-60 %

-40 %

-20 %

0 %

20 %

40 %

60 %

1 10 100 1000 10000 100000

Im
p
ro
v
em

en
t
[%

]

LUTs

5000 iterations

Figure 4.12. Delay improvements w.r.t the standard iterative process.

Permuting Variables to Improve Iterative Re-Synthesis 227

Table 4.6. Summary statistics � LUTs

Iterations 20 100 1,000 5,000

Minimum -12.80% -8.20% -5.40% -6.70%
Maximum 46.50% 51.20% 74.60% 75.20%
Average 1.00% 2.10% 4.90% 6.10%

Better in 52.20% 64.90% 81.00% 82.60%
Worse in 39.80% 28.80% 15.20% 13.90

Table 4.7. Summary statistics � levels

Iterations 20 100 1,000 5,000

Minimum -33.30% -33.30% -25.00% -25.00%
Maximum 22.20% 27.30% 40.00% 40.00%
Average 0.60% 0.60% 1.60% 2.50%

Better in 16.30% 13.80% 19.70% 23.90%
Worse in 9.30% 5.50% 6.20% 5.50%

We see that with an increasing number of iterations, the results be-
come more stable and tend to improve, both in area and delay. There
is a positive average improvement obtained even for the 20 iterations
run. Moreover, the percentage of cases where improvement was ob-
tained is less than the percentage of deteriorating cases.

For the 5,000 iterations case the average improvement reaches 6.1% in
area and 2.5% in delay. Also cases, where deterioration was obtained,
are becoming even more rare (13.9% and 5.5% for area and delay,
respectively).

Let us make a theoretical reasoning about the observed facts now.
Assume the worst case, where the number of deteriorating solutions
(w.r.t. the process with no permutations used) of one iteration of
re-synthesis is 50% (equal chance for both the improvement and dete-
rioration). Then, also chances for improvement of the overall process
would be 50%.

However, in Tables 4.6 and 4.7 we see that all the minimum improve-
ments (maximum deteriorations) are much less than 50%, even for 20

228 Design

iterations. From these �gures we can conclude that using permutation
in synthesis always pays o�.

4.2.6. Convergence Analysis

Illustrative examples of convergence curves for the iterative synthesis
with and without using random permutations for two of the LGSynth
benchmark circuits [191] alu4 and apex2 are shown in Figure 4.13.
The progress of the size reduction during 1,000 iterations was traced.

Here we see the experimental justi�cation of the presented theory. In
general, it is not possible to say what method converges faster. Theo-
retically, both should converge equally fast. This can be seen, e.g., in
the alu4 case, where the standard synthesis converges faster at the be-
ginning, but then the convergence slows down. When the re-synthesis
without using permutations converges to a local minimum, the per-
mutations will help to escape it (see the apex2 curves�here the local
minimum was reached around the 300th iteration, whereas the solu-
tion quality still improves after 1,000 iterations when permutations
are used). Similar behavior can be observed for most of the tested
circuits. This con�rms the theory�the permutations do increase the
iterative power and help to keep the convergence longer.

4.2.7. Advantages of Re-Synthesis with Permutations

Experiments presented in this section have shown that the property
of synthesis algorithms documented in Subsection 4.2.3�dependency
on the ordering of variables in the initial description�can be advan-
tageously exploited to increase the iterative power of re-synthesis.

A positive average improvement in quality (both in area and delay)
was obtained. Since introducing the permutations into the iterative
process takes almost no time, it can be concluded that employing
random permutations de�nitely pays o��random permutations help
avoiding local optima. Cases, where worse results are obtained, are
relatively rare.

Permuting Variables to Improve Iterative Re-Synthesis 229

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000

L
U
T
s

Iteration

alu4

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000

L
U
T
s

Iteration

apex2

Standard synthesis
Synthesis with permutations

Standard synthesis
Synthesis with permutations

Figure 4.13. Convergence curves for the circuits alu4 and apex2.

230 Design

Permutation also o�ers a possibility of obtaining many di�erent solu-
tions, possibly having the same quality (under any quality measure).
This feature can be exploited in subsequent synthesis, e.g., a secondary
quality criterion may be applied. More details can be found in [101]
and [104].

Beads and Shapes of Decision Diagrams 231

4.3. Beads and Shapes of Decision

Diagrams

Stanislav Stankovi¢ Jaakko Astola

Radomir S. Stankovi¢

4.3.1. Three Concepts

In this section, we discuss the relationships between three concepts:

1. the decision diagram (DD) as a representation of a discrete func-
tion,

2. the intuitive concept of the shape of the decision diagram, and

3. a special type of character (binary) sequences, the so-called
beads.

In [160], Donald Knuth used beads to describe binary decision dia-
grams (BDDs) and to express the assignment of functions to BDDs
in terms of beads instead of referring to the decomposition rules. In
this section, beads are used to express the shape of decision diagrams
in terms of sets of beads. Relating the set of beads with the shape
of decision diagrams provides a formalism for the application of the
concept of shape as a characteristic of decision diagrams [287], in
a manner di�erent from that when decision diagrams are viewed as
particular data structures. This opens ways to discuss and use the
concept of shape of decision diagrams in certain applications such as,
for instance, implementation of functions by mapping decision dia-
grams to hardware [204], [346], [351], and classi�cation of switching
functions [289].

Beads have been used with binary sequences, but the concept gen-
eralizes naturally to sequences over arbitrary alphabets. We discuss
the use of beads for various word-level decision diagrams including,

232 Design

for example, multi-terminal binary decision diagrams (MTBDDs) and
Walsh decision diagrams (WDDs) [263] that will be discussed in this
section.

As it is a customary practice in dealing with decision diagrams, except
when discussing their optimization by permutation of variables, we
assume that the order of variables in functions to be represented is
�xed. This is especially understandable since in this section we are
discussing applications of the decision diagrams to the classi�cation
of switching functions. Thus, we consider the set of all switching
functions for a given number of variables, and the permutation of
variables is out of interest since it converts a function into another
function in the same set. For the considered applications, we assume
that we are working with reduced decision diagrams.

4.3.2. Basic Concepts: Beads, Switching Functions,
and Decision Diagrams

Switching Functions

A switching function of n variables is de�ned as a mapping:

f : {0, 1}n → {0, 1} ,

and can be speci�ed by the truth-vector listing all the values that f
takes for di�erent inputs usually arranged in the lexicographic order.
Thus, the switching function f is speci�ed by the truth-vector:

F = [f(0, 0, . . . , 0), f(0, 0, . . . , 1), . . . , f(1, 1, . . . , 1)]T .

The truth-vector of a function of n variables has the form:

F = [F0,F1]T .

where F0 and F1 are the truth-vectors of the functions:

f0 = f(0, x2, . . . , xn) , and

f1 = f(1, x2, . . . , xn) .

Beads and Shapes of Decision Diagrams 233

These functions are called the subfunctions of f . In general, a func-
tion of n variables has 2k subfunctions of order (n − k) for k ∈
{0, 1, . . . , n}, corresponding to 2k possible values for the �rst k vari-
ables (x1, x2, . . . , xk). Many of these subfunctions can be identical or
constant subfunctions. It should be noted that a reduced decision dia-
gram gives a decomposition of the function into distinct subfunctions.

Beads

When a switching function f of n-variables is viewed as a binary se-
quence of length 2n, then there are direct links between so called beads
of the sequence, subfunctions of f , and the corresponding subdiagrams
in the decision diagram for f .

De�nition 4.13. (Bead [160]) A binary sequence of length 2n is called
a bead of order n if it cannot be written in the form αα, where α is
a binary sequence of length 2n−1, otherwise the sequence is called a
square of order n.

In a bead, the left and right subsequences of length 2n−1 are beads or
squares of order (n − 1). Each sub-bead can be split into sub-beads
or sub-squares of smaller orders. The beads of the smallest order 0
are singleton sequences (0) and (1). The set of all beads derived from
a switching function f is denoted by B(f).

Example 4.5. Consider the switching function:

f(x1, x2, x3) = x3 ⊕ x1x2 ⊕ x1x2x3

whose truth-vector is F = [01101101]T . The corresponding set of beads
of f is

B(f) = {(01101101), (0110), (1101), (01), (10), (0), (1)} .

The �rst part of the second bead of order 2 is a square (11) and there-
fore does not appear in B(f).

A square of order k consists of at least one bead of order l ≤ k − 1.

234 Design

Example 4.6. The square (01010101) of order 3 consists of the beads
(01) of order 1.

In general there are 22
n

switching functions of n variables, and 22
n−1

of them are squares. Therefore, there are 22
n − 22

n−1

beads of order
n. The beads of a switching function are subfunctions that happen to
be beads [160]. In other words, a bead of order k is a subfunction of
k variables whose truth-vector is not a square, i.e., F0 6= F1.

There can be subfunctions that are squares, and a particular example
are the constant subfunctions, i.e., the subfunctions taking always
either the value 0 or 1 for any assignment of inputs.

Decision Diagrams

Binary decision diagrams (BDDs) can be rigorously de�ned as func-
tion graphs [51]. Here we use the intuitive concept where the decision
diagram of a function is de�ned as the graph obtained by applying
reduction rules to the decision tree that corresponds to the truth ta-
ble of the function. The following example illustrates some features
of BDDs that will be used later.

S

S S

S

0 1

x1 x1

x2

x2 x2

x2

x3 x3

f1

S

S S

S

0 1

x1 x1

x2

x2 x2

x2
x3 x3

f2 f1 f2

(a) (b)

Figure 4.14. BDDs for functions f1 and f2 in Example 4.7.

Example 4.7. Consider BDDs in Figure 4.14 (a) for two functions
f1 and f2. The BDD(f1) has three paths from the root node to the
constant node 1 (1-paths) and by multiplying labels at the edges along

Beads and Shapes of Decision Diagrams 235

these paths, we see that it represents the function:

f1 = x1x2x3 ⊕ x1x2x3 ⊕ x1x2 ,

whose truth-vector is F1 = [0, 0, 0, 1, 0, 1, 1, 1]T . The BDD(f2) has
also three 1-paths, however, two paths are of length 2 compared with
a single path of the same length in the BDD(f1), and represents the
function:

f2 = x1x2 ⊕ x1x2x3 ⊕ x1x2 ,
whose truth-vector is F1 = [0, 0, 1, 1, 0, 1, 1, 1]T . Figure 4.14 (b) il-
lustrates the intuitive interpretation of the shape of BDDs for these
functions.

4.3.3. Beads and Decision Diagrams

It is shown in [160] that there is a direct correspondence between
the set B(f) for a switching function f and nodes in its BDD. This
consideration can be further elaborated as follows.

The number of elements in B(f) is equal to the size (the number of
nodes) of the BDD(f). Each element is represented by a node in the
BDD. The order of a bead determines the level at which the node
corresponding to the bead is positioned.

The structure of the bead (its left and right half) determines the out-
going edges of this node. A bead of the form α = βγ of order k
consists of two parts β and γ of orders (k − 1). If both β and γ are
beads, the left and the right outgoing edges of the node representing
α point to the nodes at the level (k− 1) representing β and γ, respec-
tively. If β or γ is a square, the corresponding edge points to the node
at the level (k − l) representing the bead of order l contained in the
square. If β or γ are constant sequences (all their elements are equal
to either 0 or 1), which means they are a particular square of order
(k− l), the corresponding path ends in the constant node. These rules
for establishing edges between nodes have to be ful�lled in a BDD.

Being elements of a set, the beads in B(f) are distinct. Each element
in B(f) corresponds to a node which is the root node of a subdiagram

236 Design

Table 4.8. Sets of beads for functions in Example 4.8

Level B(f1) B(f2) Order of the bead

1 (00010111) (00110111) 3
2 (0001), (0111) (0011), (0111) 2
3 (01) (01) 1
4 (0), (1) (0), (1) 0

in the BDD(f) and represents a distinct subfunction of f . Identical
subfunctions are represented by isomorphic subdiagrams, and a single
copy of them is retained in the diagram. In f , there can be subfunc-
tions that are represented by squares, however, as noticed above, each
square contains at least a single bead. This bead is an element of
B(f), and the repeated copies of it in the square are removed and
a path of length longer than 1 appears. Since the BDD(f) is ob-
tained by the recursive decomposition of f into distinct subfunctions
(equivalently sub-beads), the outgoing edges of each node point to the
sub-beads of the bead represented by the considered node. Therefore,
the set of beads uniquely determines the function and, thus, also the
shape of the BDD for a given function f .

Example 4.8. Table 4.8 shows the sets B(f1) and B(f2) of beads
of functions f1 and f2 discussed in Example 4.7. Beads are ordered
by their orders, i.e., by the levels in the BDDs. In B(f1), there is a
single bead of order 1, (01), which means that the node representing
it is shared between nodes representing beads of order 2 at the level
2. This determines that an edge of these nodes points to the node
representing the bead (01). Since the �rst half of the bead (0001) is
a square of order 1, (00) and does not produce another bead of order
1, the other edge of this node points to the node for the bead (0), i.e.,
the constant node 0. It is similar for the right half of the bead (0111),
since it is the square (11) of order 1 and the other edge of this node
points to the constant node 1.

In B(f2), there are also two beads of order 2, and a bead of order 1.
The �rst bead of order 2 consists of two squares of order 1, (00) and
(11) and, therefore, the bead (01) cannot be shared and the outgoing
edges of this node point to the constant nodes. The right half of the
bead (0111) is a square (11) and it follows that the corresponding edge

Beads and Shapes of Decision Diagrams 237

Table 4.9. Sets of beads for functions in Example 4.9

Level B(fAND) B(fOR) B(fEXOR) B(fe)

1 (000000001) (01111111) (01101001) (00010010)
2 (0001) (0111) (0110), (1001) (0001), (0010)
3 (01) (01) (01), (10) (01), (10)
4 (0), (1) (0), (1) (0), (1) (0), (1)

S

S

S

0 1

x1x1

x2
x2

x3

x3

fAND

S

S

S

0 1

x1x1

x2
x2

x3
x3

fOR

S

S S

S S

0 1

x1x1

x2

x2

x2

x2

x3

x3

x3

x3

fEXOR

S

S S

S S

0 1

x1x1

x2x2 x2x2

x3

x3

x3

x3

fe

Figure 4.15. BDDs for functions fAND, fOR, fEXOR and fe in Example 4.9.

points to the constant node 1. The other edge points to the node
representing the bead (01).

The following example presents bead sets for several characteristic
BDDs.

Example 4.9. Figure 4.15 shows BDDs of the functions

fAND = x1x2x3 ,

fOR = x1 ∨ x2 ∨ x3 ,
fEXOR = x1 ⊕ x2 ⊕ x3 ,

fe = x1x2x3 ⊕ x1x2x3 .

Table 4.9 shows the bead sets of these functions.

Example 4.10. Consider three variable switching functions:

f1 = x1x2 ⊕ x1x2x3 ⊕ x1x2x3 ⊕ x1x2x3 ,
f2 = x1x2 ⊕ x1x2x3 ⊕ x1x2x3 ⊕ x1x2x3 , and
f3 = x1x2 ⊕ x1x2x3 ⊕ x1x2x3 ⊕ x1x2x3 ,

238 Design

Table 4.10. Sets of beads for functions in Example 4.10

Level B(f1) B(f2) B(f3)

1 (01101101) (11010110) (10011101)
2 (0110), (1101) (1101), (0110) (1001), (1101)
3 (01), (10) (01), (10) (10), (01)
4 (0), (1) (0), (1) (0), (1)

speci�ed also by the truth-vectors:

F1 = [01101101]T ,

F2 = [11010110]T , and

F3 = [10011101]T .

As evident from Figure 4.16, the BDD(f1), BDD(f2), and BDD(f3)
have the same shape, while B(f1), B(f2), and B(f3) are di�erent as
shown in Table 4.10. The sets B(f1) and B(f2) di�er just in the �rst
elements, while there is a larger di�erence with respect to B(f3), al-
though these di�erent functions are, however, mutually related. Their
BDDs di�er in the labels at the edges, which is consistent with the
intuitive understanding of the concept of the shape of a decision dia-
gram. In BDD(f2), permuted are labels at the edges of the node for
x1, which corresponds to the complementing of x1 in f1. In BDD(f3),
permuted are labels at the edges corresponding to the left node for x2.
This corresponds to the complementing of x2 in the right half of the
truth-vector of f1, but not in the left half. The example illustrates
that we can perform certain global (over the entire truth-vector) and
local (over sub-vectors) transformations in a given function to produce
new functions that will have decision diagrams of the same shape. It
should be noticed that these transformations are di�erent from trans-
formations used in other approaches to the classi�cation of switching
functions and related applications in the implementation of switching
functions [77, 84, 319, 351].

Intuitively we understand that two decision diagrams have the same
shape if their underlying directed graphs are isomorphic and the nodes
that correspond to each other under this isomorphism are on the same
levels. This means that as function graphs [51] the diagrams are
isomorphic without regard to the order of variables and assignment of

Beads and Shapes of Decision Diagrams 239

S

S S

S S

0 1

x1x1

x2
x2 x2 x2

x3
x3

x3
x3

f1

S

S S

S S

0 1

x1x1

x2
x2 x2 x2

x3
x3

x3
x3

f2

S

S S

S S

0 1

x1x1

x2

x2 x2 x2

x3
x3

x3
x3

f3

(a)

f1 f2 f3

(b)

Figure 4.16. BDDs for functions f1, f2, and f3 in Example 4.10.

variable values to edge labels.

The truth table uniquely determines the decision diagram of a function
and thus also the sub-beads of each order. The edges of the BDD can
be also read directly from the set of beads of order 0, 1, . . . , n of the
truth table. This means that if we change the truth table so that the
bead set with its interconnection structure does not change, then the
shape of the decision diagram also remains the same. In the following,
we use this to de�ne the shape of a decision diagram by de�ning
operations on bead sets such that maintain the bead structure. The
di�erent shapes are thus de�ned as the invariance classes under these
operations.

De�nition 4.14. Let α = βγ be a bead of order k, where β and γ
are beads or squares of order (k − 1). Then, SW (α) = γβ is the bead
obtained by the switch operation SW from α.

240 Design

De�nition 4.15. Let B be a bead set and α = βγ a bead of order
k. Then, SWk(α,B) is the bead set obtained from B by applying the
switch operation to α, to SW (α), and also to all sub-beads equal to α
and SW (α) in beads of order k + 1, . . . , n.

De�nition 4.16. Two functions f1 and f2 have decision diagrams
of the same shape if B(f2) can be obtained form B(f1) by applying a
sequence of operations SWl1 , SWl2 , . . ., where li ≤ lj if i ≤ j.

Example 4.11. In Example 4.10 the sets of beads B(f1) and B(f2)
are equal up to the switch of beads at the level 2, which also requires
the switch of the corresponding sub-beads of beads at the level 1. It is
similar for the set of beads B(f3).

4.3.4. Generalizations to Word-level Decision
Diagrams

The notion of beads can be further generalized by replacing the bi-
nary sequences with sequences of integers. This allows us to extend
the previous discussion to multi-terminal binary decision diagrams
(MTBDDs) [263]. Recall that MTBDDs are a generalization of BDDs
by allowing integers as values of constant nodes instead logic values 0
and 1 [62]. Therefore, the consideration of beads for integer sequences
has the same justi�cation as the generalization of BDDs into MTB-
DDs and, since generalization is done in the same way as for the values
of constant nodes in BDDs and MTBDDs, all conclusions about beads
and BDDs can be extended to beads for integer sequences and MTB-
DDs. This generalization is not trivial since allows representation by
decision diagrams of multi-output functions and further introduction
of various other word-level decision diagrams [263].

The De�nition 4.13 directly applies to integer sequences with a single
di�erence that entries of beads are integers instead of logic values 0
and 1. The analysis analogous to that in Example 4.8 can be per-
formed in the case of integer valued functions represented by MTB-
DDs, as illustrated in Example 4.12.

Algorithm 4.1 can be used to check if two functions f1(x1, x2, . . . , xn)

Beads and Shapes of Decision Diagrams 241

S

S S

S

0 1 2

x1x1

x2

x2 x2

x2

x3 x3

f1

S

S S

S

0 1 2

x1x1

x2 x2

x2 x2

x3 x3

f2

S

S S

S

0 1 2

x1x1

x2 x2

x2 x2

x3
x3

f3

S

S S

S

0 1 2

x1x1

x2
x2

x2 x2

x3
x3

f4

Figure 4.17. MTBDDs for functions f1, f2, f3, and f4 in Example 4.12.

Table 4.11. Sets of integer beads for functions in Example 4.12

Level B(f1) B(f2) B(f3) B(f4)

1 (00010122) (00110012) (00110222) (00221222)
2 (0001), (0122) (0011), (0012) (0011), (0222) (0022), (1222)
3 (01) (12) (02) (12)
4 (0), (1), (2) (0), (1), (2) (0), (1), (2) (0), (1), (2)

and f2(x1, x2, . . . , xn) have decision diagrams of the same shape.

Example 4.12. Consider the MTBDDs in Figure 4.17 representing
the integer-valued functions

f1 = x1x2x3 + x1x2x3 + 2x1x2 ,

f2 = x1x2 + x1x2x3 + 2x1x2x3 ,

f3 = x1x2 + 2x1x2x3 + 2x1x2 ,

f4 = 2x1x2 + x1x2x3 + 2x1x2 + 2x1x2x3 .

Table 4.11 shows the sets of integer beads for these functions. We see
that these functions have di�erent shapes and di�erent sets of integer
beads. The considerations about sharing nodes and interconnections
analogous to that in Example 4.8 obviously hold also in the case of
integer beads. The sets of beads cannot be reduced to each other by the
switch operation over integer beads.

Algorithm 4.1 sets mathematical foundations for the comparison of
shapes of decision diagrams, since expresses in terms of the switch
operation transformations over decision diagrams that preserve the

242 Design

Algorithm 4.1 Equal shape

Require: functions f1 and f2
Ensure: Are the shapes of f1 and f2 are equal to each other?
1: The distinct values of functions f1 and f2 can be taken as encoded

by elements of the same set of distinct symbols, as for instance a,
b, c, etc.

2: Beads in B(f1) and B(f2) are checked from the level (n + 1)
for constant nodes up to the root node at the level 1. Constant
nodes must agree or decision diagrams are immediately of di�erent
shape.

3: If at a level beads do not agree, perform the operation switch
as speci�ed in De�nition 4.15 to resolve the disagreement. The
switch is to be done simultaneously everywhere at the upper levels.
If the switch operation cannot resolve the disagreement, conclude
that BDDs have di�erent shapes.

4: The comparison of beads per levels is done until the root node is
reached.

shape. From the implementation point of view, Algorithm 4.1 it is
useful to notice the following. Beads are actually distinct subfunc-
tions in a decision diagram which are represented by subdiagrams. In
other words, from a decision diagram, we read beads of the required
order by simply traversing the subdiagrams rooted at the correspond-
ing levels. Therefore, checking of equality of shapes is performed
over decision diagrams by traversing them, and no extra memory is
required. Furthermore, by referring to usual programming implemen-
tations of decision diagrams, checking the equivalence of shapes of two
BDDs reduces to the comparison of the sets of identi�cators ignoring
their order in the linked lists of records representing the nodes in the
decision diagrams [77], [89], [125], [199].

4.3.5. Beads and the Classi�cation in Terms of
Walsh decision diagrams

The application of integer beads to problems of classi�cation in terms
of shapes of Walsh decision diagrams (WDD) [263], is illustrated by
the following example.

Beads and Shapes of Decision Diagrams 243

Table 4.12. LP-representative functions for n = 3

LP-representative

F1 = [0, 0, 0, 0, 0, 0, 0, 0]T

F2 = [0, 0, 0, 0, 0, 0, 0, 1]T

F3 = [0, 0, 0, 0, 0, 1, 1, 0]T

F4 = [0, 0, 0, 1, 0, 1, 1, 0]T

F5 = [0, 0, 0, 1, 1, 0, 0, 0]T

F6 = [0, 1, 1, 0, 1, 0, 1, 1]T

Table 4.13. Walsh spectra of LP-representative functions for n = 3

Walsh spectrum Encoding

Sf1 = [8, 0, 0, 0, 0, 0, 0, 0]T Sf1 = [a, b, b, b, b, b, b, b]T

Sf2 = [6, 2, 2,−2, 2,−2,−2, 2]T Sf2 = [a, b, b, c, b, c, c, b]T

Sf3 = [4, 0, 0, 4, 4, 0, 0,−4]T Sf3 = [c, b, b, c, c, b, b, a]T

Sf4 = [2, 2, 2, 2, 2, 2, 2,−6]T Sf4 = [b, b, b, b, b, b, b, a]T

Sf5 = [4, 0, 0,−4, 0, 4, 4, 0]T Sf5 = [c, b, b, a, b, c, c, b]T

Sf6 = [−2,−2, 2, 2, 2, 2,−2, 6]T Sf6 = [c, c, b, b, b, b, c, a]T

Example 4.13. In [162], [161], it is shown that for n = 3 there
are six LP-representative functions. These representatives can be rep-
resented by WDDs of three di�erent shapes [289]. Table 4.12 and
Table 4.13 show the LP-representative functions for n = 3 and their
Walsh spectra. To show that functions f1 and f4 can be represented
by WDDs of the same shape, we �rst do encoding (8, 0)→ (−6, 2) and
then permute the labels at the outgoing edges of all the nodes in the
WDD for f1 which reverses the order of elements in the spectrum.

The functions f2, f3, and f5 can also be represented by the WDD of the
same shape. In [289], this is demonstrated using linear combinations
of variables. The same can be shown in terms of integer beads by
showing that the set of beads for the Walsh spectra of the functions f2,
f3, and f5 can be converted each to other by the switch operation over
the integer beads.

Table 4.14 shows the sets of beads for the Walsh spectra of f2, f3,
and f5 under encodings (6, 2,−2) → (a, b, c) for f2, and (−4, 0, 4) →
(a, b, c), f3 and f5.

244 Design

Table 4.14. Sets of integer beads for Wash spectra of functions f2, f3, and
f5 in Example 4.13

Level B(Sf2) B(Sf3) B(Sf5)

1 (abbcbccb) (cbbccbba) (cbbabccb)

2 (abbc), (bccb) (cbbc), (cbba) (cbba), (bccb)

3 (ab), (bc), (cb) (cb), (bc), (ba) (cb), (bc), (ba)

4 (a), (b), (c) (a), (b), (c) (a), (b), (c)

We compare B(Sf5) and B(Sf3) to show that f3 and f5 can be repre-
sented by the WDDs of the same shape. At levels 4 and 3, there are the
same subsets of beads of order 0 and 1, respectively. At the level 3, we
perform switch(bccb) = (cbbc), which requires to do the same in the
right sub-bead at the level 1. Thus, at the level 2, there are now beads
(cbba) and (cbbc), and at the level 1, the bead (cbbacbbc). Thus, we
perform switch(cbbacbbc) = (cbbccbba), which shows that after these
transformations B(Sf5) is converted into B(Sf3), and it follows that
f3 and f5 can be represented by the WDDs of the same shape.

To show that f2 and f3 can be represented by the WDDs of the same
shape, we should show that B(Sf2) and B(Sf3) can be converted to
each other by the operation switch over beads as follows. For clarity
of the presentation, we describe the procedure step by step, although
operation switch requires that some transformations have to be done
simultaneously.

At the level 4, there are equal beads, but at the level 3 there is (ab) in
B(Sf2) and (ba) in B(Sf3). Thus, we perform switch(ba) = (ab) at
this level and also in the beads at upper levels where (ba) appears as
a sub-bead. This produces

B(Sf3)1 =

(cbbccbab)

(cbbc), (cbab)
(cb), (bc), (ab)

(a), (b), (c)

 .

At the level 3, we now perform switch(cb) = (bc), and do the same
consistently at all the levels where (cb) appears as a sub-bead. We
underline the newly produced sub-beads (bc) to note the di�erence with

Beads and Shapes of Decision Diagrams 245

the existing sub-beads of the same form. Thus, switch(cb) = (bc)
produces

B(Sf3)2 =

(bcbcbcab)

(bcbc), (bcab)
(bc), (bc), (ab)

(a), (b), (c)

 .

Now, we perform switch(bc) = (cb) at all the levels, whenever (bc) ap-
pears, except the newly produced sub-beads, since as required in the def-
inition of the operation switch switch(bc) = (cb) should be performed
simultaneously with switch(cb) = (bc) and cannot be preformed over
sub-beads produced in the same step. The produced set of beads is

B(Sf3)3 =

(bccbbcab)

(bccb), (bcab)
(bc), (cb), (ab)

(a), (b), (c)

 .

Now, we process the level 2 by performing switch(bcab) = (abbc) and
the corresponding operation over sub-beads at the level 1. This pro-
duces

B(Sf3)4 =

(bccbabbc)

(bccb), (abbc)
(bc), (cb), (ab)

(a), (b), (c)

 .

If we now process beads at the level 1 by performing switch(bccbabbc) =
(abbcbccb), if follows that the produced set of beads is equal to that for
B(Sf2) and, therefore, f2 and f3 can be represented by the WDDs of
the same shape.

This example illustrated that the De�nition 4.16 imply the following
observation.

Two functions f1 and f2 are WDD-equivalent if the set B(f2) of in-
teger beads of the Walsh spectrum for f2 can be obtained from the set
B(f1) of integer beads of the Walsh spectrum for f1 by applying a
sequence of operations SWl1 , SWl2 , . . ., where li ≤ lj if i ≤ j.

246 Design

4.3.6. Approaches for Classi�cation

When switching functions are viewed as binary sequences of length 2n,
where n is the number of variables, their subfunctions can be viewed
as sub-beads. In decision diagrams, each non-terminal node repre-
sents a subfunction in the represented function and there cannot be
isomorphic subdiagrams due to the reduction rules. From this, it fol-
lows that the set of all beads for a given function f directly describes
the shape of the decision diagram for f . We extend the notion of
beads to integer-valued sequences in order to characterize the shape
of word-level decision diagrams. This observation about relationships
between the sets of beads and the shape of decision diagrams is useful
in classi�cation of switching functions by shapes of decision diagrams.
It is also useful in implementation of switching functions by mapping
decision diagrams into various technological platforms. The same con-
siderations can be extended to other classes of discrete functions and
the corresponding decision diagrams.

Polynomial Expansion of Symmetric Functions 247

4.4. Polynomial Expansion of Symmetric

Boolean Functions

Danila A. Gorodecky Valery P. Suprun

4.4.1. Polynomials of Boolean Functions

Polynomial expansion of Boolean functions is among the most complex
problems of discrete mathematics [238]. The polynomial expansion of
Boolean functions is used in the design of devices based upon on �eld-
programmable gate array (FPGA) [259, 261] and in cryptography
[245].

Reed-Muller polynomials are important forms of polynomial repre-
sentations of Boolean functions F = F (x1, x2, . . . , xn) of the n vari-
ables, where each variable appears either complemented or not com-
plemented, but never in the both forms.

Positive polarity Reed-Muller polynomial (all variables are not com-
plemented) is called as the Zhegalkin polynomial and is referred as
P (F). Negative polarity Reed-Muller polynomial (all variables are
complemented) is referred as Q(F).

There are many techniques for generation of the polynomial expan-
sions for Boolean functions represented in a truth table [238, 255, 305]
and in a disjunctive normal form (DNF) [307].

The most known methods generate polynomial from based on the
truth table of the function F = F (x) with x = (x1, x2, . . . , xn), hence,
the complexity of the methods is O(2n).

Due to high computational complexity to generate of the polynomial
P (F) for an arbitrary Boolean function F = F (x) the universal meth-
ods of the polynomial expansion are not e�ective. Hence, development
of the methods for restricted classes of Boolean functions is more ef-
fective along with universal methods. One of these classes consist of

248 Design

symmetric Boolean functions (SBF).

The complexity to generate the Zhegalkin polynomial expansion using
the method from [308] for SBF of n variables is equal to O(n2).

The polynomial expansions of an arbitrary SBF and an elementary
SBF (ESBF) will be discussed in this section.

4.4.2. Main De�nitions

An arbitrary Boolean function F = F (x) of the n variables, where
x = (x1, x2, . . . , xn), with unchanged value after swapping any pair
of variables xi and xj , where i 6= j and i, j = 1, 2, . . . , n, is called
symmetric Boolean function (SBF).

SBF F of the n variables is characterized by the set of valued numbers
A(F) = {a1, a2, . . . , ar}. The function F is equal 1 if and only if a set
of variables x1, x2, . . . , xn has exactly ai values 1, where:

0 ≤ ai ≤ n, 1 ≤ i ≤ r, and 1 ≤ r ≤ n+ 1 .

These SBFs F are referred as F = F a1,a2,...,arn (x). If r = 1, then a
function F = F an (x) is called elementary SBF (ESBF). If F ≡ 0, then
A(F) = ∅.

There is a one-to-one correspondence between the SBF F and the
(n + 1)−bits binary code π(F) = (π0, π1, . . . , πn) the (carrier vector
[56] or the reduced truth vector [262]), where the i-th entry πi is a
value of the function F with the i values 1 where 0 ≤ i ≤ n. In other
words, πi = 1 if and only if the i is the valued number for the SBF F .

The following formula is true for an arbitrary SBF F :

F (x) =

n∨
i=0

πiF
i
n(x) =

n⊕
i=0

πiF
i
n(x) . (4.12)

SBF F = F (x) of the n variables is called the positive polarity
polynomial-unate SBF (homogeneous SBF [45]), if the Zhegalkin poly-
nomial form P (F) contains

(
n
i

)
i−rank products with the i positive

Polynomial Expansion of Symmetric Functions 249

literals, where 0 ≤ i ≤ n. This function is referred as F = Ein(x).
Hence, it follows:

E0
n(x) = 1 ,

E1
n(x) = x1 ⊕ x2 ⊕ . . .⊕ xn ,

E2
n(x) = x1x2 ⊕ . . .⊕ x1xn ⊕ . . .⊕ xn−1xn ,

...

Enn(x) = x1x2 . . . xn .

SBF F = F (x) of the n variables is called as the negative polarity
polynomial-unate function, if the polynomial form Q(F) contains

(
n
i

)
i−rank products with the i negative literals, where 0 ≤ i ≤ n. This
function is referred as F = Gin(x). Hence, it follows:

G0
n(x) = 1 ,

G1
n(x) = x1 ⊕ x2 ⊕ . . .⊕ xn ,

G2
n(x) = x1x2 ⊕ . . .⊕ x1xn ⊕ . . .⊕ xn−1xn ,

...

Gnn(x) = x1x2 . . . xn .

As shown in [308] the polynomial forms P (F) and Q(F) of SBF F
can be represented as:

P (F) = γ0 ⊕ γ1(x1 ⊕ x2 ⊕ . . .⊕ xn)⊕
γ2(x1x2 ⊕ . . .⊕ x1xn ⊕ . . .⊕ xn−1xn)⊕ . . .⊕
γnx1x2 . . . xn , (4.13)

and

Q(F) =µ0 ⊕ µ1(x1 ⊕ x2 ⊕ . . .⊕ xn)⊕
µ2(x1x2 ⊕ . . .⊕ x1xn ⊕ . . .⊕ xn−1xn)⊕ . . .⊕
µnx1x2 . . . xn , (4.14)

where γ(F) = (γ0, γ1, γ2, . . . , γn) (reduced Zhegalkin (Reed-Muller)
spectrum of SBF) and µ(F) = (µ0, µ1, µ2, . . . , µn) (the negative re-
duced Reed-Muller spectrum of SBF) are binary vectors of the coe�-
cients for P (F) and Q(F) polynomials, respectively.

250 Design

In accordance with the de�nitions of the functions F = Ein(x) and
F = Gin(x), the formulas (4.13) and (4.14) may be represented as
follows:

P (F) =

n⊕
i=0

γiE
i
n(x) , (4.15)

and

Q(F) =

n⊕
i=0

µiG
i
n(x) . (4.16)

According to the equations (4.15) and (4.16) the length (number of
products) of polynomials P (F) and Q(F) is calculated as follows:

d(P (F)) =

n∑
i=0

γi

(
n

i

)
, (4.17)

and

d(Q(F)) =

n∑
i=0

µi

(
n

i

)
. (4.18)

The polynomial expansion method of the SBF F = F (x) is proposed
in [308]. The essence of the method is to transform the reduced truth
vector π(F) to the reduced Zhegalkin spectrum γ(F) and to the neg-
ative reduced Reed-Muller spectrum µ(F) of polynomials P (F) and
Q(F), respectively. The method may be used to solve the reverse task,
i.e., the transformation of the reduced Zhegalkin spectrum γ(F) and
the negative reduced Reed-Muller spectrum µ(F) to the reduced truth
vector π(F). The method is called the transeunt triangle method.

4.4.3. Transeunt Triangle Method

The transeunt triangle method is the method to generate binary vec-
tors γ(F) and µ(F) of polynomials P (F) and Q(F) in the equations
(4.15) and (4.16). The method, �rstly proposed by one of the au-
thors of this article (V.P. Suprun) in 1985, was focused on solving
the task for totally positive P (F) or totally negative Q(F) polarity of
polynomials of SBF F = F (x) [308].

Polynomial Expansion of Symmetric Functions 251

The transeunt triangle method was generalized for arbitrary Boolean
functions of the n variables in [305], and for the Reed-Muller polyno-
mial expansion of SBF with an arbitrary polarization [306].

As this section focuses on the polynomial expansion of SBFs, so here
only the description of the transeunt triangle method for monotone
polarized polynomials of SBFs will be considered.

Note that the transeunt triangle method is often and incorrectly re-
ferred to as "Pascal method" or "Steinhaus method". But scientists
with these famous names have no relation to the development of this
method.

Therefore we present the transeunt triangle method in its original
setting and its rationale, which has been known only in Russian pub-
lications by now [308].

The transformation method of the reduced truth vector π(F) to the
reduced Zhegalkin spectrum γ(F) and to the negative reduced Reed-
Muller spectrum µ(F) is based on the generation of the binary vectors:

z0 = (z00 , z
0
1 , . . . , z

0
n) ,

z1 = (z10 , z
1
1 , . . . , z

1
n−1) ,

z2 = (z20 , z
2
1 , . . . , z

2
n−2) ,

...

zn = (zn0) .

In this case π(F) = (z00 , z
0
1 , . . . , z

0
n), and the coe�cients zji are calcu-

lated as follows:

zji = zj−1i ⊕ zj−1i+1 , (4.19)

where j = 1, 2, . . . , n and i = 0, 1, . . . , n− j.

The binary vectors z0, z1, . . . , zn generate the triangular binary ma-
trix. This matrix is referred as Tn(π(F)) = [zr], where r = 0, 1, . . . , n.
Obviously, Tn(π(F)) has the form of the regular triangle. Each side
of the triangle is a (n+ 1)-bit binary vector.

The method of the generation γ(F) and µ(F) proposed in [308] is

252 Design

based upon use of Tn(π(F)). Hence, it follows the method is called
the transeunt triangle method.

The upper base of the triangle Tn(π(F)) corresponds to the reduced
truth vector π(F). Let's assume the left side of Tn(π(F)) is the result
of τ1-transformation of π(F) and the right side of Tn(π(F)) is the
result of τ2-transformation of π(F). Hence, it follows τ1(π(F)) =
(z00 , z

1
0 , . . . , z

n
0) and τ2(π(F)) = (z0n, z

1
n−1, . . . , z

n
0).

The main results of [308] consist in the formulation, the proof, and
the implementation the following theorem.

Theorem 4.12. For an arbitrary SBF F = F (x) of the n variables
with the reduced truth vector π(F) the formulas are true

τ1(π(F)) = γ(F) , (4.20)

and

τ2(π(F)) = µ(F) . (4.21)

Proof. Let be F 0(x1, x2, . . . , xn) = F (x1, x2, . . . , xn) and

F k(x1, x2, . . . , xn−k) =
∂F k−1(x1, x2, . . . , xn−k, xn−k+1)

∂xn−k+1

= F k−1(x1, x2, . . . , xn−k, 0)⊕ F k−1(x1, x2, . . . , xn−k, 1) , (4.22)

where k = 1, 2, . . . , n.

Hence, it follows based on the de�nition of the k-fold derivative [240,
299�301]:

F k(x1, x2, . . . , xn−k) =
∂kF (x1, x2, . . . , xn)

∂xn ∂xn−1 . . . ∂xn−k+1
.

Considering that F = F (x) is a SBF, it follows that the functions
F = F k(x1, x2, . . . , xn−k) are also SBFs.

There is a dependency between the reduced truth vectors π(F k) and
π(F k−1), where k = 1, 2, . . . , n.

Polynomial Expansion of Symmetric Functions 253

The function F k−1(x1, x2, . . . , xn−k+1) can be represented based on
the Shannon decomposition as follows:

F k−1(x1, x2, . . . , xn−k+1) =xn−k+1F
k−1(x1, x2, . . . , xn−k, 0)∨

xn−k+1F
k−1(x1, x2, . . . , xn−k, 1)

=xn−k+1F
k−1
0 (x1, x2, . . . , xn−k)∨

xn−k+1F
k−1
1 (x1, x2, . . . , xn−k) .

It is obvious that the Boolean functions F = F k−10 (x1, x2, . . . , xn−k)
and F = F k−11 (x1, x2, . . . , xn−k) are SBFs, and that the equations:

πj(F
k−1
0) = πj(F

k−1) , (4.23)

πj(F
k−1
1) = πj+1(F k−1) , (4.24)

are true, where j = 0, 1, . . . , n− k and k = 1, 2, . . . , n.

A short notation of (4.22) is F k = F k−10 ⊕ F k−11 so that:

π(F k) = π(F k−10)⊕ π(F k−11) , and

πj(F
k) = πj(F

k−1
0)⊕ πj(F k−11) . (4.25)

The substitution of (4.23) and (4.24) into (4.25) results in:

πj(F
k) = πj(F

k−1)⊕ πj+1(F k−1) , (4.26)

where j = 0, 1, . . . , n− k and k = 1, 2, . . . , n.

Using (4.13), (4.14), and (4.22), it follows γi(F) = F i(0, 0, . . . , 0) and
µi(F) = F i(1, 1, . . . , 1), where i = 0, 1, . . . , n. Therefore γi(F) =
π0(F i) and µi(F) = πn−i(F

i).

The main property of the binary matrix Tn(π(F)) is represented by
the formula (4.19) which is equivalent to (4.26), so that we have The-
orem 4.12.

Remark 4.1. Let's generate the binary matrices

Tn(γ(F)) and Tn(µ(F)) .

254 Design

T10 (π (F)) =

0 0 0 1 1 1 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0
0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0

00
0

Figure 4.18. Binary matrix T10(π(F)) with π(F) = (00011110000).

It can be easily detected that

τ1(γ(F)) = π(F) , τ1(µ(F)) = π̃(F) ,

τ2(γ(F)) = µ̃(F) , τ2(µ(F)) = γ̃(F) ,

where

π̃(F) = (πn, πn−1, . . . , π0) ,

γ̃(F) = (γn, γn−1, . . . , γ0) , and

µ̃(F) = (µn, µn−1, . . . , µ0) .

Let's consider the example of the application of Theorem 4.12.

Example 4.14. Let's assume SBF F = F 3,4,5,6
10 (x1, x2, . . . , x10) and

it is necessary to generate polynomials P (F) and Q(F).

From this condition it follows π(F) = (00011110000). Figure 4.18
shows the associated binary matrix.

Considering the formulas (4.20), (4.21) and the matrix T10(π(F)) it
follows γ(F) = (00011000000) and µ(F) = (00001000000), i.e.,
γ3 = γ4 = 1 and µ4 = 1. These values 1 are used in the formulas
(4.15) and (4.16) with the following results:

P (F) = E3
10(x)⊕ E4

10(x)

= x1x2x3 ⊕ x1x2x4 ⊕ . . .⊕ x8x9x10⊕
x1x2x3x4 ⊕ x1x2x3x5 ⊕ . . .⊕ x7x8x9x10 ,

Polynomial Expansion of Symmetric Functions 255

and

Q(F) = G4
10(x)

= x1x2x3x4 ⊕ x1x2x3x5 ⊕ . . .⊕ x7x8x9x10 .

The number products of the polynomials P (F) and Q(F) are:

d(P (F)) = 330 and d(Q(F)) = 210

due to Formulas (4.17) and (4.18).

4.4.4. Matrix Method to Generate γ(F) and µ(F)

The matrix method of the polynomial expansion of ESBFs F = F in(x)
and an arbitrary SBFs F = F a1,a2,...,arn (x), where n is the number of
variables, will be shown below.

Elementary Symmetric Boolean Function

The matrix method is applied for the polynomial expansion of ESBF
F = F in(x) to monotone polarized Reed-Muller polynomials P (F) and
Q(F), where i = 0, 1, . . . , n.

The basic principle of the method is to generate the binary matrix
Hn of the size (n+ 1)× (n+ 1), where n is the number of variables of
ESBF F = F in(x).

Firstly, the binary matrix Dm with the 2m rows and the 2m columns
is de�ned as the following recurrence form:

D0 = 1 and Dj =

[
Dj−1 Dj−1

0 Dj−1

]
,

where j = 1, 2, . . . ,m. Figure 4.19 shows as example the matrices D2

and D4.

Let's assume that ESBF F = F in(x) depends on the n variables and
2m−1 < n+ 1 ≤ 2m.

256 Design

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

D2 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

H15H10H3

D4 =

Figure 4.19. Matrices D2 and D4

The binary matrix Hn consists of the �rst n + 1 rows and the �rst
n+ 1 columns of the matrix Dm. In particular, the matrices H3, H10,
and H15 are indicated by the dotted lines in the matrix D4 of Figure
4.19. Note that D2 = H3.

The main properties of the matrix Hn are:

• the row hi of the matrix Hn corresponds to the reduced Zhe-
galkin spectrum of the ESBF F = F in(x) for P (F); hence,

Hn =
[
γ(F in)

]
, (4.27)

• the row hi of the matrix Hn corresponds to the negative reduced
Reed-Muller spectrum of the ESBF F = Fn−in (x) for Q(F);

Polynomial Expansion of Symmetric Functions 257

hence,

Hn =
[
µ(Fn−in)

]
. (4.28)

From (4.27) and (4.28) follows:

hi = γ(F in) = µ(Fn−in) , (4.29)

where i = 0, 1, . . . , n.

Example 4.15. Let's assume it is necessary to generate polynomials
P (F) and Q(F), where F = F 6

10(x).

If n = 10, then from the two-side inequality 2m−1 < n+1 ≤ 2m follows
m = 4. Considering the matrix D4 and the procedure to generate the
matrix H10; below the matrix H10 is given.

1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

h0
h1
h2
h3
h4
h5
h6
h7
h8
h9
h10

H10 = =

The binary matrix H10 contains the reduced Zhegalkin spectra for
polynomial P (F) and the negative reduced Reed-Muller spectrum for
polynomial Q(F) for all ESBFs, which depend on 10 variables, i.e.,
H10 =

[
γ(F i10)

]
and H10 =

[
µ(F 10−i

10)
]
, i = 0, 1, . . . , 10.

To generate the Zhegalkin polynomial form P (F 6
10) the row h6 of the

matrix H10 should be taken, i.e., γ(F) = (00000011000).

Considering hi = µ(F 10−i
10) it follows to generate the negative Reed-

Muller polynomial form Q(F 6
10) the row h4 of the matrix H10 must be

taken, i.e., µ(F) = (00001111000).

258 Design

Therefore γ6 = γ7 = 1 and µ4 = µ5 = µ6 = µ7 = 1, i.e.,

P (F) = E6
10(x)⊕ E7

10(x) ,

and
Q(F) = G4

10(x)⊕G5
10(x)⊕G6

10(x)⊕G7
10(x) .

Therefore according (4.17) and (4.18))the length d of the polynomial
forms P (F) and Q(F) are d(P (F)) = 330 and d(Q(F)) = 792.

It follows from the de�nitions of the functions F = F in(x), F = Ein(x),
the reduced Zhegalkin spectrum π(F), and the negative reduced Reed-
Muller spectrum γ(F) that γ(F in) = π(Ein), where i = 0, 1, . . . , n.

Considering Hn =
[
γ(F in)

]
, γ(F in) = π(Ein) and formula (4.29), i.e.,

γ(F in) = µ(Fn−in) we get the following identity:

Hn =
[
γ(F in)

]
=
[
µ(Fn−in)

]
=
[
π(Ein)

]
, (4.30)

where i = 0, 1, . . . , n.

It follows from the formula (4.30) that the matrix method to generate
the binary vectors γ(F) and µ(F) can be applied to generate the
reduced truth vector π(F), where F = Ein(x) or F = Gin(x).

Example 4.16. Let's assume that it is necessary to generate the re-
duced truth vectors π(F1) and π(F2) for the Boolean functions F1 =
E2

10(x) and F2 = G7
10(x). The matrix H10 provides the reduced truth

vectors for all ESBF F = Ei10(x) of 10 variables, i.e., H10 =
[
π(Ei10)

]
,

where i = 0, 1, . . . , n.

To generate the reduced truth vector π(F1) of F1 = E2
10(x) the row h2

of the matrix H10 must be taken:

π(F1) = (00110011001) .

Thus the set of valued numbers of the function F1 = E2
10(x) is speci�ed

by A(F1) = {2, 3, 6, 7, 10}, and Formula (4.12) is derived to the form:

F1 = F 2
10(x) ∨ F 3

10(x) ∨ F 6
10(x) ∨ F 7

10(x) ∨ F 10
10 (x)

= F 2
10(x)⊕ F 3

10(x)⊕ F 6
10(x)⊕ F 7

10(x)⊕ F 10
10 (x) .

Polynomial Expansion of Symmetric Functions 259

Let's consider the Boolean function F2 = G7
10(x). For negative reduced

Reed-Muller spectrum µ(F2) = (00000001000), where µ7 = 1, and
considering (4.30), the row h3 of the matrix H10 must be taken:

π(F2) = (00010001000) .

Since π3 = π7 = 1 it follows A(F2) = {3, 7} and

F2 = F 3
10(x) ∨ F 7

10(x) = F 3
10(x)⊕ F 7

10(x) .

Thus the positive polarity polynomial-unate SBF F1 = E2
10(x) is equal

to a unity on 496 products among all positive polarity products of
function of 10 variables. The function F2 = G7

10(x) is equal to a unity
over 240 products among all negative polarity products of function of
10 variables.

Arbitrary Symmetric Boolean Function.

The polynomial P (F) and the polynomial Q(F) for SBF F (x) =
F a1,a2,...,arn (x) depend on the n variables must be generated with the
binary matrix Hn.

From SBF F (x) = F a1,a2,...,arn (x) Formula (4.12) assumes the form

F (x) = F a1n (x)⊕ F a2n (x)⊕ . . .⊕ F arn (x) ,

P (F) = P (F a1n)⊕ P (F a2n)⊕ . . .⊕ P (F arn) ,

and

γ(F) = γ(F a1n)⊕ γ(F a2n)⊕ . . .⊕ γ(F arn) . (4.31)

Considering:

γ(F a1n) = µ(Fn−a1n), γ(F a2n) = µ(Fn−a2n), . . . , γ(F arn) = µ(Fn−arn) ,

and Formula (4.31), it follows:

µ(F) = µ(Fn−a1n)⊕ µ(Fn−a2n)⊕ . . .⊕ µ(Fn−arn) . (4.32)

260 Design

According to the property (4.29) of the rows of the binary matrix Hn,
(4.31) and, (4.32) assume the forms

γ(F) = ha1 ⊕ ha2 ⊕ . . .⊕ har , (4.33)

and
µ(F) = hn−a1 ⊕ hn−a2 ⊕ . . .⊕ hn−ar . (4.34)

Example 4.17. Let's assume n = 10 and A(F) = {2, 3, 8}. It is
necessary to generate the reduced Zhegalkin spectrum for polynomial
P (F) and the negative reduced Reed-Muller spectrum for polynomial
Q(F) of the SBF.

Obviously, Formulas (4.33) and (4.34)) assume the forms:

γ(F) = h2 ⊕ h3 ⊕ h8 and µ(F) = h2 ⊕ h7 ⊕ h8 ,
where h2, h3, h7, h8 are the rows of the binary matrix H10 shown above.
It follows:

γ(F) = (00110011001)⊕ (00010001000)⊕ (00000000111)

= (00100010110) ,

µ(F) = (00110011001)⊕ (00000001000)⊕ (00000000111)

= (00110010110) .

Since γ2 = γ6 = γ8 = γ9 = 1 and µ2 = µ3 = µ6 = µ8 = µ9 = 1,
hence, we derive the polynomial P (F) that contains all 2, 6, 8, and
9 rank products, and the polynomial Q(F) that contains all 2, 3, 6, 8,
and 9 rank products. In accordance to (4.17) and (4.18) the lengths
of P (F) and Q(F) are d(P (F)) = 310 and d(Q(F)) = 430.

According to the transeunt triangle method [308], the task of gen-
erating of the polynomials P (F) and Q(F) can be solved with the
transeunt triangle T10(π(F)) shown in Figure 4.20.

The left side of the triangle T10(π(F)) corresponds to the reduced
Zhegalkin spectrum γ(F) = (00100010110) and the right side corre-
sponds to the negative reduced Reed-Muller spectrum µ(F) =
(00110010110).

Furthermore the proposed matrix method may by applied to generate
the reduced truth vector π(F) for an arbitrary SBF F = F (x), when
the function represented by the reduced Zhegalkin spectrum γ(F).

Polynomial Expansion of Symmetric Functions 261

T10 (π (F)) =

0 0 1 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 1 1 0
1 1 1 1 0 0 1 0 1
0 0 0 1 0 1 1 1
0 0 1 1 1 0 0
0 1 0 0 1 0
1 1 0 1 1
0 1 1 0
1 0 1

11
0

Figure 4.20. Binary matrix T10(π(F)) with π(F) = (00110000100).

Example 4.18. Let's assume γ(F) = (00100001100). It is necessary
to generate the reduced truth vector π(F) for SBF

F = F (x1, x2, . . . , x10) .

Because of n = 10, the matrix H10 must be applied. The condition
implies γ2 = γ7 = γ8 = 1, then π(F) = h2⊕h7⊕h8. Hence, it follows

π(F) = (00110011001)⊕ (00000001000)⊕ (00000000111) =

= (00110010110) .

In accordance with the reduced truth vector π(F) = (00110010110), the
set of the valued numbers is A(F) = {2, 3, 6, 8, 9} and the polynomial
form P (F) of SBF F can be represented as:

F (x) = E2
10(x)⊕ E7

10(x)⊕ E8
10(x)

= F 2
10(x)⊕ F 3

10(x)⊕ F 6
10(x)⊕ F 8

10(x)⊕ F 9
10(x)

= F 2,3,6,8,9
10 (x) .

Thus the SBF F = F (x1, x2, . . . , x10) is equal to a unity for 430 prod-
ucts among all positive polarity products of function on 10 variables.

It should be noted the matrix method is e�ective to generate polyno-
mials P (F) and Q(F) for an arbitrary SBF F = F a1,a2,...,arn (x) in the
case of few valued numbers r (relatively n).

262 Design

4.4.5. E�ciency of the Matrix Method

The matrix method of the polynomial expansion of SBFs F = F (x) of
n variables is proposed. The method focuses on the generation of the
Zhegalkin polynomial P (F) and on the negative polarity Reed-Muller
Q(F).

The discussed method is more e�cient along with the known methods
to polynomial factoring of ESBF F = F in(x). For example, as shown
in [308], to obtain the polynomial forms of the SBF P (F) and Q(F)
transeunt triangle must be generated which requires the calculation

of n
2+n
2 EXOR-operations.

The method is based upon the generation of a binary matrix Hn of
the size (n + 1) × (n + 1). The main property is that of the matrix
Hn contains the binary vectors of the coe�cients P (F) and Q(F)
of the Boolean functions F = Ein(x) and F = Gin(x), where i =
0, 1, . . . , n.

Weighted Don't Cares 263

4.5. Weighted Don't Cares in Logic

Synthesis

Anna Bernasconi Valentina Ciriani

Petr Fi²er Gabriella Trucco

4.5.1. Don't Care Conditions in Logic Synthesis

The synthesis of digital circuits often exploits the �exibility given by
don't care conditions [260]. A don't care of an incompletely speci�ed
Boolean function f : {0, 1}n → {0, 1,−}, is a vertex v of the Boolean
space {0, 1}n (minterm) where the value of the function is not speci-
�ed, i.e., f(v) = −, with the meaning that it could be either 0 or 1.
The �nal value, 0 or 1, assigned to these minterms is usually decided
by the minimization algorithm used to synthesize the function. For
instance, if we want to represent f as a minimal sum of products,
we will set to 1 all don't cares that allow to enlarge the dimension
of the implicants [48] and to get a more compact algebraic form. On
the contrary, we will set to 0 all don't cares that would require the
insertion of new unnecessary products in the �nal form.

These don't cares are called external because they are intrinsic to the
functionality of the circuit and to its working environment, whatever
is the chosen structure of the �nal circuit.

Besides external don't cares, there exist internal (or structural) don't
cares due to the speci�c structure of the implementation, for example,
satis�ability don't cares (SDC) and observability don't cares (ODC)
[132]. The former arise when a node has limited controllability, be-
cause some input combinations local to the node are ruled out by the
network structure. The latter arise when a node has limited observ-
ability and local changes cannot be observed at the primary outputs.

In this section we show how to enrich the notion of internal and exter-
nal don't cares by assigning them a weight. Thus, we de�ne and study
the new concept of weighted don't cares. These weights might be used

264 Design

to guide and re�ne the choices operated by the minimization algo-
rithms in handling the don't care conditions. Our idea comes from
the observation that, in some synthesis scenarios, possibly di�erent
from the classical sum-of-products (SOP) minimization, some don't
care minterms might help to reduce the area of the �nal circuit more
than others. In other words, instead of treating all don't cares equally,
we propose to enforce the minimization algorithms giving them some
criteria to choose which don't cares should be preferentially covered
(assigned to 1). Weighted don't cares could also be applied in sce-
narios where there are don't cares that, for some reason, should be
chosen before others. Note that the weights can be decided before the
synthesis phase, or can be assigned dynamically by the minimization
algorithms during logic synthesis.

In particular, we analyze an application of the concept of weighted
don't cares in a synthesis framework of decomposition of Boolean func-
tions onto overlapping subspaces [25, 26, 74, 92, 253, 260]. We then
deal with another important issue, which is the development of the
�rst synthesis tool for functions with weighted don't cares. We have
considered the two-level Boolean minimizer BOOM [99, 100, 134], and
we have derived a new version, called wBOOM, that handles weighted
don't cares and uses the weights for choosing the don't cares that will
be covered in the �nal circuit implementation of the function. We
have experimentally evaluated this new tool, with interesting results.

This section is organized as follows. In Subsection 4.5.2 we discuss
the concept of weighted don't cares and in Subsection 4.5.3 we explain
some possible applications. In Subsection 4.5.4 we describe a mini-
mization tool, wBOOM, that is sensitive to the presence of weighted
don't cares. Experiments are reported in Subsection 4.5.5, while in
Subsection 4.5.6 we discuss the e�ciency of wBOOM theoretically.
Subsection 4.5.7 concludes this section.

4.5.2. Weighted Don't Cares

A completely speci�ed Boolean function f : {0, 1}n → {0, 1} can
be simply represented by a subset of {0, 1}n containing the vertices
(minterms) v such that f(v) = 1, i.e., the so-called ON-set of f . The

Weighted Don't Cares 265

set of all other vertices, i.e., the vertices v such that f(v) = 0, is called
the OFF-set of f . Hereafter, we will often denote the ON-set of the
function f with the function f itself and vice versa.

Let us now consider an incompletely speci�ed Boolean function f :
{0, 1}n → {0, 1,−}. A vertex v of the Boolean space {0, 1}n such
that f(v) = − is called don't care. Thus, the don't care set (or DC-
set) of f contains all the don't cares for f . When we synthesize an
incompletely speci�ed function f , the algebraic form for f must ful�ll
these requirements:

• it must cover (assign to 1) all ON-set minterms;

• it must not cover any OFF-set minterm;

• it might cover some minterms from the DC-set, in order to ease
the minimization and to get a more compact resulting form.

In other words, the ON-set is the set of minterms that must be covered,
the OFF-set represents the minterms that must NOT be covered,
while we do not have precise requirements for the minterms in the
DC-set, and we can choose whether covering or not covering them.

In this section we propose to enforce the notion of don't cares, by
assigning them a weight and by using these weights to treat the don't
care minterms di�erently. Indeed, as already pointed out earlier, some
don't cares might help in reducing the area of the �nal circuit more
than others. So, instead of treating all don't cares equally, a mini-
mization algorithm should choose, according to some given criteria,
which don't cares should be preferentially covered. To this aim, we
introduce the following de�nition.

De�nition 4.17. Let f be an incompletely speci�ed function, and
let min, max (min < max) be two positive integers. The weight of a
don't care minterm v of f is an integer weight(v), min ≤ weight(v) ≤
max, that re�ects the degree of preference of the don't care v, i.e., the
convenience of covering v in the �nal circuit.

Thus, don't cares with a bigger weight should be preferred to the other
don't cares, and should be preferentially covered by the algebraic form
for f .

266 Design

4.5.3. Application

Weighted don't cares can be applied to di�erent scenarios. For in-
stance, one could decide to minimize a given function in steps. That
is, instead of minimizing the whole function, that could be too big to
handle, one could decide to minimize subsets of its ON-set, and then
take the sum (i.e., the OR) of the resulting algebraic forms (see for
instance [25, 92, 260]).

Observe that these subsets are not necessarily disjoint, as it happens
for instance when the function to be minimized is given in a PLA
form [345], and we decide to minimize subsets of its products in cas-
cade. This cascade minimization of the function immediately suggests
the use of weighted don't cares [26]. Indeed, minterms already cov-
ered during the �rst minimization steps do not need to be covered,
if encountered again in the next minimization phases. Thus, these
minterms naturally become don't cares during the minimization pro-
cess.

It is also evident that, in order to avoid redundancies in the �nal cir-
cuit that would compromise its testability, the minterms of a function
should not be covered by too many products. Therefore, we could
assign a weight to the don't cares generated during the minimization
steps, re�ecting the number of times a product has already covered
that minterm: minterms covered only a few times should get a higher
weight, while minterms already covered by many products should be
assigned a low degree of preference, in order to condition the choices
of the minimization algorithm.

We now describe a concrete application of the concept of weighted
don't cares. This application arises in a very natural way from the
framework of decomposition of Boolean functions onto overlapping
subspaces [25, 26, 74, 92, 253, 260]. Suppose that we want to mini-
mize a completely speci�ed Boolean function f depending on n binary
variables x1, x2, . . . , xn. Consider a variable xi and the two subspaces
of {0, 1}n where xi = 1 and where xi = 0, whose characteristic func-
tions are xi and xi, respectively. If we project the given function f
onto the two subspaces, we obtain two Shannon cofactors f |1 and f |0,
that represent the projections of f onto the spaces xi and xi. Consider

Weighted Don't Cares 267

now the intersection of the two sets, i.e., consider the set I = f |0∩f |1.
Observe that I, f |1 and f |0 do not depend on xi. Thus, the original
function f can be represented by the following algebraic form:

f = xif |1 + xif |0 + I .

Consider for example the Boolean function f in Figure 4.21 (a) de-
pending on four variables x1, . . . , x4, whose ON-set is given by:

f = {0000, 0010, 0100, 0101, 0110, 1000, 1010, 1101, 1110, 1111} ,

and let be xi = x1. We have:

f |0 = {000, 010, 100, 101, 110} (Figure 4.21 (b)),

f |1 = {000, 010, 101, 110, 111} (Figure 4.21 (c)), and

I = {000, 010, 101, 110} (Figure 4.21 (d)).

Note that the minterms in I are minterms that are also in the ON-sets
of f |0 and f |1. For this reason we set such minterms as don't cares
in f |0 and f |1, in fact they can be used for minimization of f |0 and
f |1, but are not necessary since are already covered by I. Therefore,
we have in our example as shown in parts (e), (f), and (d) of Figure
4.21:

ON-set (f |0) = {100} DC-set (f |0) = {000, 010, 101, 110}
ON-set (f |1) = {111} DC-set (f |1) = {000, 010, 101, 110}
ON-set (I) = {000, 010, 101, 110} .

Now, we note that each minterm of f |1 corresponds to one minterm of
f where xi = 1, each minterm of f |0 corresponds to one minterm of f
where xi = 0, while each minterm in I corresponds to two minterms
in f (one with xi = 0 and the other with xi = 1). If we minimize
f |1 and f |0 as SOP forms, obtaining for instance SOP1 and SOP0,
respectively, we can note that if a minterm P of I is covered by both
SOP1 and SOP0, then P can be set as a don't care in I. Thus, we
propose to minimize the functions f |0, f |1 and I in this order: f |0,
f |1, and �nally I.

268 Design

0 0 1 0 0 1
0 1 1 1 0 1
1 1 0 1 1 1
1 0 1 0 0 1

0 1 1 0
0 0 1 1

x1x2

x4
x3

f

(a)

0 1 0 0 1
1 1 1 0 1

0 1 1 0
0 0 1 1

f |0x2

x4
x3(b)

0 1 0 0 1
1 0 1 1 1

0 1 1 0
0 0 1 1

f |1x2

x4
x3(c)

0 1 0 0 1
1 0 1 0 1

0 1 1 0
0 0 1 1(d)

x2

x4
x3

I = f |0 ∩ f |1

0 - 0 0 -
1 1 - 0 -

0 1 1 0
0 0 1 1

f |0x2

x4
x3(e)

0 - 0 0 -
1 0 - 1 -

0 1 1 0
0 0 1 1

f |1x2

x4
x3(f)

0 1 0 0 1
1 0 1 0 -

0 1 1 0
0 0 1 1

Ix2

x4
x3(g)

Figure 4.21. The Boolean function f of the running example.

Consider again our running example, and suppose to minimize f |0 in
SOP form. We obtain SOP |0 = x4 (Figure 4.21 (e)); thus we have
covered the only minterm, 100, in the ON-set, and the three minterms
000, 010, 110 from the DC-set.

Let us now minimize f |1. Our main observation is that we can set
now a weight in the DC-set of f |1, introducing two subsets of don't
cares: DC-set with high preference = {000, 010, 110} and DC-set with
low preference = {101}. Indeed, if SOP1 covers one of the minterms in
{000, 010, 110} (already covered by SOP0) this minterm will be then
set as a don't care for the intersection set I.

According to our idea, a weighted minimizer would prefer the cover
given by the product x2x3 to the cover given by x2x4. Therefore, we
have SOP1 = x2x3.

We can now compute the don't care set for I as I ∩ (SOP0 ∩ SOP1)
(Figure 4.21 (g)):

ON-set (I) = {000, 010, 101} DC-set (I) = {110} .

Thus we derive the SOP form SOPI = x2x4 + x2x3x4, instead of
SOPI = x2x4 + x2x3x4 + x3x4, that we would have computed from

Weighted Don't Cares 269

the alternative choice SOP1 = x2x4. Finally, with the right choice of
don't cares for f |1, we obtain:

f = x1SOP0 + x1SOP1 + SOPI

= x1(x4) + x1(x2x3) + (x2x4 + x2x3x4)

containing 10 literals, instead of:

f = x1(x4) + x1(x2x4) + (x2x4 + x2x3x4 + x3x4)

containing 12 literals.

Observe that in the two particular decomposition techniques we have
discussed, the weights of the don't cares are assigned dynamically
during the synthesis phase.

4.5.4. Weighted BOOM: a Synthesis Tool for
Functions with Weighted Don't Cares

A heuristic multi-output two-level (SOP) minimizer BOOM (acronym
of BOOlean Minimizer) was proposed in [99, 134]. Later it was ex-
tended to handle multi-output functions more e�ciently [100]. Ba-
sically, the algorithm consists of two steps: generation of implicants
and covering problem solution. The major contribution of BOOM
lies in the implicant generation phase. First of all, it is randomized.
Thus, di�erent results may be obtained from di�erent runs on the
same source data. This is exploited in the iterative minimization pro-
cess, where the implicant generation phase is repeatedly executed.
Di�erent implicants are collected in the implicant pool. The covering
problem is solved at the end, using all the implicants, to obtain the
�nal solution. This o�ers a possibility of trade-o� between the result
quality and runtime�better results may be obtained at expense of
runtime. This is visualized by Figure 4.22.

A randomly generated function of twenty input variables, �ve output
variables and 200 care product terms of average dimension 2 were
minimized here. A random function was chosen for this experiment,
in order to maximally suppress the in�uence of any possible singular

270 Design

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500
0

50

100

150

200
Im

p
li
ca
n
ts

S
o
lu
ti
o
n
te
rm

s

Iteration

Implicants
Solution terms

Figure 4.22. The implicant generation progress in BOOM.

behaviors of standard benchmark circuits. The total number of impli-
cants in the pool is depicted by the solid line (and the left y-axis) and
the solution quality, as the number of the SOP terms is depicted by the
dotted line (and the right y-axis). Notice the di�erent scales for these
two curves. We can observe that the number of implicants follows the
saturation curve, while the solution improves in the progress.

Algorithm 4.2 describes the steps of the BOOM algorithm. Before
executing the algorithm, the ON-set (F) and OFF-set (R) of the source
function must be provided. In the case that one set missing, it is
computed as a complement of the two other sets (e.g., the OFF-set is
computed from the ON-set and DC-set). The CD-Search (Coverage-
Directed Search) function is the vital phase of BOOM. It produces the
initial cover (set of implicants) of the source ON-set. This is also the
phase where randomness is mostly used. The generated implicants
are stored in the implicant pool.

The implicants are further expanded to prime implicants, while the
original (non-prime) implicants are not discarded. Then all the im-
plicants are reduced to obtain group implicants, i.e., implicants which
can be used for several output functions. Again, no implicants are
discarded; only the new ones are added to the pool. At the end

Weighted Don't Cares 271

Algorithm 4.2 BOOM

Require: F : ON-set of the source function
Require: R: OFF-set of the source function
Ensure: Solution: Boolean expression as set of products (SOP) min-

imizing the number of literals
1: Pool← ∅
2: repeat

3: Cover ← CD-Search(F,R)
4: Pool← Pool ∪ Cover
5: Pool← Pool ∪ Cover.Expand(R)
6: Pool← Pool ∪ Cover.Reduce(F,R)
7: Pool.Purge()
8: until stop()
9: Solution← UCPSolve(F, Pool)
10: Solution.Sparse(F,R)
11: return Solution

of each iteration the pool is �purged� by resolving clear dominance
relations. Thereby, apparently redundant terms are removed. This
process is repeated, until the stopping criterion is met. This is usu-
ally a user-speci�ed maximum number of iterations, timeout, or the
desired solution quality.

The solution is then formed by solving the Unate Covering Problem
(UCP) [66] using all the implicants in the pool�an irredundant subset
of implicants covering the ON-sets of all functions is formed. Finally,
the solution is tried for the �nal re�nement to keep only necessary
group implicants, which are then further expanded. Note that the
UCP solution and Sparse can be executed inside the main iteration
loop too. This would be necessary, e.g., if the stopping condition is
to be determined based on the solution quality.

The unate covering problem (UCP) may be either solved exactly or
approximately, using some heuristics to select implicants into the solu-
tion. As for the exact method, AURA-II [119] was implemented. This
algorithm allows to choose any implicant cost function and it gener-
ates optimum solutions minimizing this cost. The implicant cost in
the original BOOM is set to the number of literals. Note that there
can also be several optimal solutions. In this case, AURA-II returns

272 Design

the �rst one found.

The approximate heuristic employed in BOOM is purely greedy; it
constructs the solution by gradually adding implicants to it. The
heuristic has several decision stages, where the candidate implicants
are gradually �ltered out:

• Select implicants covering most of yet uncovered ON-set terms

• From these, select implicants covering ON-set terms that are
di�cult to be covered (they are covered by the minimum of
implicants)

• From these, select the ones with the least cost (the number of
literals)

• If there are still more possibilities, choose one randomly.

The Weighted BOOM (wBOOM) bene�ts from the excess of impli-
cants entering the UCP phase. Only few terms from the implicant
pool form the solution, see Figure 4.22. Here, e.g., the solution con-
sists of less than 100 terms out of 7,000 generated ones after 5,000
iterations. It is also very likely that many di�erent solutions of equal
quality exist. The number of produced implicants may be further
increased by introducing mutations into the CD-Search phase. Im-
plicants that are valid, but normally unlikely to be selected into the
solution, are produced in this way. For details see [99].

We can easily favor weighted DCs by in�uencing the UCP cost func-
tion. We have decided for keeping the number of solution literals as
the primary criterion for our purpose. But next, if there are more
equally valued solutions, the solution covering most of the wDCs will
be preferred. This can be achieved by a very simple modi�cation of
the cost function: instead of being the number of literals, it will be
de�ned as follows:

cost(term) = literals(term) · bignumber − covered.wDCs(term) ,

where bignumber is any number higher than the number of possibly
covered wDCs. This ensures that the number of literals will be min-
imized preferably, while the number of covered DCs will be the sec-
ondary criterion. But de�nitely, the cost function may be modi�ed

Weighted Don't Cares 273

in other ways, depending on the actual designer's demands. Note
that this approach can easily be generalized to support multiple DC
weights, too. We can just compute the summary weight of covered
DCs, instead of counting the number of covered wDCs. This is the
way actually implemented in wBOOM.

4.5.5. Experimental Results

The synthesis tool that takes the weighted don't cares into account,
wBOOM, has been applied to the Espresso benchmark suite [345],
running on a Pentium 1.6 GHz processor with 1 GB RAM. We used
the weights 0 and 1 for don't cares derived by the overlapping synthesis
problem described in [26] and brie�y recalled in Section 4.5.2. Weight
1 means that the don't care has a higher priority than don't cares with
the weight 0. We have tested the practical performance of wBOOM,
by comparing its results to the classical BOOM minimizer [100]. Both
tools have been run with the settings of 200 iterations and 20% of CD-
Search mutations [99].

wBOOM optimizes �rst the number of products and literals, and then
it tries to maximize the covered don't care weights, that is, in the
considered scenario, wBOOM maximizes the number of covered don't
cares with weight equal to 1 (shortly denoted as 1-wDCs). Therefore,
the discussion is based on the comparison between the numbers of 1-
wDCs covered by wBOOM compared to the ones covered by BOOM.

We report in Table 4.15 a signi�cant subset of the results. The �rst
column reports the name of the instance considered. The following
three columns refer to the experiments with wBOOM and report the
number of products, the number of covered 1-wDCs, and the compu-
tational time (in seconds). The next three columns report the number
of products, the number of covered 1-wDCs, and the computational
time (in seconds) obtained with the BOOM minimizer. The last two
columns compare the results showing the absolute gain (i.e., the di�er-
ence between the number of 1-wDCs covered by wBOOM and BOOM)
and the Gain rate (i.e., the di�erence between the number of 1-wDCs
covered by wBOOM and BOOM, divided by the number of 1-wDCs
covered by wBOOM).

274 Design

Table 4.15. Comparison between wBOOM and BOOM

wBOOM BOOM Comparison
Prod 1-wDCs Time Prod 1-wDCs Time Abs gain Gain rate

add6 93 30 16.94 93 11 17.16 19 0.63
alu2 14 28 0.66 14 6 0.66 22 0.79
amd 1 0 0.30 1 0 0.28 0 0.00
b12 11 7 0.22 11 5 0.20 2 0.29
b9 12 0 3.19 12 0 3.17 0 0.00
bench 3 3 0.05 3 1 0.03 2 0.67
co14 13 117 1.06 13 0 1.06 117 1.00
dc2 18 162 0.30 18 0 0.34 162 1.00
ex1010 52 49 72.61 50 29 92.25 20 0.41
exep 50 148 13.77 50 1 13.78 147 0.99
f51m 14 78 0.22 14 6 0.22 72 0.92
ibm 12 0 3.73 12 0 3.77 0 0.00
in0 34 126 4.95 34 3 4.94 123 0.98
in5 25 161 9.45 26 7 9.47 154 0.96
life 35 315 2.61 35 0 2.59 315 1.00
m1 12 12 0.09 12 12 0.09 0 0.00
m2 44 148 1.06 44 1 1.08 147 0.99
max1024 86 312 5.55 87 6 5.53 306 0.98
max512 40 122 1.47 40 15 1.45 107 0.88
newcwp 5 21 0.02 5 3 0.01 18 0.86
newtpla2 3 19 0.09 3 0 0.11 19 1.00
p3 10 7 0.25 10 5 0.25 2 0.29
prom2 225 751 57.63 227 49 62.89 702 0.93
rckl 31 279 13.53 31 0 13.52 279 1.00
rd73 32 240 1.55 32 6 1.55 234 0.98
shift 50 18 0.92 50 18 0.84 0 0.00
sqn 12 49 0.25 12 4 0.16 45 0.92
t1 2 18 0.17 2 0 0.16 18 1.00
test1 36 51 2.52 36 6 2.63 45 0.88
tial 170 202 180.09 171 89 163.03 113 0.56
x1dn 15 15 36.09 15 10 36.36 5 0.33
z4 14 126 0.33 14 0 0.25 126 1.00

AVG 104.38 0.66
STD DEV 189.77 0.39

Comparing the number of covered 1-wDCs, we can notice that even
if the main synthesis objective is the minimization of the number of
products, wBOOM succeeds in maximizing the number of covered
weighted don't cares without losing in minimization time. Indeed,
the wBOOM covers, on average, 66% more weighted don't cares than
BOOM.

Weighted Don't Cares 275

We have also tested wBOOM in the particular decomposition problem
described in Subsection 4.5.3 wBOOM improved the �nal form in
about 10% of the considered benchmarks, but the gain was quite low
(about 1% less products), probably because the SOPIs were already
very near to the optimum.

4.5.6. Solutions Count Analysis

Assuming the cost function from Subsection 4.5.4, the necessary con-
dition for success of wBOOM is the existence of di�erent solutions
with the same number of literals. Then, wBOOM will return the
one maximizing the number of covered DCs. One may wonder if this
happens in practice�do there exist more solutions of equal size for
practical examples? We may also ask how many di�erent optimum
solutions exist.

We have performed the following experiment to answer these ques-
tions: we have run BOOM (not wBOOM this time) in the same con-
�guration as in Subsection 4.5.4 (200 iterations, 20% CD-Search mu-
tations) 100-times and recorded all di�erent solutions ever obtained
(even in the course of the iteration). Note that all the results were
prime and irredundant covers [48]. Results for some of the bench-
marks coming from the decomposition process (see Subsection 4.5.3)
are shown in Table 4.16.

The total number of di�erent solutions is shown in the second column,
after the benchmark name. Then the number of obtained di�erent
�best� solutions is given. Then, numbers and percentages of solutions,
whose quality is less than 5% (10%, 20%, respectively) worse than
the best solution are shown. We can observe that for most of the
circuits only one �best� solution was obtained, which was probably
the optimum one. Of course, symmetric functions, like max512, sym10,
Z9sym [345] have adequate numbers of di�erent P-equivalent solutions
[130]. However, a plentiful of di�erent near-optimum solutions can
be observed. This is illustrated by Figure 4.23 for the ex1010 [345]
circuit. Such a behavior can be observed for most of the tested circuits.

We can conclude that wBOOM becomes e�cient especially for sym-

276 Design

Table 4.16. Numbers of solutions

benchmark sol. best sol. ≤ 5% ≤ 10% ≤ 20%

add6 2598 1 19 (1%) 218 (8%) 2580 (99%)
alu2 114 1 38 (33%) 73 (64%) 105 (92%)
alu3 1444 1 204 (14%) 495 (34%) 1133 (78%)
amd 2 1 1 (50%) 1 (50%) 1 (50%)
b12 212 1 26 (12%) 88 (42%) 212 (100%)
b9 929 1 52 (6%) 154 (17%) 319 (34%)
bench 4283 50 2599 (61%) 3803 (89%) 4213 (98%)
co14 1 1 1 (100%) 1 (100%) 1 (100%)
dc1 1 1 1 (100%) 1 (100%) 1 (100%)
dc2 16 1 1 (6%) 7 (44%) 16 (100%)
ex1010 17020 1 293 (2%) 6144 (36%) 16172 (95%)
ex7 909 2 47 (5%) 143 (16%) 315 (35%)
exep 2343 2 2139 (91%) 2334 (100%) 2343 (100%)
f51m 315 1 19 (6%) 70 (22%) 296 (94%)
ibm 1242 1 45 (4%) 169 (14%) 700 (56%)
in7 43 4 4 (9%) 18 (42%) 34 (79%)
inc 24 2 8 (33%) 11 (46%) 24 (100%)
jbp 1166 1 97 (8%) 429 (37%) 829 (71%)
life 1 1 1 (100%) 1 (100%) 1 (100%)
log8mod 37 2 19 (51%) 30 (81%) 37 (100%)
luc 4 2 4 (100%) 4 (100%) 4 (100%)
m1 9 1 2 (22%) 2 (22%) 9 (100%)
m2 141 1 87 (62%) 135 (96%) 141 (100%)
max512 1131 122 682 (60%) 947 (84%) 1129 (100%)
misj 15 1 1 (7%) 1 (7%) 1 (7%)
mlp4 338 2 25 (7%) 138 (41%) 328 (97%)
newcwp 2 1 1 (50%) 1 (50%) 2 (100%)
newtpla2 25 1 4 (16%) 7 (28%) 9 (36%)
p3 20 2 2 (10%) 2 (10%) 18 (90%)
p82 12 1 6 (50%) 9 (75%) 12 (100%)
radd 344 1 3 (1%) 11 (3%) 80 (23%)
rckl 214 1 214 (100%) 214 (100%) 214 (100%)
rd73 1 1 1 (100%) 1 (100%) 1 (100%)
risc 1 1 1 (100%) 1 (100%) 1 (100%)
root 1163 3 249 (21%) 902 (78%) 1163 (100%)
ryy6 8499 1 566 (7%) 2649 (31%) 7406 (87%)
shift 414 1 230 (56%) 313 (76%) 414 (100%)
soar 1043 1 9 (1%) 59 (6%) 506 (49%)
sqn 113 1 23 (20%) 93 (82%) 113 (100%)
sym10 875 100 147 (17%) 242 (28%) 483 (55%)
t1 8 1 1 (13%) 1 (13%) 7 (88%)
test1 2937 1 1463 (50%) 2449 (83%) 2864 (98%)
test4 9702 4 58 (1%) 1116 (12%) 9666 (100%)
vg2 2 1 1 (50%) 1 (50%) 2 (100%)
vtx1 1149 4 929 (81%) 1009 (88%) 1103 (96%)
x1dn 8 1 1 (13%) 1 (13%) 1 (13%)
x2dn 5 1 1 (20%) 4 (80%) 5 (100%)
x9dn 741 1 634 (86%) 675 (91%) 731 (99%)
z4 395 1 37 (9%) 202 (51%) 381 (96%)
Z5xp1 153 1 61 (40%) 137 (90%) 153 (100%)
Z9sym 3178 99 751 (24%) 1329 (42%) 2541 (80%)

Weighted Don't Cares 277

0

100

200

300

400

500

600

700

250 300 350 400 450 500 550 600

F
re
q
u
en
cy

Literals

Figure 4.23. Distribution of di�erent implicants.

metric functions, provided that don't cares are not symmetrical as
well. Next, if the optimal solution is not required, many solution
choices are available, thus don't cares can be exploited very e�ciently,
too.

4.5.7. Future Applications

We have introduced a new concept of weighted don't cares, and pro-
posed a minimizer wBOOM, for a two-level SOP synthesis of Boolean
functions with weighted don't cares.

Future possibilities include a more complete exploration of di�erent
synthesis scenarios that could bene�t from the notion of weighted
don't cares. Moreover, as the present version of wBOOM optimizes
the number of products before trying to maximize the covered DC
weights, we would like to design a new version of wBOOM even more
sensitive to the weights of the don't care minterms, by considering
DC weights in the generation phase. It would be also interesting to
�nd other applications of the concept of weighted don't cares showing
more interesting gains in the size of the �nal circuit implementations.

278 Design

4.6. Determining Assignments of

Incompletely Speci�ed Boolean

Functions

Suzana Stojkovi¢ Milena Stankovi¢

Radomir S. Stankovi¢

4.6.1. Incompletely Speci�ed Boolean Functions

Incompletely speci�ed logic functions (binary and multiple-valued)
are often met in theory of computing and related practice. Selecting
a good assignment of unspeci�ed values is very important in many
applications and this problem is a permanent subject of study, with a
variety of approaches to solve it. Compact representations of incom-
pletely speci�ed Boolean functions have also been considered in the
context of decision diagram representations.

The compactness is mainly expressed in terms of the number of non-
terminal nodes (the size of the diagram), although some other charac-
teristics of the diagrams such as the number of paths, the average path
length, the number of 1-paths, the width, etc., can be also considered
in certain applications.

A variety of di�erent methods to �nd compact representations of in-
completely speci�ed functions have been proposed. Selected references
which illustrate di�erent aspects of the problem and also di�erent ap-
proaches to solve it are [169, 190, 226, 231, 237, 264, 270, 278, 286].
See also [154, 346] and references therein.

In this section we discuss the following problem. We assume that
an incompletely speci�ed function is given. It is our aim to �nd an
assignment of unspeci�ed values of this incompletely speci�ed func-
tion such that the resulting completely speci�ed function fs can be
represented by a compact binary decision diagram.

Assignments of Incompletely Speci�ed Functions 279

4.6.2. Decision Diagrams for Incompletely Speci�ed
Functions

An incompletely speci�ed function of n variables can be viewed as
a binary-input ternary-output function fi : {0, 1}n → {0, 1, ∗} and
represented by a decision diagram consisting of non-terminal nodes
with two outgoing edges and three constant nodes showing the logic
values 0 and 1 and the unspeci�ed value (don't care) ∗. We call these
diagrams as BDD∗, where ∗ refers to the unspeci�ed values, not to be
confused with ∗BDD representing the edge-valued version of binary
moment diagrams.

BDD∗ are used as the input into the proposed method. The unspeci-
�ed values in subfunctions represented by subdiagrams in the BDD∗

for a given incompletely speci�ed function fi are speci�ed such that
these subdiagrams are converted into subdiagrams for a completely
speci�ed subfunction fs with minimum number of non-terminal nodes.
The correspondingly determined completely speci�ed function fs is
represented by the BDD which is the output of the algorithm imple-
menting the proposed method.

Example 4.19. Figure 4.24 (a) shows the BDD∗ representing the in-
completely speci�ed function of four variables f1(x1, x2, x3, x4) de�ned
by the function vector:

F1 = [1, 0, ∗, 0, ∗, ∗, 0, 1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗]T .

If all unspeci�ed values are assigned to 0, the resulting function f2 is
speci�ed by the truth-vector:

F2 = [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]T ,

and represented by the BDD of Figure 4.24 (b) requiring six non-termi-
nal nodes comparing to seven non-terminal nodes in the BDD∗. If all
unspeci�ed values are replaced by 1, the function f1 is converted into
the function f3 with the truth-vector:

F3 = [1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]T ,

and the corresponding BDD Figure 4.24 (c) requires 5 non-terminal
nodes. The even more reduced BDD in Figure 4.24 (d) is produced by
the method proposed as will be explained below.

280 Design

x1

x2

x3 x3

x4 x4 x4

1 0 ∗

(a)

0

1
0 1

0
11

0

0
11

0 1 0

f1

x1

x2

x3 x3

x4 x4

1 0

(b)

0

1
0 1

0

1

1
0

0
1 1

0

f2

x1

x2

x3

x4 x4

1 0

(c)

1

0

0
1

0 1

0
1
1 0

f3

x2

x4 x4

1 0

(d)

0 1

0
1 1

0

fs

Figure 4.24. BDD∗ for the incompletely speci�ed function f1 and com-
pletely speci�ed functions f2 and f3 and the function fs pro-
duced by the proposed method.

This example illustrates that by a suitable assignment of unspeci�ed
values isomorphic subtrees in the BDD∗ can be produced resulting in
a compact BDD for the corresponding completely speci�ed function
fs assigned to a given incompletely speci�ed function fi. The example
implies the following de�nition of compatible decision diagrams.

De�nition 4.18. Two BDD∗ which represent incompletely speci�ed
functions fi1 and fi2 are compatible if there exists an assignment for
the unspeci�ed values in fi1 and fi2 that converts them into isomorphic
BDDs for the resulting completely speci�ed functions fs1 and fs2 .

Compatible subdiagrams in the BDD∗(fi) are candidates to be con-
verted into isomorphic subdiagrams in the BDD(fs) for the completely
speci�ed function fs assigned to fi.

Example 4.20. Table 4.17 shows truth-vectors F1, F2, and F3 of the
subfunctions fi1 , fi2 , and fi3 represented by the subdiagrams in Figure
4.25. The function values of all three functions for the assignment of
(x1, x2) = (0, 0) are equal to 1. Hence, we get:

fcompatible(x1 = 0, x2 = 0) = 1 .

Assignments of Incompletely Speci�ed Functions 281

x1

x2 x2

1 ∗ 0

0 1

0 1 0 1

fi1

x1

x2

1 0 ∗

0
1

0 1

fi2

x1

x2

1 ∗

0
1

0 1

fi3

x1

x2 x2

1 0 ∗

0 1

0 1 1 0

fcompatible

Figure 4.25. Examples of compatible subdiagrams.

Table 4.17. Subfunctions for subdiagrams in Example 4.20

(x1, x2) F1 F2 F3 Fcompatible

(0, 0) 1 1 1 1

(0, 1) ∗ 0 ∗ 0

(1, 0) ∗ ∗ ∗ ∗
(1, 1) 0 ∗ ∗ 0

The function value of fi2 is equal to 0 for the assignment of (x1, x2) =
(0, 1), while the function values of the other two functions are unspec-
i�ed for the same assignment. Thus, we assign:

fcompatible(x1 = 0, x2 = 1) = 0 .

Similarly, the function value 0 of fi1 for (x1, x2) = (1, 1) determines
that:

fcompatible(x1 = 1, x2 = 1) = 0 .

The function values of all three incompletely speci�ed functions fi for
the assignment (x1, x2) = (1, 0) are not determined so that:

fcompatible(x1 = 1, x2 = 0) = ∗ .

In this way fi1 , fi2 , and fi3 can be merged into the identical subvector
Fcompatible = [1, 0, ∗, 0]T and therefore their subdiagrams are compati-
ble. Note that the terminal nodes in the subdiagram for fcompatible are
permuted in comparison to the subdiagram of fi1 .

282 Design

4.6.3. A Method for Assignment of Unspeci�ed
Values

The method for determining the assignments of unspeci�ed values
through BDD∗ consists in the following.

The incompletely speci�ed function fi(x1, x2, . . . , xn) is represented
by an ordered BDD∗(fi). Nodes belonging to the same level are linked
and stored as linked lists which enables processing of nodes per lev-
els. The procedure starts from the root node and it is performed
top-down over the levels. Compared to the bottom-up methods, this
ensures that larger compatible subfunctions might be captured. The
method is, however, greedy in the sense that it always replaces com-
patible subdiagrams for unspeci�ed subfunctions by subdiagrams for
the corresponding completely speci�ed subfunctions with the smallest
number of non-terminal nodes as illustrated in Example 4.20.

xi

xj xj

1 ∗ 0

0 1

0 1 0 1

xj

1 0

0 1

xi

xj

1 0 ∗

0
1

0 1

xj

1 0

0 1

xi

xj

1 ∗

0
1

0 1

1

xi

xj

1 ∗ 1

0
1

0 1

1

Figure 4.26. Examples of conversions of subdiagrams for incompletely
speci�ed subfunctions into subdiagrams for completely spec-
i�ed functions.

Figure 4.26 shows some characteristic cases of conversion of subdi-
agrams for incompletely speci�ed subfunctions into subdiagrams for
speci�ed functions.

Assignments of Incompletely Speci�ed Functions 283

The method can be described as follows. For each level, we check
the compatibility of subfunctions represented by nodes at the same
level, and if two nodes C1 and C2 represent compatible subfunctions,
i.e., subfunctions that can be converted to each other by a suitable
assignment of unspeci�ed values, we say that these nodes are com-
patible. The compatible unspeci�ed nodes are compared with the
corresponding completely speci�ed nodes, i.e., nodes that are roots of
subdiagrams representing the corresponding completely speci�ed sub-
functions. The replacement is organized so that we �rst try to replace
a node with the simplest possible compatible node. The procedure
can be described by the following steps.

The outer of two nested loops is executed for each level k in the
BDD∗(f), with k ∈ [1, n]. The inner loop calculates for each node C
at the level k the following steps:

1. If the node C is compatible with the constant 0 or 1, replace it
by the corresponding constant, otherwise go to the step 2.

2. If the nodes C1 and C2 pointed by the left and the right outgoing
edge of C are compatible, replace them with a single instance of
a simpler node Q compatible to them both, delete C and point
its incoming edges to Q. Otherwise, go to the step 3.

3. For each node Ci at the level k that appears in the linked list
after the processed node C, replace C and Ci by the simpler
node compatible to both Ci and C.

Note that the same replacement of nodes by simpler compatible nodes
as in Step 2 is used in the method in [190] which is realized as the
Algorithm 3.1 in [190]. By allowing two more options for the replace-
ment as in Step 1 and the Step 3 above, as well as by starting with
the replacement by the simplest possible compatible nodes increases
the possibility to �nd an assignment leading to more compact repre-
sentations. The following example illustrates the proposed method.

Example 4.21. For the incompletely speci�ed function fi in Example
4.19, the truth-vector of the subfunction fi0 represented by the left
subtree of the root node for x1 is:

Fi0 = [1, 0, ∗, 0, ∗, ∗, 0, 1]T .

284 Design

The right subtree consists of a path pointing to constant node for the
unspeci�ed value ∗. Therefore, it represents the subfunction:

Fi1 = [∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗]T .

Thus, obviously we assign these unspeci�ed values as Fi1 = Fi0 . Since
this produces compatible subdiagrams, the node for x1 can be deleted,
a single instance of the subdiagrams is retained, and the node for x2
is declared as the root node.

The next step is to check the compatibility of subdiagrams rooted in
the nodes for the decision variable x3. The truth-vectors of the sub-
functions represented by the left and the right subdiagrams are:

Fi0 = [1, 0, ∗, 0]T , and

Fi1 = [∗, ∗, 0, 1]T .

Since the speci�ed values in these truth-vectors at the elements (1, 1)
are di�erent, the subdiagrams are incompatible. Therefore, we now
process the left and the right subdiagrams rooted in the nodes for x3.

For the left node, the subdiagrams represent subfunctions

Fi0 = [1, 0]T , and

Fi1 = [∗, 0]T .

These subdiagrams are compatible, and we assign the unspeci�ed value
to 1. Therefore, both diagrams represent the same subfunction:

Fs = [1, 0]T .

For the right node for x4, of x3, the subfunctions are

Fi0 = [∗, ∗]T , and

Fi1 = [0, 1]T .

The subdiagrams are compatible, and we assign the unspeci�ed values
as:

Fi0 = Fi1 = [0, 1]T .

The outgoing edges of both non-terminal nodes for x3 point to the
isomorphic subdiagrams and, therefore, these nodes can be deleted.

Assignments of Incompletely Speci�ed Functions 285

In this way, the BDD(fs) for the completely speci�ed function fs is
obtained. The truth-vector of fs is:

Fs = [1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1]T .

Figure 4.24 (d) shows the BDD for fs.

4.6.4. Implementation and Experimental Results

The proposed method is implemented in Algorithm 4.3 that uses the
following functions. The function CreateBDD() is designed to create
the BDD∗(fiu) for the given incompletely speci�ed function fi. The
function CheckCompatible() checks the compatibility of two nodes.
The function GetEqual() returns the node equivalent to the given
two compatible nodes.

Algorithm 4.3 CreateBDD

Require: fi: incompletely speci�ed function
Require: n: number of variable of fi
Ensure: BDD(f): compact BDD of fi
1: BDD∗(fi)← CreateBDD(fi)
2: for k ← 1 to n do . k enumerates the levels of the BDD nodes
3: for all Node at level k do
4: if CheckCompatible(Node, 0) then . constant 0
5: Node← 0
6: else if CheckCompatible(Node, 1) then . constant 1
7: Node← 1
8: else if CheckCompatible(Node.left,Node.right) then
9: Node← GetEqual(Node.left,Node.right)
10: else

11: for all Node1 ∈ NodesOfLevel(k) do
12: if CheckCompatible(Node,Node1) then
13: Node← GetEqual(Node,Node1)
14: end if

15: end for

16: end if

17: end for

18: end for

286 Design

Table 4.18. Code converters

Code converter n0 n r

8421 → 2421 16 12 25.00
8421 → Gray 14 10 28.57
8421 → Hu�man 21 11 47.62
8421 → Exscess 3 16 8 50.00
2421 → 8421 17 8 52.94
Gray → 8421 15 14 6.67
Hu�man → 8421 44 4 90.91
Excess 3 → 8421 17 8 52.94

Average 44.33

The proposed method is applied to the conversion of BDD∗s into
BDDs for the correspondingly determined completely speci�ed func-
tions for three groups of incompletely speci�ed functions, code con-
verters, benchmark functions, and randomly generated incompletely
speci�ed switching functions of ten variables.

Table 4.18 shows the experimental results for code converters. The
assignments are performed on the shared BDD∗s. The column n0
shows the number of non-terminal nodes in the BDDs when all un-
speci�ed values are assigned to 0. The column n shows the number of
non-terminal nodes in the BDDs produced by the proposed algorithm.
The last column r shows the ratio of the number of nodes in these
BDDs.

Table 4.19. Randomly generated functions

% of ∗ n0 n r

10 233.9 215.1 8.04
20 230.2 194.7 15.42
30 222.9 176.5 20.82
40 209.7 157.2 25.04
50 199.0 136.9 31.21
60 185.9 118.8 36.09
70 165.7 94.1 43.21
80 134.9 65.5 51.45
90 99.8 38.4 61.52

Average 32.53

Assignments of Incompletely Speci�ed Functions 287

Table 4.20. Benchmark functions

f In Out n0 n r

Alu2 10 8 180 108 40.00
Alu3 10 8 143 125 12.59
Apla 10 12 221 94 57.47
Bw 5 28 114 98 14.04
Dk17 10 11 145 63 56.55
Dk27 9 9 62 27 56.45
Dk48 15 17 190 61 67.89
Exp 8 18 223 192 13.90
Inc 7 9 89 73 17.98
Mark1 20 31 243 85 65.02
Misex3c 14 14 847 639 24.56
Pdc 16 40 705 313 55.60
Spla 16 46 681 618 9.25
T2 17 16 153 135 11.76
T4 12 8 116 52 55.17

Average 37.36

Tables 4.20 and 4.19 show the results of the assignments for the BDD∗s
for benchmarks and randomly generated functions of ten variables.
For randomly generated functions, the experiments are performed over
groups of ten functions with di�erent percentages of unspeci�ed ele-
ments in truth-vectors. All functions take values 0 and 1 with the
equal probability. Columns n0 and n show the average sizes of the
BDDs for all the functions in the group. It can be seen that the re-
duction ratio increases when the number of unspeci�ed values in the
truth vector increases.

288 Design

4.7. On State Machine Decomposition of

Petri Nets

Remigiusz Wi±niewski Andrei Karatkevich

4.7.1. Petri Nets as a Model of Concurrent Digital
Controllers

The logical control algorithms, which can be implemented by digi-
tal circuits, are often speci�ed by the classical Finite State Machines
(FSM) [18, 20]. However, if such algorithms are concurrent, and es-
pecially if they have a complex structure of branching of the parallel
threads, a concurrent model is needed.

Petri nets [116, 221, 232] can be used as such models. They provide a
semantics allowing to describe discrete concurrent processes in a sim-
ple and convenient way. That's the reason why the Petri nets are
used in some cases of digital design, especially in the design of par-
allel logical control devices and systems [3, 350]. Some programming
languages for logical controllers, such as SFC [181] and PRALU [350],
are based on the binary Petri nets.

One of the approaches to design parallel discrete systems speci�ed
by Petri nets is based on the decomposition of such nets into sequen-
tial components which are implemented as the separate modules (with
proper synchronization between them) [32, 33, 171]. Such an approach
requires to obtain covers of Petri nets by state machines. This prob-
lem has several applications and is also of theoretical interest [221]. It
is worth noting that the Petri nets in their original form, as they were
presented by C.A. Petri in [233], can always be covered by state ma-
chines, however, that is not true for the more general model developed
later [221].

There exist several methods of obtaining a cover of a Petri net by
sequential components. However, most of such methods have expo-
nential computational complexity. On the other hand, it is not clear

On State Machine Decomposition of Petri Nets 289

for many cases, how to check whether a given net can be covered by
the state machine components.

4.7.2. Petri Nets: Main De�nitions

De�nition 4.19. A Petri net [221] is a tuple Σ = (P, T, F,M0) where
P is a �nite nonempty set of places, T is a �nite nonempty set of
transitions (P ∩ T = ∅), F is a set of arcs such that:

F ⊆ (P × T) ∪ (T × P) ,

and M0 is an initial marking.

A Petri net can be considered as a bipartite oriented graph.

A state of a Petri net, called a marking, is de�ned as a function:

M : P → N .

It can be considered as a number of tokens situated in the net places.
A place containing at least one token is called a marked place. Sets
of input and output places of a transition are de�ned respectively as
follows:

•t = {p ∈ P : (p, t) ∈ F} ,
t• = {p ∈ P : (t, p) ∈ F} .

A transition t is enabled and can �re (be executed), if:

∀p ∈ •t : (M(p) > 0) .

Transition �ring removes one token from each input place and adds
one token to each output place. A marking can be changed only by a
transition �ring which is denoted asM1tM2. A Petri net is alive, if for
each transition in each reachable marking M there is a possibility to
execute one of the markings reachable from M . A Petri net is safe, if
in every reachable marking each place contains not more than 1 token.
Any marking of a safe net can be expressed by a Boolean vector. A
place p of a Petri net is unsafe, if a reachable marking M exists such
that M(p) > 1. A Petri net is conservative, if the number of tokens
in all its reachable markings is the same.

290 Design

De�nition 4.20. A State Machine (SM-net) is a Petri net for which
each transition has exactly one input place and exactly one output
place:

∀t ∈ T : | • t| = |t • | = 1 .

De�nition 4.21. An Extended Free-Choice net (EFC-net) is a Petri
net for which every two transitions having a common input place, have
the equal sets of input places:

∀p ∈ P : (t1 ∈ T, t2 ∈ T, p ∈ •t1, p ∈ •t2) => (•t1 = •t2) .

De�nition 4.22. A Petri net Σ′ = (P ′, T ′, F ′,M ′0) is a subnet of a
Petri net Σ = (P, T, F,M0), if and only if:

1 : P ′ ⊆ P ,

2 : T ′ ⊆ T ,

3 : F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)) ,
4 : ∀p ∈ P ′ : M ′0(p) = M0(p) .

De�nition 4.23. An SM-component of a Petri net Σ = (P, T, F,M0)
is its subnet Σ′ = (P ′, T ′, F ′,M ′0) such that:

1 : Σ′ is an SM-net ,

2 : T ′ = {x|x ∈ T, ∃p ∈ P ′ : ((p, x) ∈ F ∨ (x, p) ∈ F)} ,
3 : Σ′ contains exactly one token in the initial marking .

Sometimes one more condition is added, according to which Σ′ should
be strongly connected.

De�nition 4.24. A State Machine cover (SM-cover) of a Petri net
Σ is a set Σ1...Σk of its SM-components such that the union of all sets
of places of the SM-components contains all places of Σ.

De�nition 4.25. A Concurrency graph of a Petri net is such a graph
the nodes of which correspond to the places of the net, and there is an
arc between two nodes if and only if there exists a reachable marking
in which both places corresponding to them are marked.

On State Machine Decomposition of Petri Nets 291

p1

Figure 4.27. A very simple Petri net.

p1 p2

p3(a)

p1 p2

p3

(b)

Figure 4.28. A Petri net (a) and its concurrency graph (b).

4.7.3. Conditions of SM-coverability of Petri Nets

Discussion of Known Conditions

Not every Petri net can be covered by SM-components (for exam-
ple, the trivial net shown in Figure 4.27 does not contain any SM-
component). Some necessary and su�cient conditions of such cov-
erabililty can be formulated, but the authors are not aware of any
general and easy-to-check condition which is both necessary and suf-
�cient. At the same time, in some publications the statements about
conditions of the coverability can be found which are not justi�ed
strictly enough.

Liveness and safeness were mentioned (for example, in [17, 33]) as
the necessary conditions of coverability by strongly connected SM-
components. They are surely not the su�cient conditions. Figure
4.28 demonstrates the simplest alive and safe Petri net which is not
SM-coverable.

Theorem 4.13. The safeness of a Petri net is a necessary condition
of its SM-coverability.

292 Design

(a) (b)

Figure 4.29. A Petri net (a) and SM-components covering it (b).

Proof. Suppose that an unsafe Petri net Σ = (P, T, F,M0) is SM-
coverable, and let the SM-component Σ′ = (P ′, T ′, F ′,M0) contain an
unsafe place. Then there exists a transition t ∈ T such that M1tM2,
both M1 and M2 are reachable in Σ, in M1 P

′ contains one token,
and in M2 it contains more than one token (M1 exists because at M0

Σ′ contains one token by de�nition). Then there are two possibilities:
t ∈ T ′ or t /∈ T ′. In the �rst case t removes one token from P ′ and
puts one token back to P ′, so the number of tokens in P ′ does not
change, and there is a contradiction. The second case contradicts item
2 of De�nition 4.23 of the SM-component.

Liveness, however, is neither a su�cient nor a necessary condition of
the SM-coverability, because two or more State Machines may block
each other. Figure 4.29 shows a Petri net, which is not alive (the
presented marking is a deadlock), but it can be covered by two SM-
components. Of course, question of SM-coverability of the nets which
are not alive is rather of theoretical interest, without an evident ap-
plication to logical design.

In [17] a statement can be found, according to which conservativeness
is a su�cient condition of SM-coverability of a Petri net. The nets
from Fig. 4.28 and Fig. 4.30 are counter-examples for this statement.
Both Petri nets contain exactly two tokens in every reachable marking,
and for both of them an attempt to construct an SM-component leads
to constructing a subnet containing both of those tokens.

An important condition of SM-coverability is based on the correspon-

On State Machine Decomposition of Petri Nets 293

p2

p1 p3

p4 p5

(a)

p2
p1 p3

p4 p5

(b)

Figure 4.30. A Petri net and its concurrency graph.

dence between reachable markings of a net and the maximal cliques
of its concurrency graph. Such a condition is given in [349, 350].

Theorem 4.14. If a Petri net is SM-coverable, then for every reach-
able marking of the net exists a maximal clique of its concurrency
graph corresponding to this marking.

This condition is necessary, but not su�cient. For the net from Figure
4.30 the condition holds, but no SM-cover exists.

It is worth noting that the relation between the reachable markings
and the maximal cliques of concurrency graph in an SM-coverable
net does not have to be a bijection. In the concurrency graph of
an SM-coverable Petri net the cliques may exist which do not cor-
respond to any reachable marking. Such an example demonstrates
Figure 4.31. Here {p2, p4, p5} is a maximal clique in the concurrency
graph, and there is no reachable marking in which all these places are
marked simultaneously. The net nevertheless can be covered by the
SM-components, de�ned by the sets of places {p1, p5}, {p2, p6}, and
{p3, p4}.

In [200, 201] there is a statement according to which a necessary (not
su�cient) condition of SM-coverability of a Petri net is that its con-
currency graph is a perfect graph, i.e., a graph in which the chromatic

294 Design

p1

p2
p3

p4 p5

p6(a)

p1 p2 p3

p4 p5

p6
(b)

Figure 4.31. A Petri (a) net and its concurrency graph (b).

number of every induced subgraph equals the clique number of that
subgraph. This statement is purely empirical. For many SM-coverable
nets, their concurrency graphs belong to this class; indeed, but gen-
erally the statement does not hold. A counter-example is shown in
Figure 4.32. This net can be covered by three SM-components, and
its concurrency graph is not perfect (according to the strong perfect
graph theorem [61], a perfect graph cannot contain a chordless cycle
of length at least �ve, and it is easy to see, that the concurrency graph
in Figure 4.32 (b) contains such a cycle).

In [166] a notion of structural concurrency relation ||A on the set of
places of a Petri net is introduced. The relation ||A can be calculated
in polynomial time for any Petri net (a quick algorithm calculating
this relation is presented in [167]).

Theorem 4.15. [166]. Irre�exibility of the structural concurrency
relation of a Petri net is a necessary condition of its SM-coverability.

The following Theorem, proved by Hack, is probably the most general
known su�cient condition of SM-coverability.

Theorem 4.16. [127, 221, 349]. Every alive and safe EFC-net is
coverable by strongly connected SM-components.

This condition is not necessary. In [3, 17, 317], there are examples of

On State Machine Decomposition of Petri Nets 295

A

A

A

B

B

B

C

C

(a)

B A

A B

C

C

B A
(b)

A

A

A

(c)

C

C

B

B

B

Figure 4.32. A Petri net (a), its concurrency graph (b) and SM-compo-
nents covering the net (c). Letters A, B and C denote places
of 3 SM-components.

SM-coverable nets not belonging to the Extended Free Choice class.
The net shown in Figure 4.32 also presents such an example.

New results on coverability

Below two new conditions of existing of SM-cover for given Petri net
are presented.

296 Design

Theorem 4.17. Let Σ be a conservative Petri net such that every
reachable marking of it corresponds to a maximal clique of its con-
currency graph. Σ is SM-coverable, if the chromatic number of the
concurrency graph is equal to its clique number.

Proof. If the chromatic number of the graph is equal to its clique
number (let it be n), then there exists its coloring using n colors,
and for every maximal clique all n colors are used. As far as there
is a maximal clique for every reachable marking, in every reachable
marking there is exactly one place of each color (and each place has
a color). Hence, such a coloring speci�es an SM-cover of the net.

This condition is su�cient; it is not clear yet, whether it is necessary
(for the conservative nets in which all reachable markings correspond
to the maximal cliques). The answer on this question depends on the
possibility that there is a net which is conservative and SM-coverable,
but the minimal number of SM-components covering it is bigger than
the number of tokens in its reachable markings.

Theorem 4.18. Let be Σ = (P, T, F,M0) an alive and safe Petri net
such that:

∀t1 ∈ T, t2 ∈ T : (•t1 ∩ •t2 6= ∅)⇒ (•t1 ⊆ •t2) ∨ (•t1 ⊇ •t2) ,

∀t1 ∈ T, t2 ∈ T : •t1 ⊂ •t2 ⇒ | • t1| = 1 .

If every place p ∈ P such that:

∃t1 ∈ T, t2 ∈ T : •t1 ⊂ •t2, •t1 = {p}

is a cutvertex of the net graph, then Σ is coverable by strongly con-
nected SM-components.

Proof. If the described condition holds, then every connected com-
ponent of the net graph, obtained by removing the cutvertices, is,
together with the cutvertices incident to the nodes of the component,
an EFC-net by construction. In such a way a cover of Σ by the
EFC-nets can be obtained. Σ is alive and safe, hence, every covering
EFC-net is alive and safe (with M0 as the initial marking or with
one of the cutvertex places marked initially). Every such net can be

On State Machine Decomposition of Petri Nets 297

covered by strongly connected SM-components, according to Theorem
4.16. From such covers a cover for Σ consisting of strongly connected
SM-components can be obtained in an evident way.

4.7.4. Calculation of SM-decompositions of Petri
Nets

Methods of SM-decomposition

The decomposition of a Petri net can be achieved in several ways.
Di�erent decomposition methods are based, among others, on the
transformation of Boolean terms and obtaining prime implicants of
Boolean functions [230], applying BDD [111], covering of a Boolean
matrix presenting reachable markings of the Petri net [340, 349], or
a special kind of Petri net coloring [168]. Most of the mentioned
methods reduce the problem to the set cover problem. Such an ap-
proach can be interpreted as constructing a minimal cover of the set
of places of the Petri net by subsets consisting of the places of the
SM-components. The algorithms di�er in the way of calculating of
the SM-components. Some of them use the methods of symbolic logic
[12, 317]. The main �aw of this approach is the high computational
complexity. The set cover problem is known to be NP-complete, how-
ever, there are good approximate algorithms for this task [64]. The
number of SM-components of a Petri nets depends exponentially (in
the worst case) on the net size. Most of the mentioned methods gen-
erate all possible SM-components. In the method from [317] together
with SM-components the traps not being SM-components can be gen-
erated, which should be dropped before the cover can be constructed.

More popular, the classical approach is based on coloring of the con-
currency graph of a Petri net [17]. The whole algorithm may be
divided into two main parts:

1. Formation of a reachability set : In this step, the concurrency
relation between all places in the Petri net is computed. The
reachability set contains all reachable markings of the net. The
detailed and well described algorithm can be found in [53]. The

298 Design

computational complexity of this stage is exponential [53, 166,
341].

2. Computation of the SM-components: This step is based on the
coloring of the concurrency graph, where the traditional coloring
methods can be applied. According to the results presented in
[341], approximate coloring algorithms (like LF or SL) may be
very e�cient.

Finally, the Petri net is decomposed, using the SM-components which
are achieved during the coloring of its concurrency graph. The main
bottleneck of the presented decomposition method is the �rst stage,
which causes the computational complexity of the whole method being
exponential. Moreover, application of an exact coloring algorithm
makes the second step exponential as well. Therefore, such a method
practically cannot be applied in case of bigger nets (such like one
that models the problem of 8 dining philosophers - the benchmark
Philosophers8 mentioned in the next subsection).

We propose a new method based on the computation of a concurrency
relation and further depth-�rst search (DFS-search):

1. Computation of the concurrency graph: The structural concur-
rency relation ||A between all places in the Petri net is com-
puted. This relation is calculated by the algorithm presented
in [166]. This algorithm does not require the achieving of all
reachable markings of the net, but computes pairwise concur-
rency relations between all places in the net, which is equal to
the usual concurrency relation || for the alive and safe EFC-nets
and || ⊆ ||A in the general case. The relation ||A can be used
for the construction of the SM-decomposition of the Petri net.
According to [166], the calculation of the structural concurrency
relation for the places of a Petri net has polynomial computa-
tional complexity. The result of this stage is the graph of the
structural concurrency the vertices of which correspond to the
places of the Petri net, while its edges refer to the concurrency
relation.

2. Computation of the SM-components: This step is performed via
DFS-search, starting from a place that has not been covered and

On State Machine Decomposition of Petri Nets 299

ignoring all the places which are in the structural concurrency
relation with any of the places already selected for currently
constructed SM-components. The process is repeated until the
obtained SM-components cover all the places of the net. Since
the computational complexity of the DFS-search is linear (in the
number of places of the net) [64], the whole stage can be exe-
cuted in quadratic time (the maximum number of DFS-search
repetitions is equal to the number of places).

The main advantage of the proposed method is its polynomial com-
putational complexity. Moreover, the second step can be executed in
quadratic time. On the other hand, the achieved results may not be
optimal, i.e., the number of achieved SM-components may be larger
than in the case of the application of the traditional solution.

Results of Experiments

The presented algorithm has been veri�ed experimentally. It was
compared with the traditional way of the decomposition, described
in the previous subsection. Three coloring methods were applied for
the experiments. Two of them are classi�ed as greedy algorithms:
Largest-�rst method (LF) and Smallest-last method (SL) [6, 21], while
the remaining one (backtracking algorithm) is exact.

The library of used test examples contains benchmarks that describe
models of real-life systems and devices and also some nets of theoret-
ical signi�cance. They are taken from [17, 35, 149, 174, 221, 232, 310,
341].

Table 4.21 presents the results of experiments obtained for the rep-
resentative benchmarks. The subsequent columns contain execution
time (in milliseconds [ms]) of corresponding algorithms. The num-
ber of SM-components is presented in brackets. Average results were
calculated for all nets in the library.

From Table 4.21, we can see that the proposed method almost always
�nds a solution that is not optimal. On the other hand, it is much
faster than the traditional methods, even based on the greedy coloring.

300 Design

The gain is especially high in case of bigger systems, like philosophers8
where the traditional methods failed to obtain a solution in one hour.
In such a case the proposed decomposition method obtains the result
in less than one second.

Let us point out that further reduction of achieved SM-covers can also
be done in certain cases. This step can be executed in polynomial
time, according to the algorithms presented in [341].

4.7.5. Evaluation of the Results

No good (necessary and su�cient, easy-to check) condition of SM-
coverability of Petri nets is known by the authors. Some of the known
conditions cannot be checked in polynomial time. To verify conditions
described in Theorems 4.14 and 4.17, all reachable markings should
be constructed, for checking the condition of Theorem 4.17 addition-
ally the chromatic number of a graph must be computed which is an
NP-hard problem. The conditions described in Theorems 4.15, 4.16,
and 4.18 seem to be the most practically important, because check-
ing of them is feasible. It has to be underlined that only in some
restricted cases we can answer the question whether a given Petri
net is SM-decomposable. Deep research allowing to obtain more gen-
eral conditions of SM-coverability is important both theoretically and
practically.

Besides of some new conditions of SM-coverability, a novel method
of constructing a minimized SM-cover of alive and safe Petri nets
is presented in this section. There are several methods which allow
to obtain a minimal SM-cover, but they have at least exponential
computational complexity. The proposed method makes an attempt
to complement existing approaches; the method is approximate and
quick.

On State Machine Decomposition of Petri Nets 301

T
a
b
le
4
.2
1
.
T
h
e
re
su
lt
s
of

ex
p
er
im

en
ts

B
en
ch
m
a
rk

N
u
m
b
er

o
f

N
u
m
b
er

o
f

L
F

S
L

B
a
ck
tr
a
ck
in
g

P
ro
p
o
se
d

p
la
ce
s

tr
a
n
si
ti
o
n
s

co
lo
ri
n
g

[1
]

co
lo
ri
n
g

[1
]

co
lo
ri
n
g

[1
]

m
et
h
o
d

cn
cr
r0
0
1

7
4

(3
)
0
.0
2

(3
)
0
.0
3

(3
)
0.
1
1

(4
)
0.
1
0

cn
_
cr
r8

6
4

1
7

(3
2
)
8
4
8
4
0
.2
0

(3
2
)
8
4
8
6
9
.1
0

(�
)
>

1h
(4
8
)
2
8
8
.1
8

IE
C

1
5

1
2

(3
)
0
.4
3

(3
)
0
.4
9

(3
)
0
.7
4

(4
)
0
.6
4

m
ix
er

1
9

1
5

(4
)
1
.5
0

(4
)
1
.6
7

(4
)
2
0
.9
8

(5
)
1
.4
0

m
u
lt
i_
ro
bo
t

9
6

(3
)
0
.0
3

(3
)
0
.0
4

(3
)
0.
1
4

(5
)
0
.3
2

pc
n
cc
p

6
4

(3
)
0
.0
2

(3
)
0
.0
3

(3
)
0.
0
6

(3
)
0
.0
9

p
h
il
o
so
p
h
er
s2

1
4

1
0

(6
)
0
.4
1

(6
)
0
.5
0

(6
)
7
5
3
2
.1
2

(6
)
1
.0
2

p
h
il
o
so
p
h
er
s5

3
5

2
5

(1
5
)
7
8
7
0
.3
0

(1
5
)
7
8
7
3
.0
2

(�
)
>

1h
(1
5
)
3
7
.8
5

p
h
il
o
so
p
h
er
s8

5
6

4
0

(�
)
>

1
h

(�
)
>

1h
(�
)
>

1h
(�
)
2
2
7
.4
5

re
a
ct
o
r_

sm
a
ll

9
8

(2
)
0
.0
9

(2
)
0
.1
1

(2
)
0.
0
9

(3
)
0
.1
6

sp
ee
d
w
a
y

9
7

(3
)
0
.1
2

(3
)
0
.1
4

(3
)
0.
1
6

(3
)
0
.2
2

sp
ee
d
w
a
y_

m
a
cr
o
n
et

5
3

(3
)
0
.0
2

(3
)
0
.0
2

(3
)
0.
0
4

(3
)
0
.0
5

a
ve
ra
ge

1
8
.9
9

1
0
.9
7

(7
.5
3
)
1
7
.6
6

(7
.5
3
)
1
9
.7
1

(�
)
(>

1
h
)[
1
]

(8
.9
8
)
3
.4
9

[1
]
T
h
e
te
st
s
w
er
e
st
o
p
p
ed
,
if
th
e
re
su
lt
w
a
s
n
o
t
o
b
ta
in
ed

in
o
n
e
h
o
u
r.

5. Test

5.1. Boolean Fault Diagnosis with

Structurally Synthesized BDDs

Raimund Ubar

5.1.1. From Functional BDDs to Structural BDDs

A special class of BDDs is presented called Structurally Synthesized
BDD (SSBDD). The one-to-one mapping between the nodes of an
SSBDD and signal paths in the circuits provides new possibilities for
structural fault diagnosis. Two problems are discussed using SSB-
DDs: fault diagnosis and diagnostic test pattern generation in com-
binational circuits for the general case when arbitrary multiple faults
are present. For diagnostic modeling of test experiments, a Boolean
di�erential equation is introduced, and SSBDDs are used for solv-
ing it. To �nd test patterns with good diagnostic properties, a new
concept of test groups is proposed. All faults of any multiplicity are
assumed to be present in the circuit and we don't need to enumerate
them. Unlike the known approaches, we do not target faults as test
objectives. The goal is to verify the correctness of parts of the cir-
cuit. A special attention is given to showing the possibility of simple
and straightforward detection and removing of fault masking e�ects
in testing multiple faults by reasoning the topology of SSBDD.

Within the last two decades BDDs have become the state-of-the-art
data structure in VLSI CAD for representation and manipulation of
Boolean functions. BDDs were �rst introduced for logic simulation
in 1959 [177], and for logic level diagnostic modeling in [8, 324]. In

304 Test

1986, Bryant proposed a new data structure called reduced ordered
BDDs (ROBDDs) [50]. He showed the simplicity of the graph ma-
nipulation and proved the model canonicity that made BDDs one
of the most popular representations of Boolean functions [89, 209,
265]. Di�erent types of BDDs have been proposed and investigated
during decades such as shared or multi-rooted BDDs [211], ternary
decision diagrams (TDD), or in more general, multi-valued decision
diagrams (MDD) [284], edge-valued BDDs (EVBDD) [172], functional
decision diagrams (FDD) [156], zero-suppressed BDDs (ZBDD) [210],
algebraic decision diagrams (ADD) [16], Kronecker FDDs [91, 256],
binary moment diagrams (BMD) [52], free BDDs [24], multiterminal
BDDs (MTBDD) and hybrid BDDs [62], Fibonacci decision diagrams
[288] etc. Overviews about di�erent types of BDDs can be found, for
example, in [89, 154, 265].

Traditional use of BDDs has been functional, i.e., the target has been
to represent and manipulate the Boolean functions by BDDs as ef-
�ciently as possible. Less attention has been devoted to represent
with BDDs the structural properties of the circuits in the form of
mapping between the BDD nodes and the gates, subcircuits or signal
paths of the related circuit implementations. The structural aspect
of logic circuits was �rst introduced into BDDs in [324, 325], where
one-to-one mapping between the nodes of BDDs and signal paths in
the related gate-level circuit was introduced. These BDDs were called
initially alternative graphs [324], and later structurally synthesized
BDDs (SSBDD) [325] to stress the way how the BDDs were synthe-
sized � directly from the gate-level network structure of logic circuits.

The direct mapping between SSBDDs and circuits allows us to model
di�erent test relations and properties of gate level networks like sig-
nal paths, faults in gates, delays on paths, the properties of faults
like masking, equivalence, dominance, redundancy, etc. These issues
cannot be simulated explicitly with �classical� BDDs.

Today's nanoscale systems are characterized by an increasing com-
plexity of testing. Due to the high density of circuits, a manufacturing
defect may result in a fault involving more than one line, and the abil-
ity of the classical Single Stuck-at-Fault (SSAF) model to represent
the real physical defects decreases considerably. On the other hand,
targeting the multiple faults as the test generation objective (MSAF

Fault Diagnosis with Structurally Synthesized BDDs 305

model) becomes even more complex since a n-line circuit may have
3n − 1 faulty situations compared to 2n faulty situations under the
SSAF model.

The problem of multiple fault detection as a research issue dates back
to the seventies. The phenomenon of masking between faults [86]
limits a test set derived for SSAF from detecting MSAF in complex
circuits which may be redundant and may contain a large number of
internal re-convergent fan-outs [4, 280]. A complete test for SSAF, in
general, is often incomplete for MSAF due to fault masking among
MSAFs [137]. Moreover, an undetected SSAF may mask the presence
of an otherwise detectable fault. Therefore, multiple fault detection
has become a necessity, and the test generation for MSAF is of great
interest for achieving high reliability of digital circuits. The prob-
lems of ATPG-based grading of self-checking properties and strong
fault-secureness under the conditions of possible multiple faults are
discussed in [139, 140].

Most approaches to multiple fault test have been tried to reduce the
complexity of handling MSAFs [2, 4, 58, 150, 158, 183, 235, 348].
A totally di�erent idea which is based directly only on the SSAF
model involves two-pattern approach [5, 34, 69, 148]. Test pairs were
proposed to identify fault-free lines. In [163], the insu�ciency of test
pairs was shown to guarantee the detection of multiple faults. To
overcome the de�ciency of test pairs, a new method of test groups
was proposed in [321]. The results of [34, 163, 321] were published in
Russian and have been later never referenced in the Western literature.
Recently in [323, 326], the problem of multiple fault detection by
test groups was again put on the table as one e�cient application of
SSBDDs.

We present in this section a new idea for multiple fault diagnosis in
combinational circuits, which combines the concept of multiple fault
testing by test groups and solving Boolean di�erential equations by
manipulation of Binary Decision Diagrams (BDDs). A discussion is
presented how this approach can be used as a basis for hierarchical
fault diagnosis to cope with the complexity of the problem. All mul-
tiple faults of any multiplicity are allowed to be present in the circuit
and we don't need to enumerate them. Di�erently from known ap-
proaches, we don't target the faults themselves as the objectives of

306 Test

testing. Instead of that, the goal of testing will be to verify the cor-
rectness of a selected part of the circuit. In this way we will be able
to reduce the exponential complexity of the problem characterized by
3n − 1 di�erent possible combinations of faults to be linear with the
size of the circuit under diagnosis.

The rest of this section is organized as follows. First, a description
of the model of SSBDDs for representing digital circuits is presented.
Thereafter we formulate the diagnosis problem as a problem of solving
a system of Boolean di�erential equations. We consider the general
case of presence of any combination of multiple faults, and show how
the system of equations can be solved by manipulations of SSBDDs.
Then we discuss the problem of fault masking which makes fault diag-
nosis extremely di�cult in case of multiple faults. A topological view
on the activated paths' interaction in SSBDDs is introduced, which
makes it easier to understand the phenomenon of multiple fault mask-
ing and allows to create straightforward algorithms for generating spe-
cial types of test groups for multiple fault detection. Finally, it will be
shown how the fault diagnosis with test groups can be supported by
solving Boolean di�erential equations using SSBDDs to facilitate hi-
erarchical fault diagnosis. The last subsection of this section presents
some experimental data to demonstrate the feasibility of using test
groups for multiple fault diagnosis.

5.1.2. Structurally Synthesized Binary Decision
Diagrams

Mapping a digital circuit into SSBDD

Let us have a gate level combinational circuit with fan-outs only at
inputs. Consider the maximum fan-out free region (FFR) of the circuit
with inputs at the fan-out branches and fan-out free inputs. Let be
n the number of the inputs of FFR. For such a tree-like sub-circuit
with n inputs we can create an SSBDD with n nodes by sequential
superposition of BDDs of gates in the circuit [325].

Example 5.22. In Figure 5.1 we have a circuit with an FFR-module

Fault Diagnosis with Structurally Synthesized BDDs 307

x1

x11 ≡ 1

x2
x3

x4
x5

x6
x7

x61 ≡ 0

y

x22 ≡ 1

x8

x9

x42 ≡ 0

Figure 5.1. Combinational circuit.

which can be represented by the Boolean expression:

y = x11(x21x3 ∨ x41x5)(x61 ∨ x71)∨
x22(x12x8 ∨ x62x9)(x42 ∨ x72) , (5.1)

and as the SSBDD of Figure 5.2. The literals with two indices in the
formula and in the SSBDD denote the branches of fan-out stems, and
represent signal paths in the circuit. In this example, there are only
two branches for each fan-out in the circuit; the second index 1 is
for the upper branch, and the second index 2 is for the lower branch.
For instance, the bold signal path in Figure 5.1 is represented by the
literal x12 in the formula and by the bold node x12 of the SSBDD in
Figure 5.2.

The variables in the nodes of SSBDD, in general, may be inverted.
They are inverted when the number of inverters on the corresponding
signal path in the circuit is odd. The two terminal nodes of the SSBDD
are labeled by Boolean constants #1 (truth) and #0 (false).

Every combinational circuit can be regarded as a network of modules,

308 Test

y x11 x21 x3 x61 #1

x41 x5 x71

x22 x12 x8 x42

x62 x9 x72

#0

Figure 5.2. Structurally Synthesized BDD for the circuit in Figure 5.1.

where each module represents an FFR of maximum size. This way
of modeling of the circuit by SSBDDs allows to keep the complexity
of the model (the total number of nodes in all graphs) linear to the
number of gates in the circuit.

SSBDD model. The SSBDD model for a given circuit is a set of
SSBDDs, where each SSBDD represents an FFR, plus a set of single
node SSBDDs, where each SSBDD represents a primary fan-out input.

As a side e�ect of the synthesis of SSBDDs, we build up a strict one-
to-one relationship between the nodes in SSBDDs and the signal paths
in the modules (FFRs) of the circuit.

Since all the stuck-at faults (SAF) at the inputs of an FFR form a
collapsed fault set of the FFR, and since all these faults are represented
by the faults at the nodes of the corresponding SSBDD, it follows that
the synthesis of an SSBDD, described in [325] is equivalent to the fault
collapsing procedure similar to fault folding [327].

The direct relation of nodes to signal paths allows to handle easily
such problems like fault modeling, fault collapsing, and fault masking
by SSBDDs .

Fault Diagnosis with Structurally Synthesized BDDs 309

Logic simulation with SSBDDs. The tracing of paths on an SSBDD
can be interpreted as a procedure of calculating the value of the output
variable y for the given input pattern. The procedure is carried out
by traversing the nodes in the SSBDD, depending on the values of the
node variables for the given input pattern.

By convention, the value 1 of the node variable means the direction to
the right from the node, and the value 0 of the node variable means
the direction down.

The simulation of the input pattern begins in the root node, and the
procedure will terminate in one of the terminal nodes #1 or #0. The
value of y will be determined by the constant in the terminal node
where the procedure stops.

Example 5.23. Consider again the circuit in Figure 5.1 and its SS-
BDD in Figure 5.2. For the input pattern 100111010 (123456789), a
path (x11, x21, x41, x5, x61,#1) in the SSBDD is traced (shown by bold
edges in Figure 5.2), which produces the output value y = 1 for the
given pattern.

Topological diagnostic modeling with SSBDD

Let be given an FFR-module of a circuit which implements a function
y = f(x) where x is the set of input variables of the module, and is
represented by an SSBDD with a set of nodesM . Let x(m) ∈ x be the
variable at the node m ∈ M , and let m0 and m1 be the neighbors of
the node m for the assignments x(m) = 0 and x(m) = 1, respectively.

Activation of SSBDD paths. Let be Tt a pattern applied at the
moment t on the inputs x of the module. The edge (m,me) in the
SSBDD with e ∈ {0, 1}, is called activated by Tt if x(m) = e. A path
(m,n) is called activated by Tt if all the edges which form the path
are activated.

To activate a path (m,n) means to assign by Tt proper values to the
node variables along this path. Path activation can be interpreted as
a reverse task to SSBDD simulation.

310 Test

Test generation. A test pattern Tt will detect a single stuck-at-fault
(SSAF) x(m) ≡ e, e ∈ {0, 1}, if it activates in the SSBDD three paths
(see Figure 5.3): a path (m0,m) from the root node m0 to the node m
under test, two paths (m0,#0) and (m1,#1) for fault-free and faulty
cases, and satis�es the fault activation condition x(m) = e⊕ 1.

Assume e = 1. To simulate the test experiment for Tt, generated for
the fault x(m) ≡ 1, �rst, the path (m0,m) will be traced up to the
node m which will �serve as a switch�. If the fault is missing, the path
(m0,#0) will be traced, otherwise if the fault is present, the path
(m1,#1) will be traced.

Note, that a test pattern Tt for a node fault x(m) ≡ e detects sin-
gle SAFs on all the lines of the signal path in the circuit, which is
represented by the node m in the SSBDD.

Example 5.24. Consider the fault x11 ≡ 1 in the circuit of Figure 5.1
represented by the fault x(m) = x11 ≡ 1 in the SSBDD in Figure 5.2.
Since the node m under test and the root node are the same, m = m0,
the �rst path (m0,m) collapsed, and needs no activation. Hence, to
generate a test pattern Tt for x11 ≡ 1, we have to activate only two
paths instead of three: (m0,#0) and (m1,#1), as an example, the
paths (x22 = 0,#0) and (x21 = 0, x41 = 1, x5 = 1, x61 = 1,#1),
respectively. For the node under test we take x11 = 0 which means
that the expected value will be y = 0. Since the fault x11 ≡ 1 is present,
the path (x11, x21, x41, x5, x61,#1) will be traced when simulating the
test experiment, and the value #1 in the terminal node will indicate
the presence of the fault.

Fault simulation of a test pattern Tt on the SSBDD is carried out by
the following procedure:

1. The path (m0,#e) where e ∈ {0, 1}, activated by the test pat-
tern Tt , will be determined.

2. For each node m ∈ (m0,#e), its successor m∗ /∈ (m0,#e) is
found, and the path (m∗,#e∗) from m∗ up to a terminal node
#e∗ will be simulated; if e∗ 6= e then the fault of the node m is
detectable by Tt , otherwise not.

Fault Diagnosis with Structurally Synthesized BDDs 311

m0

m m1 #1

m0

#0

Node under
test

y

Path (m0,m)

x(m)=0

Path (m0,#0)

x(m)=1 Path (m1,#1)

Figure 5.3. Topological view on testing of nodes on the SSBDD.

Example 5.25. Consider the SSBDD in Figure 5.2. For the input
pattern Tt = 100111010(123456789), a path (x11, x21, x41, x5, x61,#1)
in the SSBDD is activated, which produces e = 1. According to Step
2 we �nd that the nodes x11, x41, and x5 have all the same successor
x22, and by simulating the path (x22,#e

∗) we �nd that e∗ = 0, which
means that the test pattern is able to detect the faults x11 ≡ 0, x41 ≡ 0,
and x5 ≡ 0, since e 6= e∗. The fault x61 ≡ 0 is as well detectable,
since the activated path (x7, x22,#e

∗) gives e∗ = 0. It is easy to
see that the fault x21 ≡ 1 is not detectable since the activated path
(x3, x41, x5, x61,#e

∗) produces the same result e∗ = 1 as in the case
when the node x21 is correct.

Fault diagnosis. Let be a test pattern Tt carried out during the
diagnosis experiment. First, we relate to Tt the set of faults:

R(Tt) = {x11 ≡ 0, x41 ≡ 0, x5 ≡ 0, x61 ≡ 0}

detectable by Tt. This set of faults was calculated by fault simulation.
We have now two possibilities:

1. If the test pattern Tt fails, we will suspect all the faults of R(Tt)
as faulty. To have a better diagnostic resolution we have to carry
out additional test patterns to prune the set of candidate faults
as much as possible.

2. If the test pattern Tt passes, it would be logical to conclude from

312 Test

this result that the faults of R(Tt) are not present. However, it
is correct only in the case when it is assumed that the circuit
may have always only a single fault.

Example 5.26. Consider the circuit in Figure 5.1 and its SSBDD in
Figure 5.2. Assume that the circuit contains four faults:

R = {x11 ≡ 1, x22 ≡ 1, x42 ≡ 0, x61 ≡ 0} .

Let us apply again to this faulty circuit the test pattern Tt = 100111010
(123456789). Since (x61 ≡ 0) ∈ R(Tt), we should expect that the test
pattern will fail. However, the test will pass because the detectable
fault (x61 ≡ 0) ∈ R(Tt) ∩R, is masked by the fault (x22 ≡ 1) ∈ R.

To avoid fault masking during the test experiments, more advanced
methods for test pattern generation and fault diagnosis must be used.

5.1.3. Fault Diagnosis in the General Case of
Multiple Faults

Boolean Di�erential Equations and diagnosis

Consider a single output combinational circuit with n inputs as a
Boolean function:

y = F (x1, x2, . . . , xn) . (5.2)

A test experiment with the circuit can be modeled as a (total) Boolean
di�erential [316, 322]:

dy = F (x1, x2, . . . , xn)⊕
F ((x1 ⊕ dx1), (x2 ⊕ dx2), . . . , (xn ⊕ dxn)) . (5.3)

When applying a test pattern Tt, the diagnosis on the basis of this
experiment can be represented as a logic assertion:

dyt = F t(dxt1,dx
t
2, . . . ,dx

t
n) , (5.4)

where
dxtj ∈ {dxj ,dxj} . (5.5)

Fault Diagnosis with Structurally Synthesized BDDs 313

dyt ∈ {0, 1} denotes the test result: dyt = 0, if the test pattern Tt
has passed, and dyt = 1, if the test pattern Tt has failed, dxj means
that there is a suspected fault related to xj , and dxj means that no
fault at xj is suspected. The fault type under question is de�ned by
the value of xj at the given pattern.

To create the possibility of manipulations with faults of di�erent types,
let us introduce for each variable xj a set of suspected diagnostic
states:

DV (xj) = {dx0j ,dx
0

j ,dx
1
j ,dx

1

j ,dxj} , (5.6)

where the assertions dx0j ,dx
0

j ,dx
1
j ,dx

1

j , and dxj , which may be true or
false, have the following meanings: the fault xj ≡ 1 is suspected (the
upper index at dxj means the value of xj at the given test pattern),
the fault xj ≡ 1 is not suspected, the fault xj ≡ 0 is suspected, the
fault xj ≡ 0 is not suspected, and no faults are suspected at the
variable xj , respectively.

Let us introduce on the basis of (5.3) the following diagnostic equation
as a true assertion:

D(Tt) = dyt ⊕ (yt ⊕ F t) = 1 . (5.7)

Assume, we have carried out a test experiment T = (T1, T2) with two
test patterns, and we have got the following test results (dy1,dy2),
respectively. The statement about fault diagnosis D(T) based on the
test T can be calculated from the logic multiplication of two assertions:

D(T) = D(T1) ∧D(T2) = 1 . (5.8)

For processing the diagnosis equations (5.8), we can use the 5-valued
algebra depicted in Table 5.1, to �nd out the inconsistencies of two
assertions and to carry out all the possible simpli�cations in (5.8).

If the �nal reduced assertion D(T) will consist of a single DNF term,
the diagnosis statement is unambiguous. More than one terms will
mean ambiguity. The more test patterns we will use in the test ex-
periment, the less ambiguous the diagnosis will become.

Example 5.27. Consider the circuit of Figure 5.4, and the diagnostic
equations of test experiments after each test pattern in Table 5.2.

314 Test

Table 5.1. 5-valued algebra for calculating Boolean di�erentials

dx0 dx
0

dx1 dx
1

dx

dx0 dx0 ∅ ∅ dx0 ∅

dx
0 ∅ dx

0
dx1 dx dx

dx1 ∅ dx1 dx1 dx0 ∅

dx
1

dx0 dx ∅ dx
1

dx

dx ∅ dx ∅ dx dx

x1
x2

x3

x21

x22

y

Figure 5.4. Combinational circuit.

Table 5.2 illustrates the course of the diagnostic process if all test
patterns pass:

• After applying the �rst two test patterns, we can state unam-
biguously that the signal path from the input x1 up to the output
y is working correctly, and the fault x21 ≡ 0 is missing.

• After the third test, we know that the fault x21 ≡ 1 is as well
missing. After the 5th test we can state that the circuit is func-
tioning correctly.

General Diagnostic Equation

Formula (5.3) represented in a vector form:

dy = F (x)⊕ F (x⊕ dx) (5.9)

can be regarded as a General Diagnostic Equation, since it models
simultaneously three main problems of testing: test pattern genera-

Fault Diagnosis with Structurally Synthesized BDDs 315

Table 5.2. Diagnostic process with 5 passed test patterns

Tt x1 x2 x3 y Diagnostic assertions

T1 0 1 1 0 (dx
0

1 ∨ dx121)(dx122 ∨ dx
1

3) = 1

T2 1 1 1 1 dx
1

1dx
1

21 ∨ dx
1

22dx13 = 1

D2 = D(T1, T2) dx1dx
1

21(dx122 ∨ dx
1

3) = 1

T3 1 0 1 0 (dx11 ∨ dx
0

21)(dx
0

22 ∨ dx
1

3) = 1

D3 = D(T1, T2, T3) dx1dx21(dx
1

3 ∨ dx
0

22dx122) = 1

T4 0 1 0 1 dx01dx
1

21 ∨ dx
1

22dx
0

3 = 1

D4 = D(T1, T2, T3, T4) dx1dx21dx3dx
1

22 = 1

T5 0 0 0 0 (dx
0

1 ∨ dx
0

21)(dx
0

22 ∨ dx03) = 1

D5 = D(T1, T2, T3, T4, T5) dx1dx21dx22dx3 = 1

tion, fault simulation, and fault diagnosis, depending what is given
and what is to �nd by solving the equation.

Let us give the following interpretations to the variables in the equa-
tion (5.9):

• dy � is the binary result of the test experiment,

• x � is the test vector applied to the circuit inputs during the
test experiment, and

• dx � is the fault vector for the inputs in the 5-valued alphabet.

The three problems modeled by Equation (5.9) are as follows:

1. Test generation: dx is given and x is to be found whereas it
is assumed that dy = 1. By dx it is possible to de�ne any
combination of multiple faults. Traditionally, test patterns are
generated for single faults, in this case one dxi = 1 is given, and
for all other dxj ∈ dx, j 6= i, we have dxj = 0.

316 Test

2. Fault diagnosis: x is given and dx is to be found whereas dy = 0
if the test pattern passes, and dy = 1 if the test pattern fails.

3. Fault simulation as a special case of fault diagnosis, where it is
assumed that dy = 1, as for test generation.

Test generation is an easy task in this sense, because only a single
solution of the equation from all possible solutions is su�cient (since
only a single test pattern is needed to detect a particular fault). In
case of fault diagnosis, a single solution is preferred as well, which
would mean an exact (multiple or single) fault diagnosis statement.
In most cases, the solution will be, however, a disjunction of possible
candidate faulty cases. The more terms we have in the solution, the
less is the diagnostic resolution.

Solving Boolean Di�erential Equations with SSBDD

BDDs have been proven to be an e�cient data structure for manip-
ulations with Boolean functions, [50] and several e�cient tools for
their calculation were developed. Since the diagnostic equations (5.7)
and (5.8) represent Boolean expressions, we can easily �nd the �nal
diagnostic assertions by manipulations of BDDs, which allows us to
avoid the explosion of the expressions (5.8) when the parentheses are
opened.

Algorithm 5.1 Fault diagnosis

Require: T = {T1, T2, . . . , Tn}: set of n test patterns
Ensure: ∀k = 1, . . . n : Dk: diagnosis after the experiment with

the sequence of test patterns T1, . . . , Tk
1: D(T1)← CreateSSBDD(T1)
2: D1 ← D(T1) . diagnosis after the �rst test experiment
3: for k ← 2, . . . , n do
4: D(Tk)← CreateSSBDD(Tk)
5: Dk ← MergeSSBDD(Dk−1, D(Tk)) . Dk = Dk−1 ∧D(Tk)
6: Dk ← SimplifySSBDD(Dk) . based on Table 5.1
7: end for

Example 5.28. Consider the two SSBDDs of Figure 5.5 represent-

Fault Diagnosis with Structurally Synthesized BDDs 317

dx
0
1

dx1
22 #1

dx1
21 dx

1
3

#0

dx
0
1

dx1
22 dx

1
1 dx

1
21

#1

dx1
21 dx

1
3 dx

1
22

dx1
3

#0

dx
1
1 dx

1
21

#1

dx
1
22

dx1
3

#0

dx1 dx
1
21

dx1
22 #1

dx
1
3

#0

D(T1) D(T1, T2) - before manipulations

D(T2) D(T1, T2) - after manipulations

Figure 5.5. SSBDDs for the diagnostic experiment D(T1, T2).

ing D(T1) and D(T2) in Table 5.2 (in the �rst two rows). The labels
on the edges of the SSBDDs are omitted, the right-hand edge from a
node corresponds to the value 1, and the down-hand edge corresponds
to the value 0 of the node variable. The graph for D(T1) contains
four 1-paths, the graph for D(T2) two, and the result of the function
MergeSSBDD(D1, D(T2)) is a SSBDD that contains eight 1-paths. By
processing the paths the function SimplifySSBDD(D2) can exclude 6
inconsistent paths, and create a SSBDD with two 1-paths, which rep-
resents a statement about two possible diagnostic cases:

dx1dx
1

21dx122 = 1 and dx1dx
1

21dx
1

3 = 1 .

5.1.4. Fault Masking in Digital Circuits

Consider again the combinational circuit of Figure 5.1 which contains
four stuck-at faults: x11 ≡ 1, x22 ≡ 1, x42 ≡ 0, and x61 ≡ 0. All the
faults are depicted also in SSBDD of Figure 5.2.

318 Test

Table 5.3. Test patterns for selected faults in Figure 5.1

Test patterns Tt Target Masking
t

x1 x2 x3 x4 x5 x6 x7 x8 x9 faults faults

1 0 0 - 1 1 1 0 1 0 x11 ≡ 1 x61 ≡ 0

2 1 0 - 1 1 1 0 0 1 x61 ≡ 0 x22 ≡ 1

3 0 0 1 1 0 1 1 - 1 x22 ≡ 1 x42 ≡ 0

4 0 1 0 1 1 1 1 - 1 x42 ≡ 0 x11 ≡ 1

5 1 0 - 1 1 0 0 1 0 x22 ≡ 1 ∅

Cycle of fault masking

x11≡1 x61≡0

x42≡0 x22≡1 T5

T1

T4

T3

T2

How to �nd this pattern?

x22≡1 can be detected by T5

Figure 5.6. Four faults masking each other in a cycle.

Example 5.29. Table 5.3 represents in the �rst four rows four test
patterns targeting these faults ("target faults" in column 11) as single
faults. All the four test patterns will pass and not detect the target
faults because of circular masking of each other (column 12). The
cycle of masking is shown in Figure 5.6.

However, there exists another test pattern T5 (in Table 5.3 and Figure
5.6) which would be able to "break the masking cycle" by detecting the
fault x22 ≡ 1, one of the targeted four faults. The problem is how
to �nd this pattern, or in general, how to �nd a test pattern for a
given fault, which would be immune against masking by any possible
combination of multiple faults.

As already mentioned above, a method has been proposed to avoid
fault masking by using two pattern test pairs where the �rst pattern
has the task to test the target fault, and the second pattern has the

Fault Diagnosis with Structurally Synthesized BDDs 319

Table 5.4. Test pairs for testing signal paths in the circuit in Figure 5.1

Test pairs TPt = {Tt, Tt+1} Target Target Masking
t

x1 x2 x3 x4 x5 x6 x7 x8 x9 faults wires faults

1 0 0 - 1 1 1 0 1 0 x11 ≡ 1
x11

x61 ≡ 0

2 1 0 - 1 1 1 0 1 0 x61 ≡ 0 x22 ≡ 1

3 1 0 - 1 1 1 0 0 1 x61 ≡ 0
x61

x22 ≡ 1

4 1 0 - 1 1 0 0 0 1 x22 ≡ 1 x42 ≡ 0

5 0 0 1 1 0 1 1 - 1 x22 ≡ 1
x22

x42 ≡ 0

6 0 1 1 1 0 1 1 - 1 x42 ≡ 0 x11 ≡ 1

7 0 1 0 1 1 1 1 - 1 x42 ≡ 0
x42

x11 ≡ 1

8 0 1 0 0 1 1 1 - 1 x11 ≡ 1 x61 ≡ 0

9 1 0 - 1 1 1 0 1 0 x61 ≡ 0
x61

x22 ≡ 1

10 1 0 - 1 1 0 0 1 0 x22 ≡ 1 ∅

role of testing the possible masking faults [34, 69]. The main idea of
this concept is to conclude from the passed test pair the correctness
of the wire xi under test, i.e., the absence of the two faults xi ≡ 0 and
xi ≡ 1.

Unfortunately, not always the test pairs are working as expected [163,
321].

Example 5.30. The �rst 8 rows in Table 5.4 contain four test pairs
targeting the same four faults as shown in Figure 5.1 ("target faults"
in column 11) by testing the corresponding wires x11, x22, x42, and x61
for both faults SAF-1 and SAF-0. None of the test pairs will detect any
of the four faults (see Figure 5.7), all 8 patterns will pass returning
the message that all four wires are working correctly, however, this is
not the case.

The �rst test pair TP1(T1, T2) consisting of test patterns T1 and T2
is not able to prove the correctness of the wire x11: the �rst pattern
T1 targeting the fault x11 ≡ 1 will pass because of the masking fault
x61 ≡ 0 whereas the second pattern T2 which targets the masking fault
x61 ≡ 0 will pass because of another masking fault x22 ≡ 1. The test

320 Test

Cycle of fault
masking

x11 x61

x42 x22 Test Pair TP9(T9, T10)

Solution:

Test Group TG (including T10)
proves the correctness of x11 and x61

x61≡0

TP1(T1, T2)

TP7(T7, T8)
x11≡1

x42≡0

TP5(T5, T6)

TP3(T3, T4)
x22≡1

How to �nd T10?

x22≡1 can be detected by
T10, or by TP9(T9, T10)

Figure 5.7. Breaking the fault masking cycle.

pair fails to prove the correctness of the wire under test.

In a similar way the test pair TP3(T3, T4) will fail at testing the wire
x61, the test pair TP5(T5, T6) will fail at testing the wire x22, and the
test pair TP7(T7, T8) will fail at testing the wire x42. The cycle of
masking closes.

There is however a test pair TP9(T9, T10) in Table 5.4 and Figure 5.7
which would be able to "break the masking cycle" by testing the wire
x61, and detecting the fault x22 ≡ 1, one of the four faults of Fig-
ure 5.1. The problem is how to �nd the test pair TP9 involving the
pattern T10, or in general, how to �nd a test pair for a given wire,
which would be immune against masking by any possible combination
of multiple faults.

The answer lays in a solution based on constructing test groups instead
of test pairs [323, 326]. A possible solution for this example is pre-
sented in Table 5.5 as a set of three test patterns which are targeted to
test the wires x5 and x61, being immune to the masking fault x22 ≡ 1.
The �rst pattern T0 will pass and not detect the fault x61 ≡ 0, because
of the masking fault x22 ≡ 1, the second pattern T1 will fail as well
when trying to detect the fault x22 ≡ 1 because of x6 is changing its
value, however, the third pattern T2 will detect x22 ≡ 1 and break in
this way the cycle of masking.

Fault Diagnosis with Structurally Synthesized BDDs 321

Table 5.5. Partial test group which detects all the four faults in Figure 5.1

t
Test group TG = {Tt, Tt+1, Tt+2} Target Target Masking

x1 x2 x3 x4 x5 x6 x7 x8 x9 faults wires faults

0 1 0 0 1 1 1 0 1 0 (x5 ≡ 0),
x61 ≡ 0

x61, x5

x61 ≡ 0 masked
by x22 ≡ 1

1 1 0 0 1 1 0 0 1 0 x22 ≡ 1,
(x61 ≡ 1)

x22 ≡ 1
not detected

2 1 0 0 1 0 1 0 1 0 x22 ≡ 1,
(x5 ≡ 1)

x22 ≡ 1
detected

Let us describe shortly the main idea of constructing the test groups
[323, 326], i.e., how to �nd the third test pattern in this example which
allows to break the masking cycle.

5.1.5. Topological View on Fault Masking

The concept of Test Groups

De�nition 5.26. Let us introduce the terms:

1. full test group TG = {T0, T1, . . . , Tk} ,

2. main pattern T0 ∈ TG of the test group, and

3. subset of co-patterns TG∗ = {T1, . . . , Tk} ⊂ TG of the test
group.

The main pattern T0 activates a main path L0 = (m0,#e) in a
SSBDD from the root node m0 to one of the terminal nodes #e, e ∈
{0, 1}, and each co-pattern Ti activates a co-path Li = (m0,#(¬e))
through the node mi ∈ L0, so that all Ti will di�er from T0 only in
the value of x(mi).

The test group TG has the target to test a subset of nodes:

MTG = {m1, ...,mk} ⊆ L0 ,

322 Test

where at T0, for all i = 1, . . . , k : x(mi) = e. T0 has the target to test
all the faults x(mi) ≡ ¬e, mi ∈MTG, and each co-pattern Ti has the
target to test the fault x(mi) ≡ e. The main condition of the test
group TG is that all the variables which do not belong to the nodes
MTG = {m1, . . . ,mk} ⊆ L0 should keep the same value for all the
patterns in TG.

Example 5.31. Table 5.6 depicts the test group

TG = (T0, T1, T2, T3, T4) .

Let D0-DDD010 (123456789) be a symbolic representation of the test
group where D = 1 in T0, and for other Tt, only one of the D-s is
equal to 0.

The main pattern T0 activates the main path

L0 = (x11, x21, x41, x5, x61,#1)

shown by bold edges in Figure 5.2. TG has the target to test the subset
of nodes:

MTG = {x11, x41, x5, x61}
in the SSBDD, particularly, x11 ≡ 0, x41 ≡ 0, x5 ≡ 0, x61 ≡ 0 by T0,
x11 ≡ 1 by T1, x41 ≡ 1 by T2, x5 ≡ 1 by T3, and x61 ≡ 1 by T4.
Consequently, according to the de�nition of SSBDD, this test group
tests all the SSAF on the signal paths starting on the inputs of the
FFR x11, x41, x5, x61 up to the output y of the circuit.

Note, the values of the other variables x2, x7, x8, x9, not belonging
to the main path L0, remain unchanged for TG. The values of the
variables which are not essential for creating the test group, e.g., x3,
may remain don't care, however if assigned they have to be stable for
all of Tt ∈ TG.

Theorem 5.19. A full test group TG for a subset of nodesMTG ⊆ L0

is robust with respect to any MSAF in the corresponding combinational
circuit.

Proof. The proof is given in [323].

Fault Diagnosis with Structurally Synthesized BDDs 323

Table 5.6. Full test group for testing an SSBDD path in Figure 5.2

t
Test group TG for testing MTG

Tested
faults

Masking
faultsx1 x2 x3 x4 x5 x6 x7 x8 x9

T D 0 - D D D 0 1 0

0 1 0 - 1 1 1 0 1 0 all ≡ 0 x22 ≡ 1

1 0 0 - 1 1 1 0 1 0 x11 ≡ 1 x61 ≡ 0

2 1 0 - 0 1 1 0 1 0 x41 ≡ 1 ∅
3 1 0 - 1 0 1 0 1 0 x5 ≡ 1 ∅
4 1 0 - 1 1 0 0 1 0 x61 ≡ 1 ∅

Theorem 5.19 gives su�cient conditions for generating test patterns
immune to fault masking at any combination of MSAF. However, it
is not always necessary to create the full test groups for detecting
multiple faults.

De�nition 5.27. Consider a full test group TG = {T0, TG∗} with
main pattern T0, and a set of co-patterns TG∗ = {T1, . . . , Tk}. Let us
call any subset TGp = {T0, TG∗p} where TG∗p ⊂ TG∗, a partial test

group.

De�nition 5.28. Let us introduce a term activated masking path.
Note that the role of each co-pattern Ti ∈ TG∗ of the partial test
group TG∗ is to keep the masking paths, which may corrupt the result
of the main pattern T0, activated. Activation of the masking path is
the necessary and su�cient condition for detecting the faults targeted
by the test group.

Consider a skeleton of the SSBDD in Figure 5.8 (a) with the root
node m0, two terminal nodes #0, #1, and two faulty nodes a ≡ 0,
c ≡ 1. The dotted lines represent activated paths during a test pair
TP = {T0, T1} which has the goal to test the correctness of the node
a. T0 is for activating the correct path L1 = (m0, a,#1) for detecting
a ≡ 0 with expected teh test result #1. If the fault is present, then
instead of L1, a �faulty� path L0 = (a ≡ 0, c,#0) should be activated
with the faulty result #0.

In case of a masking fault c ≡ 1 on L0, a masking path LM = (a, c,#1)

324 Test

m0

a≡0

c≡1

#0

#1

L0

LM

L1

m0

a≡0

c≡1

#0

b

a

#1

L0

LM

L1

L′M

(a) (b)

Figure 5.8. Topological view: (a) test pair, (b) test group.

will be activated, and a ≡ 0 will not be detected by T0. However, at
T1 the masking path LM remains activated because of the masking
fault c ≡ 1, and the wrong test result #1 will indicate the presence of
a masking fault in the circuit.

Both patterns of TP = {T0, T1} will pass and not detect any faults if
the masking path LM will contain a node labeled by the same variable
as the tested node. For example, in Figure 5.8 (b), both L1 and LM
contain a node with the same variable a, which is the reason why the
test pair is not su�cient for detecting the multiple fault {a ≡ 0, c ≡ 1}.
In this case the co-pattern T1 of the test pair TP is not able to keep
the masking path activated.

To overcome the problem, it would be necessary and also su�cient to
include into the set of nodes to be tested by a partial test group at
least one node which is labeled by a variable not labeling any node
on LM . For example, in Figure 5.8 (b), it would be su�cient for
detecting the multiple fault {a ≡ 0, c ≡ 1} to generate the partial test
group for testing the nodes {a, b}.

Multiple Fault Testing by Partial Test Groups

Theorem 5.20. A partial test group TG′ ⊆ TG for a subset of nodes
M ′TG ⊆ MTG is robust with respect to any MSAF if for each possible

Fault Diagnosis with Structurally Synthesized BDDs 325

masking path LM , there exists a node m ∈ M ′TG, so that no node on
LM will have the same variable x(m).

Proof. Indeed, suppose, the main test pattern T0 ∈ TG′ does not de-
tect a fault A because of another fault B which activates a masking
path LM . According to De�nition 5.26 of test groups, each co-pattern
Ti ∈ TG′ di�ers from T0 in a value of a single variable over the vari-
ables ofM ′TG. Suppose Ti is testing the nodem labeled by the variable
x(m). Since LM does not contain any node labeled by the variable
x(m), it remains activated during Ti and, hence, provides the same
result for Ti as it was for T0. This means that the pattern Ti has de-
tected the masking fault B . The same considerations hold for every
possible masking path.

Corollary 5.2. The test pair is a special case of the partial test group
where |M ′TG| = 1.

Algorithm 5.2 Generation of a robust test group

Require: TG′ ⊆ TG = {T0, TG∗}: partial test group
Ensure: TGr ⊆ TG: robust test group
1: for all Tk ∈ TG′ \ T0 do . all masking paths
2: Lk ← CoPath(Tk)
3: if Lk does not satisfy the conditions of Theorem 5.20 then
4: if TG′ can be extended according Theorem 5.20 then
5: TG′ ← Extend(TG′, Ti) . according Theorem 5.20
6: else

7: Lk ← ∅ . masking path Lk is redundant [323]
8: return ∅ . there is no robust test group of TG′

9: end if

10: end if

11: end for

12: TGr ← TG′

13: return TGr

Example 5.32. Figure 5.9 presents a topological view based on a
skeleton of an SSBDD on di�erent possibilities of fault masking. L0

represents a main path of a possible test group as a basis for a partial
test group under construction. The partial test group TG′ will target
the nodes M ′TG = {a, b, c}. T0 ∈ TG′ will not detect the fault a ≡ 0

326 Test

m0 a≡0 b c #1

≡1 a b

≡1
a c

b

a

c

#0

Masking path

Test group
TG

LM

Path L0 under test

Figure 5.9. Topological view on the fault masking mechanism.

because of another SAF-1 fault. There may be arbitrary combinations
of masking faults in the circuit denoted by ≡ 1. Possible masking
paths are depicted by dotted lines. As we see, for each such a path
LM , there exists always a node m ∈M ′TG with a variable x(m) which
is missing on the particular LM .

Example 5.33. An example of a full test group is depicted in Ta-
ble 5.6, which tests the nodes MTG = {x11, x41, x5, x61} of Figure 5.2.
Another example of a partial test group is depicted in Table 5.5, which
tests the nodes M ′TG = {x5, x61} ⊂ MTG. Both test groups are im-
mune to fault masking, however, it would be always easier to generate
smaller partial test groups because of eventual inconsistencies during
test group generation.

The concept of the test groups was discussed up to now for single
SSBDD models. In case of a system of SSBDDs, we have to either
reduce the set of SSBDDs by superposition [325] to the single SSBDD
case, or to use a hierarchical approach. The test generation complexity
problem inherent in the concept of test groups can be overcome by
splitting the full test groups into partial test groups as suggested by
Theorem 5.20.

Fault Diagnosis with Structurally Synthesized BDDs 327

F1
x1

x0

x1

F2

x2

F3

x3

F4

Fault

z

x2

x3

y

L

Const.

Test
group

Const.

Figure 5.10. Hierarchical fault diagnosis.

The main importance of the idea of test groups is to identify or prove
the correctness of a subset of nodes in SSBDD. The knowledge of the
nodes identi�ed already as correct allows to generate smaller partial
test groups to ease test generation, and the known correct nodes can
be dropped during the analysis. The method allows us to create a
sequential procedure of fault diagnosis by extending step by step the
faultfree core in the circuit at any present multiple fault.

5.1.6. Test Groups and Hierarchical Fault Diagnosis

In [323, 326], a conception of test groups was introduced, and the nec-
essary and su�cient conditions for detecting MSAF in combinational
circuits were introduced. The goal of a test group or a partial test
group is to verify the correctness of a selected part of the circuit. In
case of passing of all the test groups, the circuit is proven fault-free.
If not all test groups will pass, a fault diagnosis is needed, which can
be carried out by solving diagnostic equations (5.7) and (5.8) locally,
i.e., in the selected region of the circuit targeted by the test group.

Consider a circuit of Figure 5.10 as a higher level network with blocks
F1, F2, F3, and F4. Let us start the fault diagnosis �rst, at the lower

328 Test

Table 5.7. Diagnostic processes for the circuit in Figure 5.10

Tt x0 x1 x2 x3 y dy Assertions

T0 1 1 0 0 1 0 dx
1

0 dx
1

1 ∨ dx02 ∨ dx03

T1 0 1 0 0 0 0 (dx
0

0 ∨ dx11) dx
2

0 dx
3

0

D(T0, T1) dx0 dx
1

1 dx
0

2 dx
0

3

T2 1 0 0 0 0 0 (dx10 ∨ dx
0

1) dx
2

0 dx
3

0

D(T0, T1, T2) dx0 dx1 dx
0

2 dx
0

3

T ′2 1 0 0 0 0 1 dx
1

0 dx01 ∨ dx0∗2 ∨ dx03

D(T0, T1, T
′
2) dx0 dx

1

1 dx
0

3 (dx01 ∨ dx0∗2 dx
0

2)

level, by selecting a subcircuit with inputs x0 and x1 as a target in
the block F1. The subcircuit will be tested along an activated test
path L through the wire z up to the output y of the circuit.

Assume, we have a test group TG = {T0, T1, T2} applying to the
inputs x0 and x1 a set of changing patterns whereas the values on
all other primary inputs of the circuit are kept constant, according
to the partial test group conception. The role of the test group is to
concentrate on testing by all the patterns T0, T1, T2 a joint signal path
L. If the test group will pass, we conclude that the path L through
the wire z is working correctly. Each additional passed test group will
add information about other correct signal paths. This information
will help to locate the faults if some test groups will fail.

If we have proven the correctness of a subset S of signal paths then
we can use these paths for sending correct signals to the needed con-
nections in the higher network level which makes easier to test other
blocks at the lower level. For example, if we can force correct signals
on the wires z and x3 in Figure 5.10, to activate a test path from x2
up to the output y, we may carry out the fault reasoning in the block
F2 only locally to reduce the complexity of the diagnosis problem.

Example 5.34. Consider again the circuit in Figure 5.10, and apply
the test group TG = {T0, T1, T2} to the block F1, so that the inputs

Fault Diagnosis with Structurally Synthesized BDDs 329

x0 and x1 will have the local patterns {11, 01, 10} and the values on
all other primary inputs of the circuit are kept constant. Assume that
the activated test path by TG can be represented by a function:

y = F (x0, x1, x2, x3) . (5.10)

Assume also that all the signals activating the test path of the test
group and originating at the inputs x1 have been proved as correct.
This allow us to reduce the diagnosis problem raised by the test group
TG to processing of the simpli�ed function, for example as:

y = x0x1 ∨ x2 ∨ x3 . (5.11)

The diagnostic process with three passed test patterns of the test group
is depicted in Table 5.7. The �nal assertion D(T0, T1, T2) states that
no faults are present along the signal paths from the inputs x0 and
x1 up to the output y, and the faults x2 ≡ 1 and x3 ≡ 1 are missing
on the inputs of the block F4. The knowledge about the correctness of
the wire z and the missing fault x3 ≡ 1 allows to carry out the fault
reasoning in the block F2 only locally.

Suppose the pattern T ′2 ∈ TG will fail. The diagnostic statement
D(T0, T1, T

′
2) refers to either the fault candidate x1 ≡ 1 or to the un-

stable behavior of the wire x2 during the execution of the test group.
The reason of the instability of x2 may be a fault in the block F2 which
because of the changing value of x1 may sometimes in�uence on x2,
and sometimes not. In this case the test group has not ful�lled its role
to prove the correctness of the wire z.

As shown in Example 5.34, the role of the Boolean di�erential lays on
specifying the fault candidates in the case when the test group will
fail. The method of solving di�erential equations will help also in this
case when some of the test groups cannot be synthesized and it would
not be possible to prove the correctness of some parts of the circuit.

5.1.7. Experimental Data

Table 5.8 summarizes experimental data regarding the test group syn-
thesis for the ISCAS'85 benchmark circuits [49]. The columns 3 and

330 Test

Table 5.8. Experimental data of generating test groups for diagnosis

Circuit Gates #
SSAF
test #

MSAF
test #

Group
cover %

c432 275 53 314 82,91
c499 683 86 482 67,2
c880 429 84 546 99,8
c1355 579 86 514 65,6
c1908 776 123 621 96,3
c2670 1192 103 820 76,3
c3540 1514 148 995 80,3
c5315 2240 104 1523 91,8
c6288 2480 22 465 98,1
c7552 3163 202 1863 87,8

4 show the number of patterns in the SSAF test and in the MSAF
test, respectively.

The 3-pattern test groups were built for the gates of the circuits
whereas many test groups were possible to merge. Repeated pat-
terns were removed from the test set. The number of synthesized test
groups in the test sets is several times larger compared to the tradi-
tional SSAF tests. The fair comparison between the SSAF and MSAF
test lengths, however, cannot be done in the present research, since
the test groups for di�erent outputs were not merged. Merging of test
groups will provide a signi�cant reduction of the MSAF test length.

The group coverage means the percentage of the test groups that
were built successfully. The test group coverage characterizes the
feasibility of the concept to prove the correctness of subcircuits instead
of targeting the faults to be tested. For diagnosing the subcircuits not
covered by test groups, Boolean di�erentials can be utilized.

5.1.8. General Comments About Proposed Methods

In this section we investigated the two sides of the fault diagnosis
problem: how to develop e�cient diagnostic test sequences and how

Fault Diagnosis with Structurally Synthesized BDDs 331

to locate the faults if some test patterns will not pass. The test
group concept a�ords to concentrate on the diagnosis of small parts
of circuits to cope with the complexity problem by hierarchical fault
reasoning. On the other hand, using test groups allows us to prove
the correctness of selected parts in a given circuit.

We presented a new idea for multiple fault diagnosis, which com-
bines the concept of multiple fault testing by test groups with solving
Boolean di�erential equations by manipulation of SSBDDs. The role
of the test groups is to prove step by step the correctness of the given
circuit. We showed how to generate partial test groups with SSBDDs
to cope with the complexity of the problem. If the whole circuit is
covered by test groups, and all the test groups will pass, fault rea-
soning is not needed. If some parts of the circuit will be detected
as faulty by test groups, the more exact fault reasoning by solving
Boolean di�erential equations is needed.

To avoid the memory explosion when solving the Boolean di�erential
equations, the manipulation of SSBDDs based on the proposed 5-
valued algebra for fault reasoning will serve as an e�cient tool.

332 Test

5.2. Blind Testing of Polynomials by Linear

Checks

Ariel Burg Osnat Keren

Ilya Levin

5.2.1. Functional Testing by Linear Checks

Two alternative types of system testing are known: on-line and o�-
line testing. The on-line testing (usually called concurrent checking)
requires introducing an additional circuitry for detecting faults during
the normal operation of the system. This kind of testing protects
the system from both permanent and transient faults that may occur
during its operation. In contrast, the o�-line testing is a procedure
allowing to check the system before use. This kind of test protects
the system from two types of faults: fabrication faults and faults
that occurred before the test has been applied. The o�-line testing
is based on applying a prede�ned set of test vectors. Two types of
o�-line testing are used:

• testing by using external equipment, and

• self-testing running on a built-in circuit.

This section belongs to the area of built-in-self-test.

There are two conceptual levels for testing which in turn de�ne di�er-
ent testing methods: gate level and functional level testing. In gate
level testing, the test vectors suit a speci�c implementation, while
on the functional level, the testing is independent from the speci�c
implementation and tests the correctness of the operation.

Up to now, design of functional testing has been carried out only if
the functionality of the system was known to the test designer. In
this section we address the question whether it is possible to design
functional testing for systems whose functionality is unknown.

Blind Testing of Polynomials by Linear Checks 333

In the following subsections it is shown that spectral approaches can
be applied to solve the above problem. The spectral approach to
testing was studied in [136, 205], and in the papers collected in the
compendium �Spectral Techniques and Fault Detection� [153].

There are two main courses in spectral testing:

• veri�cation of the correctness of the corresponding Walsh coef-
�cients, and

• testing by linear checks (also called test vectors).

Testing by veri�cation of Walsh coe�cients can be viewed as data
compression of test responses. This approach eliminates the prob-
lem of check set (test set) generation and storage, but it requires
exhaustive application of all 2n possible input patterns. The second
approach, testing by a linear check set, is considered to be more e�-
cient. In most cases, it does not require exhaustive application of all
2n possible n-bit input patterns and at the same time it eliminates
the problem of check set generation [152�155].

Linear checks are used in the context of detecting permanent stack-at
faults. Linear checks allow us to de�ne the check set analytically. For
functions whose Walsh spectra contains su�ciently many zeros the
check set forms a relatively small subgroup, and thus the implemen-
tation cost of the testing mechanism becomes negligible in respect to
the cost of the overall system. Polynomials of low order belong to this
class of functions.

Denote by Knm,...,n1
sm,...,s1 [xm, . . . ,x1] the class of polynomials

f(xm, . . . ,x1) =

sm∑
im=0

· · ·
s1∑
i1=0

a(im, . . . , i1)ximm · · ·xi11

of m integer variables xm, . . . ,x1 with known precision nm, . . . , n1.
Methods for constructing linear (equality) checks for a given polyno-
mial in Knm,...,n1

sm,...,s1 [xm, . . . ,x1] satisfying st < nt where st is the max-
imal degree of t'th variable, are presented in [152, 154]. This chapter
addresses the problem of construction of linear checks for cases where
no information is provided on the system except the fact that it has

334 Test

x1

x2
...

xm

feedback

f(x)

. . .

. . .

Adaptation Mechanism

Registers

Combinatorial Logic External System

Figure 5.11. The architecture of a WbAH system.

an acceptable representation as a polynomial of order M . In partic-
ular, a method to construct linear checks for Walsh-based Adaptive
Hardware (WbAH) is provided.

A WbAH is based on representing the system in the Walsh frequency
domain (see Figure 5.11) [157]. An (n,M) WbAH is an n-input bit
circuit that can acquire the spectral coe�cients of any polynomial
of order M (and hence acquire the functionality of the system). As
reported in [157], a WbAH provides better performance than conven-
tionally Multiply and Accumulate(MAC) based architectures in terms
of its acquisition time and the average residual error (which re�ects
the di�erence between the target functionality of the system and the
functionality that the hardware has converged to). However, its main
advantage over a MAC-based architecture is that it acquires the func-
tionality of the system even if neither

• the coe�cients of the polynomial, nor

• the number of real (or complex) variables, nor

• the maximal degree of each variable, nor

• the precision of each variable, nor

• the order of the variables,

Blind Testing of Polynomials by Linear Checks 335

are known to the system designer.

This section presents linear checks for spectral testing of WbAH. As
shown later in this chapter, the proposed check set is optimal - it is
the smallest set that allows testing the WbAH without identifying the
polynomial the system has converged to. The e�ciency of the sug-
gested approach in terms of implementation cost and in comparison
to structural testing is demonstrated in [54].

5.2.2. Walsh Spectrum of Polynomials

Consider a system that has m real (or complex) inputs, and let the
functionality of the system be represented by the function f(xm,
. . . ,x1). Without loss of generality, assume that the domain and the
range of the function are [−1, 1)m and [−1, 1), respectively. The in-
puts and the output of the system are quantized; each variable xw,
w = 1, . . . ,m, is represented by a binary vector of nw bits, and the
value of the function is represented by a binary vector of length k.
The mapping between the binary vectors and the numbers in interval
[−1, 1) may be according to the 2's complement representation or any
other weighted number system [165].

To simplify the presentation, bold letters are used for real variables,
and italic letters for Boolean variables. For example, the real variable

xw is represented by a binary vector (x
(w)
nw−1, . . . , x

(w)
1 , x

(w)
0). Similarly,

a vector x = (xm, . . . ,x1) of m real variables, where each variable
xw is represented by nw bits, can be referred to as a binary vector
x = (xn−1, . . . , x0) of length n =

∑m
w=1 nw.

De�nition 5.29 (Order of polynomial). De�ne,

x = (xm, . . . ,x1) ∈ Cm and D = (dm, . . . , d1), di ∈ {0} ∪ Z+ ,

and denote by xD the monomial (product)
∏m
i=1 x

di
i . Let

f(x) =
∑
j

ajx
Dj

be a polynomial of m variables, ai ∈ C. The order M of the polynomial

336 Test

is:

M = max
j
L1(Dj) ,

where L1 is the 1-norm, L1(D) =
∑m
i=1 di.

The class of polynomials f(x) of order ≤ M is denoted by KM . The
class of polynomials f(x) = f(xm, . . . ,x1) of order ≤ M in m ≤ n
quantized real variables is denoted by Kn

M . Indeed,

Kn
M ⊂

⋃
m≤n,

∑
nt≤n, st≤M

Knm,...,n1
sm,...,s1 [xm, . . . ,x1] . (5.12)

A polynomial f ∈ Kn
M can be referred to as a set of k switching

functions of n binary variables {xi}n−1i=0 , or equivalently as a single
multi-output function f(x) = f(xn−1, . . . , x0). The properties of a
single multi-output function (or a set of switching functions) can be
analyzed via the Walsh spectrum.

De�nition 5.30 (Walsh functions). Let be x = (xn−1, . . . , x0) and
i = (in−1, . . . , i0) two binary vectors of length n. The Walsh function

Wi(x) is de�ned as Wi(x) = (−1)<x,i> = exp(jπ
∑n−1
m=0 xmim).

Denote by Cn2 the group of all binary n-vectors with respect to the
operation ⊕ of component-wise addition mod 2.

De�nition 5.31 (Walsh spectrum). The coe�cients si of the Walsh
spectrum are elements of the vector S = (s2n−1, . . . , s0), where,

si =
∑
x∈Cn2

Wi(x)f(x), and f(x) = 2−n
∑
i∈Cn2

Wi(x)si .

The Walsh spectrum of f ∈ Kn
M has the following property:

Theorem 5.21. [157] Let f ∈ Kn
M be a switching function in n binary

variables that corresponds to a polynomial of order M < n. Then, the
spectral coe�cient si, i = 0, . . . , 2n − 1, equals zero if the Hamming
weight of i is greater than M.

Blind Testing of Polynomials by Linear Checks 337

The correctness of Theorem 5.21 follows from the linearity of the
Walsh transform and from the fact that the polynomial can be repre-
sented as a sum of products of up to M Boolean variables.

Theorem 5.21 provides an upper bound on the number of non-zero
spectral coe�cients of any polynomial in Kn

M . The bound does not
depend on the number of real (or complex) inputs nor on their pre-
cision. In this sense, a WbAH based on this bound is more robust
than a conventional MAC implementation of a system that has an ac-
ceptable representation as a low order polynomial, since it acquires its
target functionality even in cases where almost no information about
the system is available.

5.2.3. Spectral Testing of a Given Polynomial by
Linear checks

Linear checks are a method for an o�-line self-testing [154]. The
method is based on the fact that for any given multi-valued func-
tion f in n Boolean variables there exists a subgroup T of Cn2 and a
constant d such that

∑
τ∈T f(x ⊕ τ) = d. Construction of optimal

linear checks for a given f involves �nding a minimal check set (the
subgroup T) and computation of d.

Denote by V (nt, st + 1) a maximal linear code [nt, kt, st + 1] in Cnt2 of
length nt, dimension kt and Hamming distance st + 1. The dual code
of V (nt, st + 1) is the linear subgroup :

V ⊥(nt, st + 1) = {τt|
nt−1⊕
j=0

τt,jyt,j = 0,∀yt ∈ V (nt, st + 1)}

of dimension nt − kt, where τt = (τt,nt−1, . . . , τt,0),yt = (yt,nt−1,
. . . , yt,0).De�ned by V ⊥, a linear code of length n that is the Cartesian
product of m codes,

V ⊥ =

m∏
t=1

V ⊥(nt, st + 1) = {τ = (τm, . . . , τ1)|τt ∈ V ⊥(nt, st + 1)} .

338 Test

The following theorem presents linear equality checks for testing a
given polynomial :

Theorem 5.22 ([154]). Let f ∈ Knm,...,n1
sm,...,s1 [xm, . . . ,x1] and st < nt

for all 1 ≤ t ≤ m. Then, the code V ⊥ is the check set for f, that is∑
τ∈V ⊥

f(x⊕τ) =
∑

τ=(τm,...,τ1)∈V ⊥
f(xm⊕τm, . . . ,x1⊕τ1) = d (5.13)

where

d =

m∏
t=1

|V (nt, st + 1)|−1
∑

x1,...,xm

f(xm, . . . ,x1)

=

m∏
t=1

|V (nt, st + 1)|−1s0 .

Notice that for constructing V (nt, st+1), t = 1, . . . ,m one has to know
the number of variables (m) and their precision (nt). Furthermore, in
Theorem 5.22, st must be smaller than nt, so it is impossible to use
this method to construct a check set other than the trivial check set
(Cnt2) in cases where st ≥ nt. The following example illustrates the
di�culty in using Theorem 5.22 when the number of variables and
their precision are unknown.

Example 5.35. Consider three polynomials of order M = 3,

f1 ∈ K62
3 [x1],

f2 ∈ K31,31
3,3 [x2,x1],

f3 ∈ K1,...,1,15,15
1,...1,3,3 [x34, . . . ,x3,x2,x1] .

According to Theorem 5.22, the linear checks for each polynomial can
be constructed by de�ning a speci�c code for each one of its variables.
For the cases where st = 3 < nt the linear checks can be obtained by
shortening the extended Hamming code [185]. The parameters of the
shortened code are [n = nt, k = nt − dlog2(nt)e − 1.4]. For st = nt
the trivial check set which contains all the binary vectors of length nt
must be used. That is,

Blind Testing of Polynomials by Linear Checks 339

1. For the polynomial f1 let us choose the code V1(62, 4). The code
is of dimension 62 − (6 + 1). The dual code V ⊥ is a code of
dimension 7. In other words, V ⊥ is a check set of size 27 for f1.

2. For the polynomial f2 let us choose two identical codes V (31, 4).
The codes are of dimension 31 − (5 + 1). The dual code V ⊥ is
a Cartesian product of the two codes V ⊥(31, 4), it is a code of
length 62 and of dimension 2 · (5 + 1) = 12. Namely, the dual
code V ⊥ is a check set of size 212 for f2.

3. The polynomial f3 does not ful�ll the requirements of Theorem
5.22 since si = ni for i > 2. Nevertheless, it is possible to con-
struct linear checks for f3 by using the trivial checks for the
variables x3,x4, . . . ,x34, and two identical codes V (15, 4) of
length 15 and dimension 15 − (4 + 1) for the variables x1 and
x2. The dual code V ⊥ is a Cartesian product of all the 32 + 2
codes, it is a linear code of length 62 and dimension 32+2·(4+1).
The dual code is a check set of size 242 for f3. The check set is
de�ned by a generator matrix

G =

 I32×32 0 0
0 G5×15 0
0 0 G5×15

where I is the identity matrix and G5×15 is the (5×15) generator
matrix of the dual code V ⊥(15, 4). It follows from Theorem 5.22
that the structure of G depends on the order of the variables - if
the order of the variables is changed to (x2,x1,x34, . . . ,x4,x3)
then G must be changed accordingly.

Notice that each one of the three polynomials is associated with a
di�erent check set. The size of the check set and its structure depend
on the number of variables, their precision and their order. Moreover,
the size of the check set grows as the number of variables increases.
Yet, all the three polynomials can be represented as functions in 62
Boolean variables in K62

3 . As such, a Walsh-based adaptive hardware
that has 62 inputs may converge to each of them. Indeed, the worst-
case scenario (from the point of view of the test designer) happens,
for example, when there are 31 variables each represented by two bits.
In this case the size of the test is 262.

340 Test

5.2.4. Universal Linear Checks

Since no information about the polynomial (except the fact that it
is in Kn

M) is available, we are interested in a check set that will be
suitable for any polynomial in Kn

M . There are two options:

• prepare in advance a check set for each polynomial in Kn
M and

select the proper one in real time, and

• construct a �xed check set that can be applied without identi-
fying the polynomial.

The latter case is called blind testing. In blind testing, the check set
is universal, it is applicable to any polynomial in Kn

M .

First, notice that it is impossible for an nt-bit word to have Hamming
weight of nt + 1 and therefore Lemma 5.9 holds.

Lemma 5.9. If st ≥ nt then |V ⊥(nt, st + 1)| = 2nt .

Consequently, the worst-case scenario (in terms of test duration) hap-
pens when a WbAH system has converged to a polynomial for which
st ≥ nt for all t. For these polynomials, the size of the check set is 2n.

The following lemma shows that the best-case scenario happens when
m = 1 (and thus n1 = n).

Lemma 5.10. Denote by V ⊥(w) the check set for a polynomial of order
M in w quantized variables in Kn

M . Then, for 1 ≤ m ≤ n, we have
|V ⊥(1)| ≤ |V ⊥(m)|.

Proof. V ⊥(m) is a Cartesian product of m linear codes, each has a di-
mension ri. Without loss of generality, assume that the variables are
indexed such that n1 ≤ n2 ≤ · · · ≤ nm ≤ n. The dimension of V ⊥(m) is
then

r = r1 + r2 + · · ·+ rm ≥ 1 + 1 + · · ·+ 1 + rm = (m− 1) + rm .

Since n ≥ nm, the number of codewords in the largest V (n,M + 1)
code is greater or equal to the number of codewords in the largest

Blind Testing of Polynomials by Linear Checks 341

V (nm,M + 1) code. Therefore,

|V ⊥(1)| = |V ⊥(n,M + 1)| ≤ |V ⊥(nm,M + 1)|
≤ 2m−1|V ⊥(nm,M + 1)| ≤ 2r = |V ⊥(m)| .

From Lemmas 5.9 and 5.10, the linear checks are spanned by n (lin-
early independent) vectors in the worst-case scenario, and in the best
case scenario the linear checks are spanned by log2(|V ⊥(1)|) vectors of
length n. In all other cases the linear checks are determined by a
Cartesian product of m codes of di�erent lengths and dimensions.

The question is whether it is possible to aggregate the proper codes
and construct the linear checks without knowing the function in ad-
vance. In other words, is it possible to identify the function from its
spectrum and choose the check set accordingly?

The following example shows that it is impossible.

Example 5.36. Let f, g ∈ K20
2 and let

f(x1,x2) = a1x
2
1 + a2x

2
2 + a3x1x2 + a4x1 + a5x2

+a6 ∈ K10,10
2,2 ,

g(y1,y2,y3) = b1y
2
1 + b2y

2
2 + b3y

2
3 + b4y1y2 + b5y1y3

+b6y2y3 + b7y1 + b8y2 + b9y3 + b10 ∈ K10,5,5
2,2,2

For simplicity, assume that the variables are positive numbers repre-
sented in base 2. De�ne z1 = y1 and z2 = 25y2 + y3. Then for any
set of a's there exists a set of b's such that f and g have the same
spectral coe�cients. Namely, for:

b1 = a1, b2 = 210a2, b3 = a2, b4 = 25a3, b5 = a3,
b6 = 26a2, b7 = a4, b8 = 25a5, b9 = a5, b10 = a6

we have g = f and therefore f and g have the same spectral coe�-
cients.

342 Test

It is clear from Example 5.36 that it is impossible to extract informa-
tion about the type of a polynomial from its spectral coe�cients.

The question is then, how to construct a non-trivial check set that
can diagnose the health of the system without knowing the function
it has converged to. The following theorem answers this question,

Theorem 5.23. Let be V a subgroup of Cn2 , and

V ⊥ = {τ |τ ∈ Cn2 ,
n−1∑
s=0

τsis = 0,∀i ∈ V } .

Then for any f(x) de�ned on Cn2 :∑
τ∈V ⊥

f(x⊕ τ) =
1

|V |
∑
i∈V

Wi(x)si . (5.14)

Proof. Using De�nition 5.31 for the Walsh spectrum:∑
τ∈V ⊥

f(x⊕ τ) =
∑

τ∈V ⊥
2−n

∑
i∈{0,1}n

Wi(x⊕ τ)si

=
∑

τ∈V ⊥
2−n

∑
i∈{0,1}n

Wi(x)Wi(τ)si

= 2−n
∑

i∈{0,1}n
Wi(x)si

∑
τ∈V ⊥

Wi(τ) .

Therefore,∑
τ∈V ⊥

f(x⊕ τ) = 2−n|V ⊥|
∑
i∈V

Wi(x)si =
1

|V |
∑
i∈V

Wi(x)si .

Notice that the subgroup V ⊥ is de�ned in advance. Nevertheless, the
actual set of test vectors to be applied, {x ⊕ τ}τ∈V ⊥ , depends on
the value of the inputs at the time the test is activated. This allows
testing di�erent propagation paths in the hardware. Next, we address
the question of how to choose the subgroup V ⊥.

Blind Testing of Polynomials by Linear Checks 343

Corollary 5.3. Let be f ∈ Kn
M and let V = V (n, δ) a maximal linear

code of length n and minimum distance δ, and let be

V ⊥ = V ⊥(n, δ) = {τ |τ ∈ Cn2 ,
n−1∑
s=0

τsis = 0,∀i ∈ V } .

Then,

∑
τ∈V ⊥

f(x⊕ τ) =
1

|V |

s0 +
∑

i∈V,δ≤wt(i)≤M

Wi(x)si

 . (5.15)

For the special case where δ = M + 1 we have Corollary 5.4.

Corollary 5.4. Universal linear checks constructed with δ = M + 1
are optimal, i.e., it forms the smallest check set and covers all the
scenarios including the worst-case scenario de�ned in Lemma 5.9.

Proof. δ = M + 1 provides linear checks which are analogous to those
in (5.13), where V ⊥ = V ⊥(1).

From Lemma 5.10, V ⊥(1) is considered as the best-case-scenario, i.e., it
is the smallest check set.

From Lemma 5.9, the largest check set is formed when using Theorem
5.22 to construct linear checks for a given polynomial whose variables
satisfy st ≥ nt for all t.

Since the universal linear checks cover all the scenarios including the
worst-case scenario, and the size of its check set is equal to the size of
the check set of the best-case scenario, they are optimal.

5.2.5. Computation Complexity of Universal Linear
Checks

The computation complexity N(δ) of the linear checks as derived from
a code V of Hamming distance δ can be measured as the number of

344 Test

additions required for the computation of the two sums in (5.15). That
is,

N(δ) = |V ⊥(n, δ)|+
M∑
i=δ

(
n

i

)
. (5.16)

The following theorem says that for even values of M , δ = M + 1
minimizes the computation complexity N(δ).

Theorem 5.24 (M even). Let M be an even integer. De�ne p =
dlog(n)e . Then N(M + 1) ≤ N(M) for M ≤ 2

p
2−1.

Proof. The complexity of optimal linear checks based on a code of
distance M + 1 ≤ 2p/2 is smaller than the complexity of linear checks
based on a binary BCH code of the same minimal distance [185] :

N(M + 1) = |V ⊥(n,M + 1)| ≤ 2rBCH ≤ 2
Mp
2 .

The complexity of linear checks based on a code of distance M is

N(M) = |V ⊥(n,M)|+
(
n

M

)
≥
(
n

M

)
=

M−1∏
i=0

n− i
M − i ≥

(n
M

)M
.

Since
n

M
≥ 2p−1

2
p
2−1

= 2
p
2 ,

we have N(M + 1) ≤ N(M).

Theorem 5.24 can be generalized as follows.

Theorem 5.25 (M even). Let M be an even integer. De�ne p =
dlog(n)e . Then, N(M + 1) ≤ N(δ) for δ ≤M and M ≤ 2

p
2−1.

Proof. Based on the proof of Theorem 5.24, we have

N(δ) = |V ⊥(n, δ)|+
M∑
i=δ

(
n

i

)
≥
(
n

M

)
≥
(n
M

)M
≥ 2

Mp
2 ≥ N(M+1) .

Blind Testing of Polynomials by Linear Checks 345

Table 5.9. Complexity of BCH based linear checks for M = 6, n = 63.

δ V code N(δ)

7 [63, 45, 7] 262, 144 = 218

5 [63, 51, 5] 74, 978, 464 > 226

3 [63, 57, 3] 75, 609, 808 > 226

1 [63, 63, 1] 75, 611, 761 > 226

trivial set - 263

Example 5.37. Let M = 6 and n = 63. The complexity of BCH-
code based linear checks N(δ) for δ ≤ M + 1 is given in Table 5.9.
It is clear from Table 5.9 that the most e�cient way to perform the
testing is by using a linear code of minimum distance 7. The testing
complexity is 218 which is much smaller than testing based on allying
all the 2n = 263 possible input vectors.

Theorem 5.26 (M odd). Let M be an odd integer. De�ne p =
dlog(n)e . Then N(M + 1) ≤ N(M) for M ≤ 2

p
2−2 and M > p

2 .

Proof. The proof is similar to the proof of Theorem 5.24, with a slight

change, since rBCH ≤ (M+1)p
2 for odd values of M.

N(M + 1) = |V ⊥(n,M + 1)| ≤ 2rBCH ≤ 2
(M+1)p

2 .

The complexity of linear checks based on a code of distance M is:

N(M) = |V ⊥(n,M)|+
(
n

M

)
≥
(
n

M

)
=

M−1∏
i=0

n− i
M − i ≥

(n
M

)M
.

Since
n

M
≥ 2p−1

2
p
2−2

= 2
p
2+1 ,

we have (n
M

)M
≥ 2M(p2+1) = 2

Mp
2 +M ≥ 2

Mp
2 + p

2 = 2
(M+1)p

2 ,

and therefore N(M + 1) ≤ N(M).

346 Test

Theorem 5.27 (M odd). Let M be an odd integer. De�ne p =
dlog(n)e . Then, N(M+1) ≤ N(δ) for δ ≤M, M ≤ 2

p
2−2 andM > p

2 .

Proof. Based on the proof of Theorem 5.26, we have:

N(δ) = |V ⊥(n, δ)|+
M∑
i=δ

(
n

i

)
≥
(
n

M

)
≥
(n
M

)M
≥ 2

(M+1)p
2 ≥ N(M + 1) .

To summarize, this section deals with functional testing of Boolean
systems whose functionality is unknown. The functional testing is per-
formed o�-line and is based on applying linear checks. The suggested
linear checks are optimal for testing systems that have an accept-
able representation as low order polynomials. In contrast to existing
methods which require some information about the functionality of
the system for constructing the tests, the universal linear checks al-
low to construct a check set, which does not depend on:

• the actual functionality of the system, and

• the number of input variables and their precision.

Towards Future Technologies

6. Reversible and Quantum Circuits

6.1. The Computational Power of the

Square Root of NOT

Steven Vandenbrande Raphaël Van Laer

Alexis De Vos

6.1.1. Reversible Computing Versus Quantum
Computing

Reversible computing [78, 337] has become a well-established branch
of computer science. One of the problems tackled is the synthesis of
an arbitrary (classical) reversible circuit, making use of a particular
set of building blocks (a.k.a. gates). Such `simple' units are e.g.,
the NOT gate, the controlled NOT gate (a.k.a. the Feynman gate), the
multiply-controlled NOT gate (a.k.a. the To�oli gate), the Fredkin
gate, the Peres gate, etc. These building bricks are classical reversible
circuits themselves.

Only recently, researchers proposed to add a non-classical, i.e., a quan-
tum, brick to the tool-box for building classical circuits [202, 206, 208,
246, 257, 258, 338, 343]. The prototype quantum gate applied for this
purpose is the `square root of NOT' gate [19, 82, 85, 108]. The big ad-
vantage of this gate is the fact that it allows the synthesis of a classical
reversible computer with 2-bit building blocks. E.g., the 3-bit To�oli
gate can be replaced by a cascade of �ve 2-qubit gates (see [337] p. 17
or [78] p. 147). This powerful property is a consequence of a more
general `simulation' theorem by Barenco et al. [19].

350 Reversible and Quantum Circuits

A tool-box consisting of a small number of classical gates plus the
square root of NOT can not only build classical reversible circuits, but
may also be applied to construct quantum computers. The question
arises whether an arbitrary quantum circuit can be synthesized (or,
at least, be approximated) by means of such a tool-kit.

6.1.2. One-qubit Circuits

We consider the building block, called the `square root of NOT' and
denoted

√
N, with the symbol:

√
.

Its matrix representation is the unitary 2× 2 matrix:

1

2

(
1 + i 1− i
1− i 1 + i

)
.

With this single building block, we can only construct four di�erent
circuits: the follower, the `square root of NOT', the NOT, and the `other
square root of NOT'. They form a �nite matrix group:(

1 0
0 1

)
,

1

2

(
1 + i 1− i
1− i 1 + i

)
,(

0 1
1 0

)
, and

1

2

(
1− i 1 + i
1 + i 1− i

)
.

The group is isomorphic to the cyclic group Z4. Two circuits are
classical; two are quantum.

6.1.3. Two-qubits Circuits

We consider the following four 2-qubit building blocks:

√ √ •
√ • √ ,

The Computational Power of the Square Root of NOT 351

denoted
√
N1,
√
N2,
√
C1, and

√
C2, respectively. The former two are

`square roots of NOT'; the latter two are `controlled square roots of
NOT' (or `square roots of controlled NOT' or `square roots of Feynman
gate'). They are represented by the four 4× 4 unitary matrices:

1

2

1 + i 0 1− i 0

0 1 + i 0 1− i
1− i 0 1 + i 0

0 1− i 0 1 + i

 ,

1

2

1 + i 1− i 0 0
1− i 1 + i 0 0

0 0 1 + i 1− i
0 0 1− i 1 + i

 ,

1

2

2 0 0 0
0 1 + i 0 1− i
0 0 2 0
0 1− i 0 1 + i

 , and
1

2

2 0 0 0
0 2 0 0
0 0 1 + i 1− i
0 0 1− i 1 + i

 ,

respectively.

If we apply only a single building block, we obtain a group of order 4,
isomorphic to the group in the previous section, irrespective of the
choice of the block. If we apply two di�erent building blocks, the result
depends on the choice of the set. With one of the sets {√N1,

√
N2 },

{√N1,
√
C1 }, or {

√
N2,
√
C2 }, we generate a �nite group of order 16,

isomorphic to the direct product Z4×Z4. Four circuits are classical;
twelve are quantum. All circuits are represented by 4 × 4 unitary
matrices, where all 16 entries are a multiple of 1

2 plus i times a multiple
of 1

2 . With one of the sets {√N1,
√
C2 } or {

√
N2,
√
C1 }, we generate

a group1 of 384 di�erent circuits. Eight circuits are classical; 376
are quantum. All circuits are represented by 4 × 4 unitary matrices,
where all entries are a multiple of 1

4 plus i times a multiple of 1
4 .

Finally, with the generator set {√C1,
√
C2 }, we generate a group of

in�nite order. Six circuits are classical; a countable in�nity of circuits
is quantum. All circuits are represented by 4 × 4 unitary matrices,
where all entries are a multiple of 1

2k
plus i times a multiple of 1

2k
,

where k can be any non-negative integer. Choosing a set of three

1The group has GAP identity [384, 5642] and structure description:
Z4× (SL(2,3):Z4) .

352 Reversible and Quantum Circuits

building blocks leads to a group of order either 384 or ℵ0. Although
the group generated by {√N1,

√
C1,
√
C2 } has the same order as the

group generated by {√C1,
√
C2 }, both being of order ℵ0, the former is

nevertheless `bigger' than the latter, in the sense that the former is a
supergroup of the latter. E.g., it contains all 24 classical reversible 2-
bit circuits, instead of only six. Adding the fourth generator

√
N2 does

not give rise to any `bigger' in�nite group, as
√
N2 can be fabricated

by {√N1,
√
C2 }. Indeed, we have the identity:

• √ √ • √ √

=
√ √ √

.

We partition each of the generated groups into classes of di�erent lev-
els. A matrix whose entries all are Gaussian rationals (i.e., a rational
number plus i times a rational number) can be written as 1/l times
a matrix whose entries all are Gaussian integers (i.e., an integer num-
ber plus i times an integer number), with l a positive integer. If at
least one of the integer numerators is not divisible by the denomina-
tor l, then the matrix cannot be `simpli�ed' and l is called the level of
the matrix. Table 6.1 shows the number of matrices of di�erent levels
in each of the discussed groups.

The last two columns of Table 6.1 consist of a list of never-ending
ever-increasing numbers f(l). The last but one column obeys (for
l > 1) the equation f(l) = 27

2 l2. A proof of this property is provided
in [83]. The last column seems to obey (for l > 4) the equation:

f(l) =
1125

4
l4 .

No proof is available (yet).

Each of the four generators are matrices of level 2. The product
of a matrix of level l1 = 2p1 and a matrix of level l2 = 2p2 is a
matrix of level 2p with p ≤ p1 + p2. Therefore, synthesizing a matrix
of level 2p needs a cascade of at least p building blocks. We call
gS(n) the number of di�erent circuits that can be built with n or
less blocks from the given set S. Figure 6.1 shows g{

√
C1,
√
C2 }(n)

The Computational Power of the Square Root of NOT 353

Table 6.1. Number of circuits built from di�erent generator sets, with
di�erent levels l

{√N1 } {√N1,
√
N2 } {√N1,

√
C2 }

{√N2 } {√N1,
√
C1 } {√N2,

√
C1 }

{√C1 } {√N2,
√
C2 } {√N1,

√
N2,
√
C1 }

{√C2 } {√N1,
√
N2,
√
C2 }

l = 1 2 4 8
l = 2 2 12 184
l = 4 0 0 192
l = 8 0 0 0
...
total 4 16 384

{√C1,
√
C2 } {√N1,

√
C1,
√
C2 }

{√N2,
√
C1,
√
C2 }

{√N1,
√
N2,
√
C1,
√
C2 }

l = 1 6 24
l = 2 54 2,472
l = 4 216 73,920
l = 8 864 1,152,000
...
total ℵ0 ℵ0

354 Reversible and Quantum Circuits

0 10 20

100

101

102

103

104

105

n

gS

•
•
•
•
•
•
•
•
•
•
•
•

◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦
◦

S = {√N1,
√
N2,
√
C1,
√
C2 }

S = {√C1,
√
C2 }

Figure 6.1. Number gS(n) of di�erent circuits, built by a cascade of n or
less building blocks from a given set S.

and g{
√
N1,
√
N2,
√
C1,
√
C2 }(n). In general, a curve gS(n) can grow either

polynomially or exponentially [336] or even can have intermediate
growth [335]. We see how, in both cases here, the growth rate is
exponential. We indeed have:

gS(n) ≈ a bn ,

with both a and b positive constants. For S = {√C1,
√
C2 }, we have

a ≈ 8 and b ≈ 1.5; for S = {√N1,
√
N2,
√
C1,
√
C2 }, we have a ≈ 12 and

b ≈ 2.2. As expected, the numbers b are smaller than the cardinality
of the corresponding sets S (i.e., 2 and 4, respectively).

We now call gpS(n) the number of circuits of level 2p that can be built
with n or less blocks from the set S. We thus have:

gS(n) =

∞∑
p=0

gpS(n) =

n∑
p=0

gpS(n) .

As an example, Figure 6.2 shows gp{
√
C1,
√
C2 }

(n), for p ranging from 0

to 3, i.e., for levels 1, 2, 4, and 8. We see how gpS(n) �rst is zero,
then grows monotonically with increasing n, and �nally saturates at

The Computational Power of the Square Root of NOT 355

0 10 20

100

101

102

103

104

105

n

gpS

◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦
◦ ◦

◦ ◦

.
. .

.

+
+

+
+ + + + + + + + + + + + + + + + +

?
?

?
?
?
? ? ? ? ? ? ? ? ? ? ? ? ?

× ×
×
×
× × ×

× × × × × × × × × ×

g0S

g1S

g2S

g3S

gS

Figure 6.2. Number gpS(n) of di�erent circuits, built by a cascade of n
or less building blocks from the set S = {

√
C1,
√
C2 }, with

di�erent levels l = 2p.

a value equal to the corresponding number in the last but one column
of Table 6.1.

The reader easily veri�es that each of the four members of the matrix
set {√N1,

√
N2,
√
C1,
√
C2 } ful�lls the following three properties:

P1 the matrix is unitary;

P2 each matrix entry is a dyadic Gaussian; and

P3 each line sum equals to 1.

Here, a dyadic Gaussian is a Gaussian rational with denominator of
the form 2p and a line sum is either a row sum or a column sum. The
reader may also easily verify that the product of two matrices obeying
P1 also obeys P1, and similar for P2, and similar for P3. Thus, we
have easily proven the following theorem: all circuits generated by
the above set will have the three properties. The di�cult part is
to prove the inverse theorem: each 4 × 4 matrix ful�lling the three
conditions P1, P2, and P3, can be generated by the four generators

356 Reversible and Quantum Circuits

√
N1,
√
N2,
√
C1, and

√
C2 (and thus by the three generators

√
N1,
√
C1,

and
√
C2). Proof is provided by Reference [83]. The matrices obeying

the three properties form a group (which we will denote G), i.e., a
discrete subgroup of the 16-dimensional Lie group U(4), consisting of
all unitary 4× 4 matrices.

The uncountably in�nite group U(4) represents all 2-qubit quantum
computers. The countably in�nite group G represents a subset of
these computers. The question arises whether or not the points rep-
resenting the members of G are densely distributed on the surface
of the 16-dimensional manifold representing U(4). That would imply
that any member of U(4) can be approximated by a member of G,
with unlimited accuracy, just like any real number can be approxi-
mated in�nitely well by a dyadic rational, and just like any point on
the s-dimensional hypersphere (s > 4) of radius 1 can be approxi-
mated in�nitely well by a point with s dyadic rational coordinates
(a consequence of Pommerenke's theorem [236]). The answer to the
question is de�nitely `no', and that for two reasons:

• Condition P3 restricts the points representing G to the nine-
dimensional subspace V of U(4), representing the 4× 4 unitary
matrices with constant line sum equal to 1. In Reference [81]
is demonstrated that the subgroup V of U(4) is isomorphic to
U(3).

• Conditions P1 and P2 together lead to the conclusion that all
members of G have a determinant from the set { 1, i,−1,−i }.
Therefore, condition P2 restricts the points representing G to
a 15-dimensional subspace of U(4), isomorphic to a semi-direct
product SU(4):Z4 of the special unitary group SU(4) and the
cyclic group Z4.

The intersection of the above two subspaces of U(4) is an eight-
dimensional non-connected Lie group with four components. See Fig-
ure 6.3 in which the stars (?) represent the 4! = 24 members of the
symmetric group S4 (i.e., the classical reversible computers); the dots
(•) represent the ℵ0 members of the group G. The factor x is a con-
stant matrix, chosen from U(4) such that det(x) = i.

The open question remains whether or not the points representing

The Computational Power of the Square Root of NOT 357

U(4)SU(4) x SU(4) x2 SU(4) x3 SU(4)

V

? ? •
• • •

• • •
• • •

? ? •
• • •

• • •
• • •

Figure 6.3. The Lie group U(4) (i.e., the quantum computers).

the members of G (i.e., the dots and stars in Figure 6.3) are densely
distributed on this surface.

6.1.4. Many-qubits Circuits

Quantum circuits acting on w qubits are represented by unitary ma-
trices of size 2w×2w. Applying the short-hand notation m for 2w, we
can say they form the Lie group U(m). The latter is represented by a
connected m2-dimensional manifold. The classical reversible circuits
acting on w bits form a �nite subgroup, isomorphic to the symmetric
group Sm of order m!. Again, the square roots of NOT, the singly-
controlled square roots of NOT, and the multiply-controlled square
roots of NOT obey the properties P1, P2, and P3. Therefore they
generate an in�nite but discrete group, i.e., ℵ0 points located on the
m2-dimensional Lie group U(m). If w > 2, we have to distinguish
three cases:

• If we allow controlled square roots with w− 1 controlling qubits
as a building block, then matrices can be generated with a de-

358 Reversible and Quantum Circuits

terminant equal to any member of the set { 1, i,−1,−i }.

• If we do not allow controlled square roots with w−1 controlling
qubits, but allow controlled square roots with w− 2 controlling
qubits, then only matrices can be generated with a determinant
from the set { 1,−1 }.

• If we only allow controlled square roots with less than w − 2
controlling qubits, then only matrices with determinant 1 can
be generated.

This leads to:

• non-connected groups with four components,

• non-connected groups with two components, and

• connected groups, respectively.

Like in Subsection 6.1.3, the condition P3 restricts the points to a Lie
subspace V of U(m). This subspace [79] represents the m×m unitary
matrices with constant line sum equal to 1. In [80] is demonstrated
that the subgroup V of U(m) is isomorphic to U(m − 1) and thus
forms a (m− 1)2-dimensional Lie group.

6.1.5. Increased Computational Power

We conclude that the introduction of (controlled) square roots of NOT
as circuit building blocks leads to rich mathematics. The resulting
computers have much more computational power than the classical
computers, but much less computational possibilities than the quan-
tum computers.

To�oli Gates with Multiple Mixed Control Signals 359

6.2. To�oli Gates with Multiple Mixed

Control Signals and no Ancillary Lines

Claudio Moraga

6.2.1. On the Evolution of To�oli Gates Until
Present Days

To�oli gates [318] are basic for the realization of reversible and, es-
pecially, quantum computing circuits. Much work has been done to
extend the original proposal, comprising two control signals which are
active when they take the value 1, to realize To�oli gates with n > 2
control signals. The present section discusses e�cient realizations of
To�oli gates with two, three, or more control signals, which may be
active with value 1, or value 0, without requiring additional inverters
or ancillary lines. The realizations have a quantum cost of 2n+1 − 3
and are e�cient in the sense that they extend proposals for To�oli
gates with n control inputs, all of them being active when having the
value 1, to To�oli gates with n mixed control signals.

In a binary Boolean context, a reversible gate is an elementary cir-
cuit component that realizes a bijection. As a consequence, it has the
same number of inputs and outputs. A circuit is reversible if it has
a feed forward realization with fan-out free reversible gates. Quan-
tum Mechanics based gates and circuits are reversible. A To�oli gate
represents a reversible covering of the binary AND gate, (which is not
reversible). An e�cient abstract realization as a quantum gate was
introduced in the seminal paper referred to as Barenco et al. [19],
showing that a To�oli gate may be realized with a quantum cost of
5. Figure 6.4 shows the unitary matrix representation of a To�oli
gate, the accepted symbol and the quantum realization disclosed in
[19], where new unitary matrices V and V + are introduced, such that
V 2 = NOT and V + represents the adjoint of V .

In recent years, some design e�orts have been focused in the general-
ization of To�oli gates to accept both 1-valued and 0-valued control

360 Reversible and Quantum Circuits

x

y

z ⊕ x y

x

y

z V V
+

V

V=
1+i
2

1 -i

-i -1
; V+=

1−i
2

1 i

i 1

Barenco et al. realization

x

y

z ⊕ x y

x

y

z

Extended
To�oli

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

To�oli unitary matrix
(with |11〉 control)

Figure 6.4. Unitary matrix, symbol, and quantum realization of the Tof-
foli gate.

signals (see e.g., [182], [188], [219], [218], [90]). White dots have been
used to identify control signals that are active when their value is
equal to 0. A �Barenco-type� realization of a To�oli gate with two
control inputs, where one of them is negated, was introduced in [189]
and extended in [219] to the case where the other control input is
negated, (without swapping the inputs), and when both control in-
puts are negated (without requiring additional inverters). For the sake
of completeness these realizations are reproduced below in Figures 6.5
and 6.6.

x

y

z ⊕ x y

x

y

z V
+

V V

Realization proposed
by Maslov et al. (2008)

x

y

z ⊕ x y

x

y

z

Extended
To�oli

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

To�oli unitary matrix
(with |10〉 control)

x

y

z ⊕ x y

x

y

z V V V
+

Realization proposed
by Moraga (2011)

x

y

z ⊕ x y

x

y

z

Extended
To�oli

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

To�oli unitary matrix
(with |01〉 control)

Figure 6.5. To�oli gates with one negated control input.

To�oli Gates with Multiple Mixed Control Signals 361

x

y

z ⊕ (x ∨ y)

x

y

z V V V

Realization proposed
by Moraga (2011)

OR

H

H x

y

z ⊕ (x ∨ y)

x

y

z

OR-type
To�oli gate symbol

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

OR-type To�oli
unitary matrix

Figure 6.6. OR-type To�oli gate.

In the Barenco-type realizations of Figure 6.5 it may be observed that
the 0-valued control signals act by inhibiting a V or V + elementary
gate. Accordingly, if both control signals are 0-valued, all elementary
gates would be inhibited and no action would follow. The desired
output z ⊕ x y would not be reached.

However, the De Morgan Laws allow expressing the desired output
as z ⊕ x ∨ y. The question can therefore be restated, whether an
OR/NOR-type of To�oli gate is possible and whether an e�cient quan-
tum realization for it may be obtained. Figure 6.6 shows an OR-type
To�oli gate [219] and its Barenco-type realization. If the target line is
free, i.e., z may be chosen to be 0 or 1, then with z = 1 a NOR gate is
obtained, and since x ∨ y = x y then a To�oli gate with both control
inputs 0-valued is possible.

6.2.2. To�oli Gates with Three Mixed Control
Signals

To�oli gates with three control inputs are important for two reasons.
On the one hand, they provide a simple testbed for decomposition
strategies leading to circuits (mainly cascades) of To�oli gates with
two inputs, which are recursively scalable to To�oli gates with a larger
number of control inputs. In this respect, see e.g., [188] and the
references provided there. On the other hand, Barenco et al. [19] also
provided an e�cient quantum realization for this kind of To�oli gates,
which however until only recently [258] did not receive much attention
in the reversible/quantum community. The realization makes use of

362 Reversible and Quantum Circuits

-1 1

i

-i

i1/2

-i3/2

i3/2 i1/2 1 + i1/2

1− i3/2

Figure 6.7. Analysis of the �rst element of W and W−1.

elementary matrices W and W−1, where W 4 = NOT:

W =
1

2

[
1 + i1/2 1− i1/2
1− i1/2 1 + i1/2

]
, and

W−1 =
1

2

[
1− i3/2 1 + i3/2

1 + i3/2 1− i3/2
]
.

As it may be seen in Figure 6.7, the complex conjugate of 1 + i1/2

equals 1− i3/2, and similarly, the complex conjugate of 1− i1/2 equals
1 + i3/2. Therefore, W−1 = W ∗ = W+ meaning that W is unitary.
In what follows, we will show that the former circuits may be ex-
tended to provide e�cient quantum realization of To�oli gates with
all possible combinations of three mixed (1-valued and 0-valued) con-
trol inputs. Figure 6.8 shows an �abstract� version of the circuit in
Section 7 of [19], where U1, U2, . . . , U7 are arbitrary unitary matrices.
The local controlling expressions are shown associated to the corre-
sponding unitary matrices. When a local controlling expression takes
the value 1, the controlled U -gate is activated, otherwise it is inhib-
ited and behaves as the identity. Table 6.2 summarizes the values
of the controlling expressions depending on the values of the control
inputs. As mentioned in [19], the controlling expressions are ordered

To�oli Gates with Multiple Mixed Control Signals 363

x3
x2
x1

z U1 U2 U3 U4 U5 U6 U7

x3
x2
x1

z′

x3 x3 ⊕ x2 x2 x2 ⊕ x1 x3 ⊕ x2 ⊕ x1 x3 ⊕ x1 x1

Figure 6.8. Abstract representation of a conjunction of three control vari-
ables based on [19] .

in a Gray code mode: every controlling expression has either one ad-
ditional control input or deletes one from the preceding expression.
This guarantees that there are no repeated controlling expressions.
The �empty controlling expression�, corresponding to the 000 of the
Gray code, does not make a controlling sense and it is not included.
This is why Table 6.2 has only 7 columns Ui. It is easy to see that the
rows of Table 6.2 are di�erent words of a 4-out-of-7 code: in each row
there are four values 1 and three values 0. (A Gray code is balanced,
but the exclusion of the �empty controlling expression� explains the
missing value 0).

Remark 6.2. By inspection of Table 6.2, for any control vector, if
the four columns are considered, where the control vector produces an
entry of 1, then all other rows contain two values 1 and two values 0.
Similarly, if the three columns are considered, where the control vector
produces an entry of 0, then all other rows contain two values 1 and
one value 0.

The former analysis and Remark 6.2 lead to the following circuit spec-
i�cation. For a given input control vector, read the corresponding row
of Table 6.2. Replace every activated U -gate with a W -gate and re-
place the inhibited gates with W+-gates. Since the inhibited gates
behave as identity, the four activated gates will generate W 4 = NOT.

If the same circuit is driven with a di�erent control vector, three
gates will be inhibited (contributing the identity) and from the four
activated gates, according to Remark 6.2, two will beW and the other
two will be W+. The cascade of these four gates (in any order) will
also produce an identity, i.e., the circuit will produce NOT only for the
selected control vector, and the identity for any other control vector.

364 Reversible and Quantum Circuits

Table 6.2. Relationship between input control values x0, x1, x2 and acti-
vated/inhibited U -gates

U1 U2 U3 U4 U5 U6 U7

x3x2x1 x3 x3 ⊕ x2 x2 x2 ⊕ x1 x3 ⊕ x2 x3 ⊕ x1 x1
⊕x1

001 0 0 0 1 1 1 1
010 0 1 1 1 1 0 0
011 0 1 1 0 0 1 1
100 1 1 0 0 1 1 0
101 1 1 0 1 0 0 1
110 1 0 1 1 0 1 0
111 1 0 1 0 1 0 1

Not considered in the former analysis is the case of a |000〉 input
control vector, since if all gates are inhibited, the whole circuit behaves
as the identity. As discussed earlier for the case of two input variables,
this has an indirect solution: if all U -gates are chosen to be W , every
input vector di�erent from |000〉 will activate 4 W 's and will inhibit
the other three, i.e., every non-|000〉 input control vector will produce
NOT, meanwhile the |000〉 control vector will produce the identity. This
corresponds to an OR-type of To�oli gate with three control inputs.
If the target line is driven with 1, the circuit will behave as NOR, and
with the De Morgan Laws, this is equivalent to the conjunction of all
negated control inputs.

The requirement of driving the target line with a 1 (or equivalently,
adding a local inverter) is not severe if the gate is used in a circuit and
shares the target line with it, because then the target line of the circuit
would be driven by a 1. If the To�oli gate does not share its target line
with that of the circuit, and its output signal is used to control one
or more additional gates before becoming a garbage-output, no local
inverter is needed: the controlled gates should receive the controlling
signal with a white dot. However, if the To�oli gate does not share
its target line with that of the circuit and its output signal is used
to control one or more additional gates before becoming a signi�cant
output, then an additional inverter is required. This completes the

To�oli Gates with Multiple Mixed Control Signals 365

design of To�oli gates with three control inputs and any combination
of negated and non-negated inputs (including the case of all inputs
negated) for a realization with a quantum cost of 13, neither requiring
additional inverters (except in the special case mentioned earlier), nor
ancillary lines.

6.2.3. E�cient To�oli Gates with n > 3 Mixed
Control Inputs

Assume that k variables are considered to build a Gray code starting
with the word 00 . . . 0. This code will have 2k words and since to move
from one word to its neighbour, one variable must be complemented,
2k−1 negations will be needed for the whole code. If now an additional
variable is considered, a new Gray code may be generated by extending
the former code with a mirror image of itself, (the last word of this
extended code will be 00 . . . 0), and associating to the �rst part the
k+1st variable with value 0, and to the second part, the k+1st variable
with value 1. Notice that the �rst word of the resulting new Gray code
will again be 00 . . . 00 meanwhile the last one will be 00 . . . 01.

Let be n = k + 1. The new Gray code will have 2n words and 2n − 1
negations. If the words of the Gray code are used to structure con-
trolling expressions of an extended To�oli circuit, as a linear combi-
nation of the variables with coe�cients from the Gray words, the �rst
word (00 . . . 00) should be deleted, since it would generate an �empty�
controlling expression. Therefore the circuit would have 2n − 1 con-
trolling expressions associated to 2 qubit unitary matrices, and 2n−2
negations leading to a total quantum cost of 2n+1 − 3 and requiring
neither additional inverters nor ancillary lines. This is a statement of
the corresponding quantum cost, without claiming that this may be
the minimum possible cost. Notice that this analysis corresponds to
the induction step of an induction proof starting with a To�oli gate
with 2 control inputs and a quantum cost of 5.

Example 6.38. The design of an extended To�oli gate with 4 mixed
control inputs can be realized based on the matrix X. The symbol X
has been chosen, continuing the sequence initiated by V , followed by
W . Since in the design of reversible circuits, the Pauli matrices are

366 Reversible and Quantum Circuits

x3
x2
x1
x0

x3
x2
x1
x0

z U1 U2 U3 U4 U5 U6 U7

x3 x3 ⊕ x2 x2 x2 ⊕ x1 x3 ⊕ x2

⊕x1

x3 ⊕ x1 x1

U8 U9 U10 U11 U12 U13 U14 U15

x3
x2
x1
x0

z′

x1 ⊕ x0 x3 ⊕ x1

⊕x0

x3 ⊕ x2

⊕x1 ⊕ x0

x2 ⊕ x1

⊕x0

x2 ⊕ x0 x3 ⊕ x2

⊕x0

x3 ⊕ x0 x0

Figure 6.9. Extended To�oli circuit with 4 mixed control units and with-
out ancillary lines.

very rarely mentioned, there should be no confusion. The matrices X
and X−1 are de�ned as follows:

X =
1

2

[
1 + i1/4 1− i1/4
1− i1/4 1 + i1/4

]
, and

X−1 =
1

2

[
1− i−1/4 1 + i−1/4

1 + i−1/4 1− i−1/4
]
.

A similar analysis to the case of W shows that X∗ = X−1 = X+;
therefore X is unitary. Furthermore, X8 = NOT. If under some quan-
tum technology the matrix X is realizable, then the circuit shown in
Figure 6.9 implements an extended To�oli gate with 4 mixed control
inputs.

Table 6.3 corresponding to the circuit of Figure 6.9, is built based on
Table 6.2 and on the method explained above to obtain a Gray code
from an existing one, with one additional variable (in this case chosen
to be x0). The entries for the columns U1 to U7 are taken from Table
6.2, duplicating each row, (since the behavior of these gates depend
on x3, x2 and x1, but not on x0), and adding a row of 0's for the 000
control inputs. For any column U15−r, 1 < r < 8, the entry at a given
row, is obtained as the addition modulo 2 of the entry at the column

To�oli Gates with Multiple Mixed Control Signals 367

Table 6.3. Relationship between input control values x0, x1, x2, x3 and ac-
tivated/inhibited U -gates

U1 U2 U3 U4 U5 U6 U7

x3x2x1x0 x3 x3 x2 x2 x3 x3 x1
x2 x1 x2 x1

x1

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 0 1 1 1 1
0 1 0 0 0 1 1 1 1 0 0
0 1 0 1 0 1 1 1 1 0 0
0 1 1 0 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 0 1 1
1 0 0 0 1 1 0 0 1 1 0
1 0 0 1 1 1 0 0 1 1 0
1 0 1 0 1 1 0 1 0 0 1
1 0 1 1 1 1 0 1 0 0 1
1 1 0 0 1 0 1 1 0 1 0
1 1 0 1 1 0 1 1 0 1 0
1 1 1 0 1 0 1 0 1 0 1
1 1 1 1 1 0 1 0 1 0 1

U8 U9 U10 U11 U12 U13 U14 U15

x3x2x1x0 x1 x3 x3 x2 x2 x3 x3 x0
x0 x1 x2 x1 x0 x2 x0

x0 x1 x0 x0
x0

0 0 0 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 1 0 0 0 0
0 0 1 1 0 0 0 0 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0
0 1 0 1 1 1 0 0 0 0 1 1
0 1 1 0 1 1 0 0 1 1 0 0
0 1 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 1 1 0 0 1
1 0 1 0 1 0 0 1 0 1 1 0
1 0 1 1 0 1 1 0 1 0 0 1
1 1 0 0 0 1 0 1 1 0 1 0
1 1 0 1 1 0 1 0 0 1 0 1
1 1 1 0 1 0 1 0 1 0 1 0
1 1 1 1 0 1 0 1 0 1 0 1

368 Reversible and Quantum Circuits

Ur plus x0. The entries of the column U15 correspond to the value
of x0. Below every Ui there is a list of the corresponding controlling
variables.

For any given control vector, in the corresponding row of Tables 6.3,
replace the activated U-gates with X matrices and the inhibited U -
gates, with X+ matrices. The 7 inhibited gates behave as identity
and the 8 activated X gates build X8 = NOT. Extending by induction
Remark 6.2 done for Table 6.2 to the case of 4 control inputs, it may
be concluded that any other input control vector applied to the circuit
will activate a balanced number (4) of X and of X+ gates building
an identity transfer function. Finally, if all U -matrices are set to X,
the circuit will behave as an OR-To�oli gate. In this case, with the
De Morgan Law it may be seen that if z is set to 1, the circuit will
behave as the conjunction of all negated control inputs.

As it may be obtained from Figure 6.8, the circuit has a quantum
cost of 29 and requires no ancillary line. Since in this example n =
4, this corresponds to 2n+1 − 3 as stated at the beginning of this
subsection. The above numerical results are basically the same as
presented in [19], but they are here generalized to the realization of
To�oli gates with mixed control signals without requiring additional
inverters (under the conditions discussed in the former subsection).
A given architecture designed for one particular setting (all control
inputs equal to 1) has been extended, preserving the quantum cost,
to work with 2n − 1 additional control settings. In this sense the
present proposal is e�cient.

Reducing Quantum Cost of Pairs of To�oli Gates 369

6.3. Reducing Quantum Cost of Pairs of

Multi-Control To�oli Gates

Marek Szyprowski Pawel Kerntopf

6.3.1. Reversible Circuits Synthesis

Many methods of reversible circuit synthesis have been developed
[254]. Most of them construct circuits from multi-control To�oli (in
short MCT) gates, which are later decomposed into elementary quan-
tum gates. A number of papers have recently been published on con-
structing such decompositions for any size of the reversible gates [203,
207, 208, 258]. An interesting question is how to construct the quan-
tum circuit and what savings can be achieved by constructing circuit
from elementary quantum gates. Such research have been already per-
formed in [271]. However, its authors apply quantum decomposition
directly only to small (3-bit) To�oli gates, while larger To�oli gates
are �rst decomposed into equivalent circuits built from small To�oli
gates.

One of the well known cases of savings in quantum cost of the re-
versible circuit is the Peres gate [187], which reduces quantum cost
from 6 (for a pair of To�oli and controlled NOT gates) to 4 units (by
constructing it directly from quantum gates), see Figure 6.10. Our
main motivation for this work was to check if there exist pairs of 4-bit
reversible gates being analogues to the 3-bit Peres gate. According to
our knowledge nobody has published any results on this open prob-
lem. Such pairs, if they exist, might also contribute to the reversible
circuit synthesis in the same way as Peres gate did [187].

In the presented approach the whole 4-bit reversible circuit is con-
structed directly from the quantum gates. In this way we have found
new quantum decompositions for some pairs of MCT gates. Those pairs
lead to signi�cant savings in the number of elementary quantum gates
required for their realizations. Our results show that the case of the
Peres gate can be extended also to pairs of 3-bit and 4-bit To�oli

370 Reversible and Quantum Circuits

≡
V V V

+

≡
V V V

+

Figure 6.10. NCV quantum circuit for 3×3 Peres gate.

gates, which could be useful for improving reversible circuit synthesis
and reducing quantum cost of reversible designs.

6.3.2. Background

De�nition 6.32. A completely speci�ed Boolean function with n in-
puts and n outputs (referred to as n× n function) is called reversible
if it maps each input assignment into a unique output assignment.

De�nition 6.33. An n-input n-output (n × n) gate (or circuit) is
reversible if it realizes an n× n reversible function.

In a reversible circuit fan-out of each gate output is always equal to
1. As a consequence n × n reversible circuits can be only built as a
cascade of k × k reversible gates (k ≤ n).

De�nition 6.34. A set of gates that can be used to build circuits is
called a gate library.

Many libraries of reversible gates have been examined in the literature.
The most commonly used is NCT library which consists of multi-control
To�oli gates, which are de�ned below.

De�nition 6.35. Let ⊕ denote XOR operation. An n × n multi-
control To�oli gate (in short MCT gate) performs the following opera-
tion:

(x1, . . . , xn)→
{

(x1, . . . , xn−1, x1, . . . , xn−1 ⊕ xn), for n ≥ 2 ,

(1⊕ x1), for n = 1 .

(6.1)

Reducing Quantum Cost of Pairs of To�oli Gates 371

1 × 1 MCT, 2 × 2 MCT and 3 × 3 MCT gates are called NOT, CNOT and
To�oli gates, respectively.

Every MCT gate inverts one input if and only if all others inputs are
equal to 1, passing these inputs unchanged to corresponding outputs.
Signals which are passed from input to corresponding output of the
gate without a change are called control lines. The signal which can
be modi�ed by the gate is called target. Each MCT gate is self-inverse,
i.e., equal to its own inverse.

The operation of each reversible gate can also be considered in the
quantum gate level. It is well known that such n × n gates can be
represented by a square matrix of dimension 2n. For example, the
simplest MCT gate, NOT, is described by the matrix:

N =

(
0 1
1 0

)
. (6.2)

It can be shown [258] that:

N1/n =
1

2

(
1 + i2/n 1− i2/n
1− i2/n 1 + i2/n

)
. (6.3)

Let V = N1/2 and W = N1/4. Then, let V+ and W+ be a complex con-
jugate transpose of V and W, respectively. By transforming the above
equations, one can �nd that [258]:

V =
1 + i

2

(
1 −i
−i 1

)
, (6.4)

V+ = V
−1

=
1− i

2

(
1 i
i 1

)
, (6.5)

W =
1

2

(
1 +
√
i 1−

√
i

1−
√
i 1 +

√
i

)
, (6.6)

W+ = W
−1

=
1

2

(
1− i

√
i 1 + i

√
i

1 + i
√
i 1− i

√
i

)
. (6.7)

V ◦ V+ = Id, V◦V = N, V+◦V+ = N, as well as W ◦ W+ = Id, W◦W = V and
W+ ◦ W+ = V+, where ◦ denotes matrix multiplication and Id denotes
the identity matrix.

372 Reversible and Quantum Circuits

x1 y1

NOT

x1 y1

x2 y2

CNOT

x1 y1

x2 y2V

c-V

x1 y1

x2 y2V
+

c-V+

x1 y1

x2 y2W

c-W

x1 y1

x2 y2W
+

c-W+

Figure 6.11. Graphical symbols for NCVW gates.

De�nition 6.36. A controlled-V (-V+, -W, -W+) gate is an elementary
quantum gate which applies the transformation matrix V (-V+, -W, -
W+), respectively, to the target line i� the value of the control line is
1.

The gates controlled-V/V+ and controlled-W/W+ are also called con-
trolled-square-root-of-NOT and controlled-fourth-root-of-NOT gates, re-
spectively. It can be easily noticed that controlled-V and controlled-V+

as well as controlled-W and controlled-W+ gates are inverse of each other.

In the literature many libraries of quantum elementary gates have
been considered. A subset of the gates introduced in [19] and recently
analyzed in [258] consists of the above de�ned NOT, CNOT, controlled-
V/V+ and controlled-W/W+ gates. Graphical symbols for those gates are
depicted in Figure 6.11. In this chapter it will be called NCVW library.
The �rst quantum gate library considered in the literature was NCV
library, which limits quantum gates only to controlled-V/V+ gates.

6.3.3. NCVW Quantum Circuits

Quantum operations performed by NCV and NCVW gates can be con-
sidered also as rotations around the x-axis of the Bloch sphere: NOT
gate performs π rotation, V/V+ performs π/2 rotation and W/W+ cor-
responds to π/4 rotation, see diagram in Figure 6.12.

Reversible and quantum circuits are built as a cascades of gates. It is
a common practice to limit states of control lines of controlled gates
to a �nite set of values. We assume that controlled gates can be used
only i� the control line state is in the Boolean domain (0 or 1). This
way quantum entanglement in the circuit can be avoided [258]. With
such assumption we can introduce a simpli�ed, eight-value algebra

Reducing Quantum Cost of Pairs of To�oli Gates 373

0
W

V

V◦W
1

V+◦W+

V+

W+

N

V+ V

W+ W

Figure 6.12. Quantum states and operations de�ned by N, V/V+ and W/W+

matrices on the cross-section of the Bloch sphere.

for describing the state of lines in the NCVW circuit. The transitions
between the states of the lines after applying NCVW operations are
shown in Table 6.4. Similar four-value logic can be introduced for NCV
circuits.

Table 6.4. Eight-value logic for NCVW quantum operations

state N V V+ W W+

0 1 V V+ W W+

W V+◦W+ V◦W W+ V 0
V V+ 1 0 V◦W W

V◦W W+ V+◦W+ W 1 V

1 0 V+ V V+◦W+ V◦W
V+◦W+ W W+ V◦W V+ 1
V+ V 0 1 W+ V+◦W+
W+ V◦W W V+◦W+ 0 V+

De�nition 6.37. Quantum cost of a reversible circuit is the number
of elementary quantum gates required to build this circuit using the
best known quantum mapping procedure for the reversible gates.

Usually, each MCT gate in a reversible circuit is decomposed into el-
ementary quantum gates and then the value of the quantum cost is
calculated [203, 207, 208, 258]. It is known that some pairs of 3 × 3
To�oli and 2 × 2 CNOT gates can be directly built from elementary
quantum gates with lower quantum cost value than the sum of the

374 Reversible and Quantum Circuits

quantum costs of two single gates. An example of such a case is the
Peres gate [187], see Figure 6.10.

6.3.4. Optimal Circuit Synthesis

In 2010 Golubitsky, Falconer and Maslov [120, 121] presented the
implementation of an algorithm for �nding a gate count optimal re-
versible circuit for any 4 × 4 reversible function. The algorithm uses
several sophisticated tricks to reduce the memory complexity of cal-
culations to �t into the resources available on nowadays computers.
The main idea behind this algorithm is to use hash-tables to store
a compact representation of the reversible functions for the optimal
circuits up to 9 gates. Then, by combining the information about the
circuits up to n gates, one can construct the optimal circuit for the
function requiring up to 2 ∗ n gates. This approach has been further
extended in [311�314] to �nd circuits with reduced quantum cost and
circuits built from generalized NCT gate libraries.

We adapted this methodology to quantum circuits characterized by
multi-value logic. Our goal was to construct quantum circuit at least
for a single 4-bit To�oli gate. In case of NCVW gate library it is su�cient
to construct 4 × 4 NCVW quantum circuit. However, in case of the
NCV library, an additional ancillary line is required to construct such
circuits, what leads to 5× 5 NCV circuits.

We limit the states of all input signals to the Boolean domain, what
gives 2n Boolean states for an n × n circuit. NCVW quantum circuits
require 3 bits to encode eight-value state of each line, NCV circuits -
only 2 bits. This means that 4 × 4 NCVW quantum circuits require
4∗3∗24 = 192 bits for storing the state of all lines for all input signal
values. On the other hand, 5×5 NCV circuits require 5∗2∗25 = 320 bits.
In the database construction process one should also check the exact
values of control lines before using the controlled gates. If the state
of a control line might not be in the Boolean domain, then the given
controlled gate need to be skipped in the given step of the algorithm.
The most signi�cant di�erence from the original [120, 121] approach
is the method of handling the inversion on the function. By assuming
that the control lines are allowed to have only Boolean values we break

Reducing Quantum Cost of Pairs of To�oli Gates 375

V V
+

Figure 6.13. Identity circuit whose right and left subcircuits are inverse
of each other.

the symmetry in the original approach. This means that it might be
not possible to construct inverse circuits for some of the functions
stored in the database because of the quantum entanglement, which
might occur if one simply reverse the order of gates in the circuit and
substitute each gate by its inversion.

Figure 6.13 shows an example of identity circuit whose right and left
halves (subcircuits) are inverse of each other. However, the right
subcircuit cannot be considered as a valid stand-alone quantum circuit
in the presented approach, because the control line for the CNOT gate
might be not in the Boolean domain because the circuit is entangled.

However, it is possible to compose two quantum functions if the result
of the composition �ts into the Boolean domain. This limits the algo-
rithm only to reversible Boolean functions, but resolves the need for
constructing the inverse function. From practical point of view this
limitation is not a big problem, as the main goal for this algorithm is
to �nd optimal quantum circuits useful in reversible (Boolean) circuit
synthesis.

6.3.5. Experimental Results and Applications

We have constructed optimal quantum circuit databases up to 9 gates
for 4 × 4 NCVW and 5 × 5 NCV circuits. The experiment have been
performed on the IBM xSeries x3650 with 8x8-core Intel Xeon 6C
X5650 2.66GHz CPUs and 320 GiB of RAM computer system with
KVM virtualized RedHat RHEL6 64 bit operating system (62 logical
CPUs and 300 GiB of RAM). The parameters for the database are
presented in Table 6.5 and Table 6.6.

The �rst column shows the number of gates in an optimal circuit,

376 Reversible and Quantum Circuits

Table 6.5. Parameters of the optimal 4× 4 quantum circuits database for
functions requiring up to nine NCVW quantum gates.

gc # of quantum # of reduced table time

functions functions size [s]

1 64 6 384 B 0

2 2,370 119 6 KiB 0

3 52,418 2,305 96 KiB 0

4 831,009 35,226 1,536 KiB 1

5 10,471,110 439,062 12 MiB 3

6 109,718,716 4,583,181 192 MiB 41

7 975,447,616 40,690,285 1,536 MiB 449

8 7,424,652,453 309,529,874 12 GiB 4,309

9 24,334,931,481 2,028,446,782 96 GiB 44,658

Table 6.6. Parameters of the optimal 5× 5 quantum circuits database for
functions requiring up to nine NCV quantum gates.

gc # of quantum # of reduced table time

functions functions size [s]

1 65 4 640 B 0

2 2,230 46 5 KiB 0

3 53,910 626 40 KiB 1

4 1,027,085 9,729 640 KiB 4

5 16,290,196 142,296 10 MiB 63

6 221,536,465 1,880,785 80 MiB 860

7 2,625,081,980 22,045,601 1,280 MiB 10,713

8 27,341,529,065 228,634,538 10 GiB 138,241

9 251,564,135,255 2,099,850,539 160 GiB 1,373,407

the second column shows the total number of quantum functions re-
quiring such number of quantum gates, and the third one presents
the number of canonical representatives [120, 121, 314] of the func-
tions actually stored in the database. The next column presents the
amount of memory required to store the hash table with canonical

Reducing Quantum Cost of Pairs of To�oli Gates 377

(a) ≡

W
+

W
+

V
+

V
+

W

V
+

V

V

(b) ≡

W
+

W
+

V
+

V
+

W

V
+

V

V

Figure 6.14. Reversible 4 × 4 circuits mapped to optimal NCVW quantum
circuits: (a) pair of 4-bit and 3-bit MCT gates, (b) additional
CNOT gate.

representatives for the circuits. Last column shows the time required
to compute the given hash table (in CPU-seconds). Both databases
can be used to construct quantum optimal circuits up to 18 gates for
any reversible 4-bit Boolean function. Earlier approaches to quantum
optimal circuit synthesis were able to construct optimal circuits up to
10 gates only [123, 138].

Let us compare the parameters of the constructed databases with
the database from [121] for the 4-bit reversible circuits built from
standard multi-control To�oli gates. It can be easily noticed that
the database for quantum circuits stores more functions for each gate
count value. This is caused by one less symmetry used for �nding
canonical representatives since for quantum circuits it is not possible
to use inversion (as illustrated in Figure 6.13) as well as the fact
that there are more gates available (6 types: NOT, CNOT, controlled-V,
controlled-V+, controlled-W, controlled-W+ instead of 4 NCT gates: NOT,
CNOT, 3-bit and 4-bit To�oli gates).

Using our tool we have constructed optimal quantum circuits for all
pairs of the 2-bit, 3-bit and 4-bit MCT gates and compared the quantum
cost counted as a sum of the quantum costs of each MCT gate with
the number of quantum gates in the resulting circuits. In this way
two interesting decompositions have been found using NCVW quantum

378 Reversible and Quantum Circuits

(a)

≡

V
+

V
+

V

V V

V
+

V V
+

V
+

V
+

(b)

≡

V
+

V

V
+

V
+

V

V
+

V

V
+

V
+

V

Figure 6.15. Optimal 5×5 NCV quantum circuits: (a) pair of 4-bit and
3-bit MCT gates, (b) To�oli circuit from Figure 6.14 (b).

gate library, see Figure 6.14 (a) and Figure 6.16 (a). Namely, this
experiment reveals that there exists a quantum decomposition of a
pair of 4-bit and 3-bit MCT gates, which can be considered as a 4-bit
analogue of Peres gate extended to 4-bit case. The di�erence in the
quantum cost (QC) is signi�cant. The QC of the pair of To�oli gates
of the left circuit in Figure 6.14 (a) is equal to 13 + 5 = 18. The
quantum circuit in right part of Figure 6.14 (a) has only QC=10.

One can notice that adding one more CNOT gate (the same as the
last CNOT gate in the quantum circuit) to the both circuits in Figure
6.14 (a) gives us the circuit presented in Figure 6.14 (b). The pair
of reversible and quantum circuits from Figure 6.14 (b) shows even
higher savings in quantum cost. The quantum cost of the three To�oli
gates of Figure 6.14 (b) grows to QC=13+5+1=19 in comparison to
Figure 6.14 (a), but the quantum cost for the equivalent quantum
circuit in Figure 6.14 (b) is reduced to QC=9. This decomposition is
speci�c to NCVW gate library.

The circuit found using 5× 5 NCV database doesn't reveal such signif-
icant savings in quantum cost. Figure 6.15 (a) shows the circuit of a
pair of 4-bit and 3-bit MCT gates with QC=14+5=19, and the equiv-
alent optimal 5×5 NCV quantum circuit with the directly countable

Reducing Quantum Cost of Pairs of To�oli Gates 379

(a) ≡

W W
+

W W W
+

W
+

W

≡

(b) ≡

V
+

V

V
+

V V

V
+

V

V
+

V
+

V

≡

Figure 6.16. Best quantum circuits for the pair of 4-bit and 3-bit MCT
gates: (a) 4×4 NCVW, (b) 5×5 NCV.

QC=16. Figure 6.15 (b) shows the extended circuit of three To�oli
gates with QC=14+5+1=20 and the equivalent optimal the 5×5 NCV
circuit with QC=17.

The second interesting circuit that have been found is equivalent to the
4-bit mixed polarity To�oli gate with one negative and two positives
control lines, see Figure 6.16. These circuits have been found using
both gate libraries: NCVW and NCV. The QC of the To�oli gate pairs
of Figure 6.16 are: (a) QC=13+5=18, and (b) QC=14+5=19. The
resulting circuit of 13 NCVW- or 14 NCV-gates proves that our tool �nds
the optimal quantum circuit, because such mixed-polarity To�oli gate
can be also realized with the same number of elementary quantum
gates as the standard positive-polarity To�oli gate. An example of
such realization, using the Barenco's decomposition and interchanging
some W and W+ gates is described in [281].

All other quantum circuits implementing the reversible functions of 4-
bit circuits with pairs of To�oli gates do not reveal signi�cant savings
in quantum cost � the reduction in those cases was 3 or less units.

Quantum circuits shown in Figure 6.14 (b) are particularly useful
for reducing quantum cost in the existing reversible designs, because
the quantum cost of such circuit is 4 units less than the quantum
cost of the single 4-bit To�oli gate itself. In some cases the quantum

380 Reversible and Quantum Circuits

≡

W W
+

W W
+

W W
+

W W
+

Figure 6.17. Application of the circuit from Figure 6.14 (b) to reduce
quantum cost of the To�oli gate with 8 control signals.

circuit and its inverse can replace 4-bit To�oli gates. An example of
such substitution is shown in Figure 6.17, where the above discussed
quantum circuits reduced total quantum cost to 8×1+4×4+4×9 = 60
units for the circuit for 9-bit To�oli gate. The so far known smallest
quantum cost of the design from [258] is QC=64.

It can be checked by inspection that the values of the signals at the
control lines for all gates in the presented circuits are only in the
Boolean domain, i.e., having the values equal to 0 or 1.

In this section a 4-bit NCVW and 5-bit NCV optimal quantum circuits
equivalent to the pairs of multi-control To�oli gates have been pre-
sented. Those optimal circuits can be used for optimizing quantum
decompositions of large multi-control To�oli gates in a similar man-
ner as in the case of Peres gates. An example of such optimization
is depicted in Figure 6.17. The constructed database of optimal NCV
and NCVW quantum circuits can also be used for optimizing quantum
cost of reversible circuits, in a similar way as described in [312].

Bibliography

[1] �3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA);
Multiplexing and Channel Coding (Release 9) 3GPP Organizational
Partners TS 36.212, Rev. 8.3.0�. May 2008.

[2] M. Abramovici and M. A. Breuer. �Multiple Fault Diagnosis in Com-
binational Circuits Based on an E�ect-Cause Analysis�. In: IEEE
Transactions on Computers C-29.6 (June 1980), pp. 451�460. issn:
0018-9340.

[3] M. Adamski. �Parallel Controller Implementation Using Standard
PLD Software�. In: FPGAs : International Workshop on Field Pro-
grammable Logic and Applications. Abingdon EE&CS Books, 1991,
pp. 296�304.

[4] V. K. Agarwal and A. S. F. Fung. �Multiple Fault Testing of Large
Circuits by Single Fault Test Sets�. In: IEEE Transactions on Com-
puters C-30.11 (Nov. 1981), pp. 855�865. issn: 0018-9340.

[5] A. Agrawal et al. �Compact and Complete Test Set Generation for
Multiple Stuck-faults�. In: Digest of Technical Papers of the 1996
IEEE/ACM International Conference on Computer-Aided Design.
ICCAD. Nov. 1996, pp. 212�219.

[6] A. V. Aho and J. E. Hopcroft. The Design and Analysis of Computer
Algorithms. Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 1974. isbn: 0201000296.

[7] S. B. Akers. �Binary Decision Diagrams�. In: IEEE Transactions on
Computers 27.6 (June 1978), pp. 509�516. issn: 0018-9340.

[8] S. B. Akers. �Functional Testing with Binary Decision Diagrams�.
In: Journal of Design Automation and Fault-Tolerant Computing 2
(1978), pp. 311�331.

[9] F. Armknecht et al. �E�cient Computation of Algebraic Immunity
for Algebraic and Fast Algebraic Attacks�. In: Advances in Cryptol-
ogy - Eurocrypt 2006. Vol. 4004. Berlin, Germany, Springer-Verlag,
2006, pp. 147�164. url: http://www.unilim.fr/pages_perso/phi
lippe.gaborit/AI_main.pdf.

382 Bibliography

[10] A. Artale et al. �Adding Weight to DL-Lite�. In: Proceedings of the
22nd Intnational Workshop on Description Logics. DL. 2009.

[11] A. Artale et al. �DL-Lite in the Light of First-Order Logic�. In:
Proceedings of the 22nd AAAI Conference on Arti�cial Intelligence.
AAAI. 2007, pp. 361�366.

[12] P. Ashar, S. Devadas, and R. A. Newton. �A Uni�ed Approach to
the Decomposition and Re-Decomposition of Sequential Machines�.
In: Proceedings of the 27th Design Automation Conference. DAC.
1990, pp. 601�609.

[13] F. Baader, S. Brandt, and C. Lutz. �Pushing the EL Envelope�. In:
Proceedings of the 19th International Joint Conference on Arti�cial
Intelligence. IJCAI. 2005, pp. 364�369.

[14] F. Baader, S. Brandt, and C. Lutz. �Pushing the EL Envelope
Further�. In: Proceedings of OWL: Experiences and Directions.
OWLED. 2008.

[15] F. Baader et al., eds. The Description Logic Handbook: Theory, Im-
plementation, and Applications. 2nd. Vol. 1. Cambridge University
Press, 2003.

[16] R. I. Bahar et al. �Algebraic Decision Diagrams and Their Applica-
tions�. In: Digest of Technical Papers of the 1993 IEEE/ACM In-
ternational Conference on Computer-Aided Design. ICCAD. Nov.
1993, pp. 188�191.

[17] Z. Banaszak, J. Ku±, and M. Adamski. Sieci Petriego. Modelowanie,
Sterowanie i Synteza Systemów Dyskretnych. Zielona Góra: Wy»sza
Szkoªa In»ynierska, 1993.

[18] S. Baranov. Logic and System Design of Digital Systems. Tallinn:
TUT Press, 2008.

[19] A. Barenco et al. �Elementary Gates for Quantum Computation�.
In: Physical Review A 52.5 (Nov. 1995), pp. 3457�3467. doi: 10.11
03/PhysRevA.52.3457. eprint: arXiv:quant-ph/9503016.

[20] A. Barkalov and L. Titarenko. Basic Principles of Logic Design.
Zielona Gora: University of Zielona Gora Press, 2010.

[21] C. Berge. Graphs and Hypergraphs. North-Holland; Elsevier, 1973.
isbn: 0444103996.

[22] Berkeley Logic Interchange Format (BLIF). University of California,
Berkeley, CA, USA. July 1992.

Bibliography 383

[23] Berkeley Logic Synthesis and Veri�cation Group. ABC: A System
for Sequential Synthesis and Veri�cation. url: http://www.eecs.b
erkeley.edu/alanmi/abc/.

[24] J. Bern, C. Meinel, and A. Slobodova. �E�cient OBDD-Based
Boolean Manipulation in CAD Beyond Current Limits�. In: 32nd
Conference on Design Automation. DAC. 1995, pp. 408�413.

[25] A. Bernasconi, V. Ciriani, and R. Cordone. �On Projecting Sums of
Products�. In: 11th Euromicro Conference on Digital Systems De-
sign: Architectures, Methods and Tools. DSD. 2008, pp. 787�794.

[26] A. Bernasconi et al. �On Decomposing Boolean Functions via Ex-
tended Cofactoring�. In: Design, Automation and Test in Europe.
DATE. 2009, pp. 1464�1469.

[27] C. Berrou, A. Glavieux, and P. Thitimajshima. �Near Shannon
Limit Error-Correcting Coding and Decoding: Turbo-Codes�. In:
IEEE International Conference on Communications. ICC. May
1993, pp. 1064�1070.

[28] C. Berrou et al. �An IC for Turbo-Codes Encoding and Decoding�.
In: IEEE International Solid-State Circuits Conference. ISSCC. Feb.
1995, pp. 90�91.

[29] O. Beyersdor� et al. �The Complexity of Propositional Implication�.
In: Information Processing Letters 109.18 (2009), pp. 1071�1077.
issn: 0020-0190. doi: 10.1016/j.ipl.2009.06.015. url: http://w
ww.sciencedirect.com/science/article/B6V0F-4WRD3N2-1/2/72
9176d318c75bb3c631828219e2bda9.

[30] O. Beyersdor� et al. �The Complexity of Reasoning for Fragments
of Default Logic�. In: Proceedings of SAT 2009. Vol. 5584. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2009,
pp. 51�64.

[31] A. Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010. Tech. rep. 10/1. Altenbergerstr. 69, 4040 Linz, Austria: Insti-
tute for Formal Models and Veri�cation, Johannes Kepler Univer-
sity, Aug. 2010.

[32] K. Bili«ski. �Application of Petri Nets in Parallel Controllers De-
sign"�. PhD thesis. University of Bristol, 1996.

[33] K. Bili«ski et al. �Parallel Controller Synthesis from a Petri Net
Speci�cation�. In: Proceedings of the European Design Automation
Conference. EDAC. Grenoble, France, 1994, pp. 96�101.

384 Bibliography

[34] A. G. Birger, E. T. Gurvitch, and S. Kuznetsov. �Testing of Multiple
Faults in Combinational Circuits�. In: Avtomatika i Telemehanika 8
(1975). (in Russian), pp. 113�120.

[35] M. Blanchard. Comprendre, Maîtriser Et Appliquer Le Grafcet. (in
French). Toulouse: Cepadues, 1979.

[36] A. Blanksby and C. Howland. �A 690-mW 1-Gb/s 1024-b, Rate-
1/2 Low-Density Parity-Check Code Decoder�. In: IEEE Journal of
Solid-State Circuits 37 (2002), pp. 404�412.

[37] E. Böhler et al. �Playing with Boolean Blocks, Part I: Post's Lattice
with Applications to Complexity Theory�. In: SIGACT News 34.4
(2003), pp. 38�52.

[38] B. Bollig and I. Wegener. �Improving the Variable Ordering of OB-
DDs is NP-Complete�. In: IEEE Transactions on Computers 45.9
(Sept. 1996), pp. 993�1002. issn: 0018-9340.

[39] M. M. Bongard. Pattern Recognition. Rochelle Park, NJ, USA: Hay-
den Book Co., Spartan Books., 1970.

[40] S. Borkar. �Energy Management in Future Many-Core Micropro-
cessors�. TD Forum: Power Systems from the Gigawatt to the Mi-
crowatt - Generation, Distribution, Storage and E�cient Use of En-
ergy. Feb. 2008.

[41] R. Bose and D. Ray-Chaudhuri. �On A Class of Error Correcting Bi-
nary Group Codes�. In: Information and Control 3.1 (1960), pp. 68�
79.

[42] L. E. Bourne. �An Inference Model for Conceptual Rule Learning�.
In: Theories in Cognitive Psychology. Ed. by R. Solso. Washington:
Erlbaum, 1974, pp. 231�256.

[43] R. J. Brachman and H. J. Levesque. �The Tractability of Sub-
sumption in Frame-Based Description Languages�. In: AAAI. 1984,
pp. 34�37.

[44] R. J. Brachman and J. G. Schmolze. �An Overview of the KL-
ONE Knowledge Representation System�. In: Cognitive Science 9.2
(1985), pp. 171�216. issn: 1551-6709. doi: 10.1207/s15516709cog0
902_1. url: http://dx.doi.org/10.1207/s15516709cog0902_1.

[45] A. Braeken and B. Preneel. �Algebraic Immunity of Symmetric
Boolean Functions�. In: Lecture Notes in Computer Science 3797
(2005), pp. 35�48.

Bibliography 385

[46] T. Brandon et al. �A Scalable LDPC Decoder Architecture with
Bit-Serial Message Exchange�. In: Integration, The VLSI Journal
41.3 (2008), pp. 385�398.

[47] R. K. Brayton and A. Mishchenko. �ABC: an Academic Indus-
trial Strength Veri�cation Tool�. In: Proceedings of the 22nd Inter-
national Conference on Computer Aided Veri�cation. CAV. Edin-
burgh, UK: Springer-Verlag, 2010, pp. 24�40. isbn: 3-642-14294-X,
978-3-642-14294-9.

[48] R. K. Brayton et al. Logic Minimization Algorithms for VLSI
Synthesis. Norwell, MA, USA: Kluwer Academic Publishers, 1984,
p. 192. isbn: 0898381649.

[49] F. Brglez and H. Fujiwara. �A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran�. In: IEEE
International Symposium on Circuits and Systems. ISCAS. 1985,
pp. 677�692.

[50] R. E. Bryant. �Graph-Based Algorithms for Boolean Function Ma-
nipulation�. In: IEEE Transactions on Computers 35.8 (Aug. 1986),
pp. 677�691. issn: 0018-9340.

[51] R. E. Bryant. �Graph-Based Algorithms for Boolean Function Ma-
nipulation�. In: IEEE Transactions on Computers 35.8 (Aug. 1986),
pp. 667�691. issn: 0018-9340.

[52] R. E. Bryant and Y.-A. Chen. �Veri�cation of Arithmetic Functions
with Binary Moment Diagrams�. In: 31st Conference on Design Au-
tomation. DAC. 1994, pp. 535�541.

[53] P. Buchholz and P. Kemper. �Hierarchical Reachability Graph Gen-
eration for Petri Nets�. In: Universität Dortmund, Fachbereich In-
formatik, Forschungsbericht Nr. 660. 1997, p. 2002.

[54] A. Burg and O. Keren. �Functional Level Embedded Self-Testing
for Walsh Transform Based Adaptive Hardware�. In: IEEE Interna-
tional On-Line Testing Symposium. IOLTS. 2012, pp. 134�135.

[55] J. T. Butler and T. Sasao. �Logic Functions for Cryptography - A
Tutorial�. In: Proceedings of the 10th Reed-Muller Workshop. RM.
Naha, Okinawa, Japan, May 2009, pp. 127�136.

[56] J. T. Butler et al. �On the Use of Transeunt Triangles to Synthesize
Fixed-Polarity Reed-Muller Expansions of Functions�. In: Proceed-
ings of the 10th Reed-Muller Workshop. RM. Naha, Okinawa, Japan,
May 2009, pp. 119�126.

386 Bibliography

[57] D. Calvanese et al. �DL-Lite: Tractable Description Logics for On-
tologies�. In: Proceedings of the 20th National Conference on Arti�-
cial Intelligence. AAAI. 2005, pp. 602�607.

[58] P. Camurati et al. �Improved Techniques for Multiple Stuck-at Fault
Analysis Using Single Stuck-at Fault Test Sets�. In: Proceedings of
the 1992 IEEE International Symposium on Circuits and Systems.
Vol. 1. ISCAS. May 1992, pp. 383�386.

[59] A. Chandrakasan, S. Sheng, and R. Brodersen. �Low-Power CMOS
Digital Design�. In: IEEE Journal of Solid-State Circuits 27.4
(1992), pp. 473�484.

[60] E. J. Chikofsky and J. H. Cross (II.) �Reverse Engineering and De-
sign Recovery: a Taxonomy�. In: IEEE Transactions on Software
Engineering 7.1 (1990), pp. 13�17.

[61] M. Chudnovsky et al. �The Strong Perfect Graph Theorem�. In:
Annals of Mathematics 164.1 (2006), pp. 51�229.

[62] E. M. Clarke, M. Fujita, and X. Zhao. �Multi-Terminal Binary Deci-
sion Diagrams and Hybrid Decision Diagrams�. In: Representations
of Discrete Functions. Ed. by T. Sasao and M. Fujita. Springer US,
1996, pp. 93�108. isbn: 978-1-4612-8599-1.

[63] D. Coppersmith and S. Winograd. �Matrix Multiplication via Arith-
metic Progressions�. In: Journal Symbolic Computation 9:3 (1990),
pp. 251�280.

[64] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press, 1994.

[65] R. Cornet and N. de Keizer. �Forty Years of SNOMED: a Litera-
ture Review�. In: BMC Medical Informatics and Decision Making
8.Suppl 1 (2008), S2. issn: 1472-6947. doi: 10.1186/1472-6947-8-
S1-S2. url: http://www.biomedcentral.com/1472-6947/8/S1/S2.

[66] O. Coudert. �Two-Level Logic Minimization: an Overview�. In: Inte-
gration, the VLSI Journal 17.2 (Oct. 1994), pp. 97�140. issn: 0167-
9260.

[67] N. Courtois. �Fast Algebraic Attacks on Stream Ciphers with Linear
Feedback�. In: Advances in Cryptology - CRYPTO 2003. Vol. LNCS
2729. Berlin, Germany, Springer-Verlag, 2003, pp. 176�194.

[68] N. Courtois and W. Meier. �Algebraic Attacks on Stream Ciphers
with Linear Feedback�. In: Advances in Cryptology - EUROCRYPT
2003. Vol. LNCS 2656. Berlin, Germany, Springer-Verlag, 2003,
pp. 345�359.

Bibliography 387

[69] H. Cox and J. Rajski. �A Method of Fault Analysis for Test Gen-
eration and Fault Diagnosis�. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 7.7 (July 1988),
pp. 813�833.

[70] N. Creignou et al. �Sets of Boolean Connectives that Make Argu-
mentation Easier�. In: Proc. 12th JELIA. Vol. 6341. Lecture Notes
in Computer Science. Springer, 2010, pp. 117�129.

[71] N. Creignou et al. �The Complexity of Reasoning for Fragments
of Autoepistemic Logic�. In: Circuits, Logic, and Games. Ed. by
B. Rossman et al. Dagstuhl Seminar Proceedings 10061. Dagstuhl,
Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many, 2010. url: http://drops.dagstuhl.de/opus/volltexte/20
10/2523.

[72] B. Crowley and V. C. Gaudet. �Switching Activity Minimization in
Iterative LDPC Decoders�. In: Journal of Signal Processing Systems
(2011). doi: doi10.1007/s11265-011-0577-y.

[73] T. W. Cusick and P. St nic . Cryptographic Boolean Functions and
Applications. Elsevier�Academic Press, 2009.

[74] T. Czajkowski and S. Brown. �Functionally Linear Decomposition
and Synthesis of Logic Circuits for FPGAs�. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 27.12
(2008), pp. 2236�2249.

[75] A. Darabiha, A. C. Carusone, and F. R. Kschischang. �A Bit-Serial
Approximate Min-Sum LDPC Decoder and FPGA Implementa-
tion�. In: IEEE International Symposium on Circuits and Systems.
ISCAS. May 2006, pp. 149�152. isbn: 0-7803-9389-9. doi: 10.1109
/ISCAS.2006.1692544.

[76] C. Davies et al. �Adaptation of Tissue to a Chronic Heat Load�. In:
ASAIO Journal 40.3 (1994), pp. M514�M517. doi: DOI:10.1097/0
0002480-199407000-00053.

[77] G. De Micheli. Synthesis and Optimization of Digital Circuits. Mc-
Graw Hill, 1994.

[78] A. De Vos. Reversible Computing. Weinheim: Wiley-VCH, 2010.

[79] A. De Vos and S. De Baerdemacker. �Logics Between Classical Re-
versible Logic and Quantum Logic�. In: Proceedings of the 9th Inter-
national Workshop on Quantum Physics and Logic. Bruxelles. Oct.
2012, pp. 123�128.

388 Bibliography

[80] A. De Vos and S. De Baerdemacker. �The NEGATOR as a Basic Build-
ing Block for Quantum Circuits�. In: Open Systems & Information
Dynamics 20 (Mar. 2013), p. 1350004. issn: 1230-1612. doi: 10.11
42/S1230161213500042.

[81] A. De Vos and S. De Baerdemacker. �The Roots of the NOT Gate�.
In: Proceedings of the 42nd International Symposium on Multiple-
Valued Logic. ISMVL. Victoria, BC, Canada, May 2012, pp. 167�
172.

[82] A. De Vos, J. De Beule, and L. Storme. �Computing with the Square
Root of NOT�. In: Serdica Journal of Computing 3 (2009), pp. 359�
370.

[83] A. De Vos, R. Van Laer, and S. Vandenbrande. �The Group of
Dyadic Unitary Matrices�. In: Open Systems & Information Dy-
namics 19 (2012), p. 1250003.

[84] D. Debnath and T. Sasao. �Fast Boolean Matching Under Permuta-
tion by E�cient Computation of Canonical Form�. In: IEICE Trans-
actions of Fundamentals of Electronics, Communications and Com-
puter Science E87-A (2004), pp. 3134�3140.

[85] D. Deutsch, A. Ekert, and R. Lupacchini. �Machines, logic and
Quantum Physics�. In: The Bulletin of Symbolic Logic 3 (2000),
pp. 265�283.

[86] F. J. O. Dias. �Fault Masking in Combinational Logic Circuits�. In:
IEEE Transactions on Computers 24.5 (May 1975), pp. 476�482.
issn: 0018-9340.

[87] F. M. Donini et al. �The Complexity of Concept Languages�. In:
Information and Computation 134.1 (Apr. 1997), pp. 1�58.

[88] F. M. Donini et al. �The Complexity of Existential Quanti�cation in
Concept Languages�. In: Arti�cial Intelligence 53.2-3 (Feb. 1992),
pp. 309�327.

[89] R. Drechsler and B. Becker. Binary Decision Diagrams - Theory
and Implementations. Kluwer Academic Publishers, 1998.

[90] R. Drechsler, A. Finder, and R. Wille. �Improving ESOP-Based Syn-
thesis of Reversible Logic Using Evolutionary Algorithms�. In: Ap-
plications of Evolutionary Computation. Vol. 6625. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2011, pp. 151�161.

[91] R. Drechsler et al. �E�cient Representation and Manipulation of
Switching Functions Based on Ordered Kronecker Functional Deci-
sion Diagrams�. In: 31st Conference on Design Automation. DAC.
June 1994, pp. 415�419.

Bibliography 389

[92] E. Dubrova. �A Polynomial Time Algorithm for Non-Disjoint De-
composition of Multi-Valued Functions�. In: International Sympo-
sium on Multiple-Valued Logic. ISMVL. 2004, pp. 309�314.

[93] E. Eilam. Reversing: Secrets of reverse engineering. New York, NY,
USA: Wiley, 2005.

[94] P. Elias. �Coding for Noisy Channels�. In: IRE Convention Record.
1955.

[95] C. J. Etherington. �An Analysis of Cryptographically Signi�cant
Boolean Functions with High Correlation Immunity by Recon�g-
urable Computer�. MA thesis. Monterey, CA: ECE Dept., Naval
Postgraduate School, December 2010. url: http://www.dtic.mil
/dtic/tr/fulltext/u2/a536393.pdf.

[96] J. S. B. T. Evans, S. E. Newstead, and R. M. J. Byrne. Human Rea-
soning: The Psychology of Deduction. Hillsdale, NJ, USA: Erlbaum,
1993.

[97] J. Feldman. �Minimization of Boolean Complexity in Human Con-
cept Learning�. In: Nature 407 (2000), pp. 630�633.

[98] S. Fenner et al. Rectangle Free Coloring of Grids. 2009. url: http:
//www.cs.umd.edu/~gasarch/papers/grid.pdf.

[99] P. Fi²er and J. Hlavi£ka. �BOOM, A Heuristic Boolean Minimizer�.
In: Computers and Informatics 22.1 (2003), pp. 19�51.

[100] P. Fi²er and H. Kubatova. �Flexible Two-Level Boolean Minimizer
BOOM-II and Its Applications�. In: Euromicro Conference on Dig-
ital Systems Design. DSD. Cavtat, Croatia, 2006, pp. 369�376.

[101] P. Fi²er and J. Schmidt. �How Much Randomness Makes a Tool
Randomized?� In: Proceedings of the International Workshop on
Logic and Synthesis. IWLS. San Diego, CA, USA, June 2011, pp. 17�
24.

[102] P. Fi²er and J. Schmidt. �Improving the Iterative Power of Resyn-
thesis�. In: 2012 IEEE 15th International Symposium on Design
and Diagnostics of Electronic Circuits System. DDECS. Apr. 2012,
pp. 30�33. isbn: 978-1-4673-1187-8.

[103] P. Fi²er and J. Schmidt. �It Is Better to Run Iterative Resynthesis
on Parts of the Circuit�. In: Proceedings of International Workshop
on Logic and Synthesis. IWLS. Irvine, CA, USA, June 2010, pp. 17�
24.

390 Bibliography

[104] P. Fi²er and J. Schmidt. �On Using Permutation of Variables to Im-
prove the Iterative Power of Resynthesis�. In: Proceedings of the 10th
International Workshop on Boolean Problems. IWSBP. Freiberg,
Germany, Sept. 2012, pp. 107�114.

[105] J. Fodor. �Concepts: A potboiler.� In: Cognition 50 (1994), pp. 95�
113.

[106] R. Forré. �The Strict Avalanche Criterion: Spectral Properties of
Boolean Functions and an Extended De�nition�. In: Advances in
Cryptology - CRYPTO 1988. Berlin, Germany: Springer-Verlag,
1988, pp. 450�468.

[107] H. E. Foundalis. Phaeco: A Cognitive Architecture Inspired by Bon-
gard's Problems. 2006.

[108] A. Galindo and M. Martín-Delgado. �Information and Computation:
Classical and Quantum Aspects�. In: Review of Modern Physics 74
(2002), pp. 347�423.

[109] R. Gallager. �Low-Density Parity-Check Codes�. In: IRE Transac-
tions on Information Theory IT-8 (1962), pp. 21�28.

[110] E. M. Gao et al. �MVSIS: Multi-Valued Logic Synthesis System�. In:
Notes of the International Workshop on Logic and Synthesis. IWLS.
Tahoe City, CA, USA, 2001.

[111] F. Garcia-Valles and J. M. Colom. �Parallel Controller Synthesis
From a Petri Net Speci�cation�. In: Proceedings of IEEE Interna-
tional Conference on Systems, Man and Cybernetics. SMC. 1995.

[112] V. C. Gaudet and W. Gross. �Switching Activity in Stochastic
Decoders�. In: IEEE International Symposium on Multiple-Valued
Logic. ISMVL. May 2010.

[113] V. C. Gaudet, C. Schlegel, and R. Dodd. �LDPC Decoder Message
Formatting Based on Activity Factor Minimization Using Di�eren-
tial Density Evolution�. In: IEEE Information Theory Workshop.
ITW. June 2007, pp. 571�576.

[114] M. Gebser et al. �clasp: A Con�ict-Driven Answer Set Solver�. In:
International Conference on Logic Programming and Nonmonotonic
Reasoning. Vol. LNAI 4483. LPNMR. Springer, 2007, pp. 260�265.

[115] D. Geer. �Chip Makers Turn to Multicore Processors�. In: IEEE
Computer 38.5 (2005), pp. 11�13.

[116] C. Girault and R. Valk. Petri Nets for Systems Engineering. A
Guide to Modeling, Veri�cation, and Application. Berlin Heidelberg:
Springer-Verlag, 2003.

Bibliography 391

[117] F. Glover. �Tabu Search - Part I�. In: ORSA Journal on Computing
1.3 (1989), pp. 190�206.

[118] D. E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. 1st. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 1989. isbn: 0201157675.

[119] E. I. Goldberg et al. �Negative Thinking by Incremental Problem
Solving: Application to Unate Covering�. In: Proceedings of the 1997
IEEE/ACM International Conference on Computer-Aided Design.
ICCAD. San Jose, California, United States, 1997, pp. 91�98.

[120] O. Golubitsky, S. M. Falconer, and D. Maslov. �Synthesis of the
Optimal 4-bit Reversible Circuits�. In: Proceedings of the 47th
ACM/IEEE Design Automation Conference. DAC. June 2010,
pp. 653�656.

[121] O. Golubitsky and D. Maslov. �A Study of Optimal 4-Bit Reversible
To�oli Circuits and Their Synthesis�. In: IEEE Transactions on
Computers 61.9 (Sept. 2012), pp. 1341�1353. issn: 0018-9340.

[122] G. P. Goodwin and P. N. Johnson-Laird. �Conceptual Illusions�. In:
Cognition 114 (2010), pp. 263�308.

[123] D. Grosse et al. �Exact Synthesis of Elementary Quantum Gate
Circuits for Reversible Functions with Don't Cares�. In: Proceed-
ings of the 38th International Symposium on Multiple-Valued Logic.
ISMVL. May 2008, pp. 214�219.

[124] R. K. Guy. �A many-facetted problem of Zarankiewicz�. In: The
Many Facets of Graph Theory. Ed. by G. Chartrand and S. Kapoor.
Vol. 110. Lecture Notes in Mathematics. University of Calgary
Canada: Springer Berlin / Heidelberg, Oct. 1969, pp. 129�148. isbn:
978-3-540-04629-5. url: http://dx.doi.org/10.1007/BFb0060112.

[125] G. D. Hachtel and F. Somenzi. Logic Synthesis and Veri�cation Al-
gorithms. Springer, 1996. isbn: 978-0-387-31004-6.

[126] G. D. Hachtel and F. Somenzi. Logic Synthesis and Veri�cation
Algorithms. 1st. Norwell, MA, USA: Kluwer Academic Publishers,
2000. isbn: 0-79239-746-0.

[127] M. Hack. Analysis of Production Schemata by Petri Nets. Correc-
tions: Project MAC, Computation Structures Note 17 (1974). MIT
Project MAC TR-94, 1972.

[128] R. Hamming. �Error Detecting and Error Correcting Codes�. In:
The Bell System Technical Journal 29 (1950).

392 Bibliography

[129] J. Han et al. �Toward Hardware-Redundant, Fault-Tolerant Logic
for Nanoelectronics�. In: IEEE Design and Test of Computers 22.4
(2005), pp. 328�339.

[130] M. A. Harrison. Introduction to Switching Theory and Automata.
McGraw-Hill, 1965. isbn: 978-0070268500.

[131] Harvard University Sta� of the Computation Laboratory. Synthesis
of Electronic Computing and Control Circuits. Ed. by H. H. Aiken.
Cambridge, MA, USA: Harvard University Press, 1951.

[132] S. Hassoun and T. Sasao. Logic Synthesis and Veri�cation. The
Springer International Series in Engineering and Computer Science
Series. Kluwer Academic Publishers, 2002. isbn: 9780792376064.

[133] E. Hemaspaandra, H. Schnoor, and I. Schnoor. �Generalized Modal
Satis�ability�. In: CoRR abs/0804.2729 (2008), pp. 1�32. url: htt
p://arxiv.org/abs/0804.2729.

[134] J. Hlavi£ka and P. Fi²er. �BOOM, A Heuristic Boolean Minimizer�.
In: Proceedings of the 2001 International Conference on Computer-
Aided Design. ICCAD. San Jose, CA, USA, 2001, pp. 493�442.

[135] C. V. Hoof. �Micro-Power Generation Using Thermal and Vibra-
tional Energy Scavengers�. TD Forum: Power Systems from the Gi-
gawatt to the Microwatt - Generation, Distribution, Storage and
E�cient Use of Energy. Feb. 2008.

[136] T. C. Hsiao and S. C. Seth. �An Analysis of the Use of Rademacher-
Walsh Spectrum in Compact Testing�. In: IEEE Transactions on
Computers C-33.10 (1984), pp. 934�937.

[137] J. L. A. Hughes. �Multiple Fault Detection Using Single Fault Test
Sets�. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 7.1 (Jan. 1988), pp. 100�108. issn:
0278-0070.

[138] W. N. N. Hung et al. �Optimal Synthesis of Multiple Output
Boolean Functions Using a Set of Quantum Gates by Symbolic
Reachability Analysis�. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 25.9 (2006), pp. 1652�
1663. issn: 0278-0070.

[139] M. Hunger and S. Hellebrand. �Veri�cation and Analysis of Self-
Checking Properties through ATPG�. In: 14th IEEE International
On-Line Testing Symposium. IOLTS. July 2008, pp. 25�30.

[140] M. Hunger et al. �ATPG-Based Grading of Strong Fault-Secure-
ness�. In: 15th IEEE International On-Line Testing Symposium.
IOLTS. June 2009, pp. 269�274.

Bibliography 393

[141] �IEEE Standard 802.11n/D2.00, Telecommunications and Informa-
tion Exchange Between Systems - Local and Metropolitan Area Net-
works - Speci�c Requirements - Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Speci�cations�. Feb.
2007.

[142] �IEEE Standard 802.16e, Air Interface for Fixed and Mobile Broad-
band Wireless Access Systems Amendment 2: Physical and Medium
Access Control Layers for Combined Fixed and Mobile Operation
in Licensed Bands and Corrigendum 1�. Feb. 2006.

[143] �IEEE Standard 802.3an, Telecommunications and Information Ex-
change Between Systems - Local and Metropolitan Area Networks
- Speci�c Requirements Part 3: Carrier Sense Multiple Access With
Collision Detection (CSMA/CD) Access Method and Physical Layer
Speci�cations�. Sept. 2006.

[144] �IEEE Standard 802.3ba, IEEE Standard for Information Technol-
ogy - Telecommunications and Information Exchange Between Sys-
tems - Local and Metropolitan Area Networks - Speci�c Require-
ments Part 3: Carrier Sense Multiple Access with Collision Detec-
tion (CSMA/CD) Access Method and Physical Layer Speci�cations
- Amendment 4: Media Access Control Parameters, Physical Layers
and Management Parameters for 40 Gb/s and 100 Gb/s Operation�.
June 2010.

[145] K. Ingle. Reverse Engineering. New York, NY, USA: McGraw-Hill,
1994.

[146] International Energy Agency - Fast Facts. url: http://www.iea.o
rg/journalists/fastfacts.asp.

[147] International Technology Roadmap for Semiconductors, 2011 edi-
tion, Executive Summary. url: http://www.itrs.net/Links/2011
ITRS/2011Chapters/2011ExecSum.pdf.

[148] S. Kajihara, T. Sumioka, and K. Kinoshita. �Test Generation for
Multiple Faults Based on Parallel Vector Pair Analysis�. In:Digest of
Technical Papers of the 1993 IEEE/ACM International Conference
on Computer-Aided Design. ICCAD. Nov. 1993, pp. 436�439.

[149] A. Karatkevich. Dynamic Analysis of Petri Net-based Discrete Sys-
tems. Berlin: Springer, 2007, xiii, 166 p. isbn: 978-3-540-71464-4.

[150] Y. Karkouri et al. �Use of Fault Dropping for Multiple Fault Analy-
sis�. In: IEEE Transactions on Computers 43.1 (Jan. 1994), pp. 98�
103.

394 Bibliography

[151] K. Karplus. Using IF-THEN-ELSE DAGs For Multi-Level Logic
Minimization. Tech. rep. Santa Cruz, CA, USA, 1988.

[152] M. G. Karpovsky. �Error Detection for Polynomial Computations�.
In: IEE Journal on Computer and Digital Techniques C-26.6 (1980),
pp. 523�528.

[153] M. G. Karpovsky and L. B. Levitin. �Universal Testing of Com-
puter Hardware�. In: Spectral Techniques and Fault Detection. Ed.
by M. G. Karpovsky. Academic Press, 1985.

[154] M. G. Karpovsky, R. S. Stankovi¢, and J. T. Astola. Spectral Logic
and Its Applications for the Design of Digital Devices. Wiley, 2008.
isbn: 9780470289211. url: http://books.google.ee/books?id=Ux
v7t7btTJYC.

[155] M. G. Karpovsky and E. A. Trachtenberg. �Linear Checking Equa-
tions and Error-Correcting Capability for Computation Channels�.
In: IFIP Congress. 1977, pp. 619�624.

[156] U. Kebschull, E. Schubert, and W. Rosenstiel. �Multilevel Logic
Synthesis Based on Functional Decision Diagrams�. In: Proceedings
of the 3rd European Conference on Design Automation. EDAC. Mar.
1992, pp. 43�47.

[157] O. Keren. �Adaptive Hardware Based on the Inverse Walsh Trans-
form�. In: Proceedings of the 10th Reed-Muller Workshop. RM. 2011,
pp. 21�26.

[158] Y. C. Kim, V. D. Agrawal, and K. K. Saluja. �Multiple Faults:
Modeling, Simulation and Test�. In: Proceedings of ASP-DAC 2002
7th Asia and South Paci�c and the 15th International Conference
on VLSI Design Automation Conference. ASP-DAC. 2002, pp. 592�
597.

[159] S. Kirkpatrick et al. �Optimization by Simulated Annealing�. In:
Science 220.4598 (May 1983), pp. 671�680.

[160] D. E. Knuth. �Art of Computer Programming�. In: vol. 4. Fascicle 1,
Section 7.1.4. Addison-Wesley Professional, 2009. Chap. The Bitwise
Tricks & Techniques, Binary Decision Diagrams.

[161] N. Koda and T. Sasao. �LP Equivalence Class of Logic Functions�.
In: IFIP 10.5 Workshop on Application of the Reed-Muller Expan-
sion in Circuit Design. RM. Hamburg, Germany, Sept. 1993, pp. 99�
106.

Bibliography 395

[162] N. Koda and T. Sasao. �LP-Characteristic Vectors of Logic Func-
tions and Their Applications�. In: IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences
Part D-I, Vol. J76-D-1.6 (1993), pp. 260�268.

[163] I. V. Kogan. �Testing of Missing of Faults on the Node of Combina-
tional Circuit�. In: Avtomatika i Vychislenie Tehnika, Automation
and Computer Engineering 2 (1976). (in Russian), pp. 31�37.

[164] A. N. Kolmogorov. �Three Approaches to the Quantitative De�ni-
tion of Information�. In: Problemy Peredachi Informatisii 1.1 (1965),
pp. 3�11.

[165] I. Koren. Computer Arithmetic Algorithms. Natick, MA: A. K. Pe-
ters, 2002.

[166] A. V. Kovalyov. �Concurrency Relation and the Safety Problem for
Petri Nets�. In: Proceedings of the 13th International Conference
on Application and Theory of Petri Nets 1992, Lecture Notes in
Computer Science. Vol. 616. Springer-Verlag, June 1992, pp. 299�
309.

[167] A. Kovalyov and J. Esparza. �A Polynomial Algorithm to Compute
the Concurrency Relation of Free-Choice Signal Transition Graphs�.
In: Proceedings of the International Workshop on Discrete Event
Systems, (WODES). 1995, pp. 1�6.

[168] T. Kozªowski et al. �Parallel Controller Synthesis Using Petri Nets�.
In: IEE Proceedings - Computers and Digital Techniques 142.4
(1989), pp. 263�271.

[169] J. Kristensen and P. Miltersen. �Finding Small OBDDs for Incom-
pletely Speci�ed Truth-Tables is Hard�. In: Proceedings of the 12th
Annual International Conference COCOON 2006. Taipei, Taiwan,
Aug. 2006, pp. 489�496.

[170] F. Kschischang, B. Frey, and H.-A. Loeliger. �Factor Graphs and the
Sum-Product Algorithm�. In: IEEE Transactions on Information
Theory 47.2 (2001), pp. 498�519.

[171] G. �abiak et al. �UML Modelling in Rigorous Design Methodology
for Discrete Controllers�. In: International Journal of Electronics
and Telecommunications 58 (2012), pp. 27�34.

396 Bibliography

[172] Y.-T. Lai and S. Sastry. �Edge-Valued Binary Decision Diagrams
for Multi-Level Hierarchical Veri�cation�. In: Proceedings of the 29th
ACM/IEEE Design Automation Conference. DAC. Anaheim, CA,
USA: IEEE Computer Society Press, 1992, pp. 608�613. isbn: 0-
89791-516-X. url: http://dl.acm.org/citation.cfm?id=113938
.149642.

[173] R. Landauer. �Irreversibility and Heat Generation in the Computing
Process�. In: IBM Journal of Research and Development 5 (1961),
pp. 183�191.

[174] A. Lasota. �Modeling of Production Processes with UML Activity
Diagrams and Petri Nets�. PhD thesis. University of Zielona Góra,
2012.

[175] C. F. Laywine and G. L. Mullen. Discrete Mathematics Using Latin
Squares. Wiley-Interscience Series in Discrete Mathematics and Op-
timization. John Wiley & Sons, Inc., 1998. isbn: 978-0471240648.

[176] J. Le Coz et al. �Comparison of 65nm LP Bulk and LP PD-SOI
with Adaptive Power Gate Body Bias for an LDPC Codec�. In:
IEEE International Solid-State Circuits Conference. ISSCC. Feb.
2011, pp. 336�337.

[177] C. Y. Lee. �Representation of Switching Circuits by Binary Decision
Programs�. In: The Bell System Technical Journal (1959), pp. 985�
999.

[178] N. Y. L. Lee and P. N. Johnson-Laird. �A Synthetic Reasoning
and Reverse Engineering of Boolean Circuits�. In: Proceedings of the
Twenty-Seventh Annual Conference of the Cognitive Science Soci-
ety. Ed. by N. J. Mahwah. CogSci. Stresa, Italy, 2005, pp. 1260�
1265.

[179] I. Levin, O. Keren, and H. Rosensweig. �Concept of Non-exactness
in Science Education�. In: New Perspective for Science Education.
Florence, Italy, 2012.

[180] I. Levin, G. Shafat, and O. Keren. �Cognitive Complexity of
Boolean Problems�. In: Proceedings of 10th International Workshop
on Boolean Problems. IWSBP. Freiberg, Germany, 2012, pp. 171�
176.

[181] R. W. Lewis. Programming Industrial Control Systems Using IEC
1131-3. London: IEE, 1995.

[182] M. Lukac et al. �Decomposition of Reversible Logic Function Based
on Cube-Reordering�. In: Proceedings of the Reed-Muller Workshop.
RM. Finland: TICSP Press, 2011, pp. 63�69.

Bibliography 397

[183] E. Macii and T. Wolf. �Multiple Stuck-at Fault Test Generation
Techniques for Combinational Circuits Based on Network Decompo-
sition�. In: Proceedings of the 36th Midwest Symposium on Circuits
and Systems. Vol. 1. MWSCAS. Aug. 1993, pp. 465�467.

[184] D. MacKay and R. Neal. �Near Shannon Limit Performance of Low
Density Parity Check Codes�. In: Electronics Letters 33.6 (1997),
pp. 457�458.

[185] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-
Correcting Codes. North-Holland Mathematical Library, 1977.

[186] D. Marx. �Graph Coloring Problems and Their Applications in
Scheduling�. In: Periodica Polytechnica, Electrical Engineering 48.1
(2004), pp. 11�16.

[187] D. Maslov and G. W. Dueck. �Improved Quantum Cost for n-Bit
To�oli Gates�. In: Electronics Letters 39.25 (2003), pp. 1790�1791.
issn: 0013-5194.

[188] D. Maslov, G. W. Dueck, and M. D. Miller. �Techniques for the
Synthesis of Reversible To�oli Networks�. In: ACM Transactions on
Design Automation of Electronic Systems 12.4 (2007).

[189] D. Maslov et al. �Quantum Circuit Simpli�cation and Level Com-
paction�. In: IEEE Transactions on ComputerAided Design of Inte-
grated Circuits and Systems. 2008, pp. 436�444.

[190] M. Matsuura and T. Sasao. �Representation of Incompletely Spec-
i�ed Switching Functions Using Pseudo-Kronecker Decision Dia-
grams�. In: International Workshop on Applications of the Reed-
Muller Expansion in Circuit Design. RM. Starkville, Mississippi,
U.S.A, Aug. 2001, pp. 27�33.

[191] K. McElvain. LGSynth93 Benchmark Set: Version 4.0. Mentor
Graphics. May 1993.

[192] D. L. Medin, E. B. Lynch, and K. O. Solomon. �Are there Kinds
of Concepts?� In: Annual Review of Psychology 51 (2000), pp. 121�
147.

[193] D. Medin and E. E. Smith. �Concepts and Concept Formation�. In:
Annual Review of Psychology. Ed. by M. R. Rosensweig and L. W.
Porter. Stresa, Italy, 1984, pp. 113�118.

[194] A. Meier. �Generalized Complexity ofALC Subsumption�. In: CoRR
1205.0722 (2012), pp. 1�10.

398 Bibliography

[195] A. Meier and T. Schneider. �Generalized Satis�ability for the De-
scription Logic ALC�. In: CoRR abs/1103.0853 (Mar. 2011), pp. 1�
37. url: http://arxiv.org/abs/1103.0853.

[196] A. Meier and T. Schneider. �Generalized Satis�ability for the De-
scription Logic ALC�. In: Proceedings of the 8th International Con-
ference on Theory and Applications of Models of Computation.
Vol. LNCS 6648. TAMC. Springer Verlag, 2011, pp. 552�562.

[197] A. Meier and T. Schneider. �The Complexity of Satis�ability for
Sub-Boolean Fragments of ALC�. In: Proceedings of the 23rd In-
ternational Workshop on Description Logics. DL. CEUR-WS.org,
2010.

[198] W. Meier, E. Pasalic, and C. Carlet. �Algebraic Attacks and De-
composition of Boolean Functions�. In: Advances in Cryptology -
CRYPTO 2004. Vol. LNCS 3027. Berlin, Germany: Springer-Verlag,
2003, pp. 474�491.

[199] C. Meinel and T. Theobald. Algorithms and Data Structures in
VLSI Design. Springer, 1998.

[200] K. Mielcarek. �Application of Perfect Graphs in Digital Devices De-
signing�. (in Polish). PhD thesis. University of Zielona Góra, 2009.

[201] K. Mielcarek, M. Adamski, and W. Zajac. �Perfect Petri Nets�. In:
Journal of Theoretical and Applied Computer Science 77.3 (2010).
(In Polish), pp. 169�176.

[202] M. D. Miller. �Decision Diagram Techniques for Reversible and
Quantum Circuits�. In: Proceedings of the 8th International Work-
shop on Boolean Problems. IWSBP. Freiberg. Sept. 2008, pp. 1�15.

[203] M. D. Miller. �Lower Cost Quantum Gate Realizations of Multiple-
Control To�oli Gates�. In: IEEE Paci�c Rim Conference on Com-
munications, Computers and Signal Processing. PacRim. Aug. 2009,
pp. 308�313.

[204] M. D. Miller. �Multiple-Valued Logic Design Tools�. In: Proceed-
ings of the 23rd International Symposium on Multiple-Valued Logic.
ISMVL. Sacramento, CA, USA, May 1993, pp. 2�11.

[205] M. D. Miller and J. C. Muzio. �Spectral Fault Signatures for Single
Stuck-At Faults in Combinational Networks�. In: IEEE Transactions
on Computers C-33.8 (1984), pp. 765�769.

[206] M. D. Miller and Z. Sasanian. �Improving the NCV Realization of
Multiple-Control To�oli Gates�. In: Proceedings of the 9th Inter-
national Workshop on Boolean Problems. IWSBP. Freiberg. Sept.
2010, pp. 37�44.

Bibliography 399

[207] M. D. Miller and Z. Sasanian. �Lowering the Quantum Gate Cost
of Reversible Circuits�. In: Proceedings of the 53rd IEEE Interna-
tional Midwest Symposium on Circuits and Systems. MWSCAS.
Aug. 2010, pp. 260�263.

[208] M. D. Miller, R. Wille, and Z. Sasanian. �Elementary Quantum Gate
Realizations for Multiple-Control To�oli Gates�. In: Proceedings of
the 41st IEEE International Symposium on Multiple-Valued Logic.
ISMVL. May 2011, pp. 288�293.

[209] S. Minato. Binary Decision Diagrams and Applications for VLSI
CAD. The Springer International Series in Engineering and Com-
puter Science. Springer, 1995. isbn: 9780792396529. url: http://b
ooks.google.ee/books?id=byDkfhnJdz8C.

[210] S. Minato. �Zero-Suppressed BDDs for Set Manipulation in Com-
binatorial Problems�. In: Proceedings of the 30th International De-
sign Automation Conference. DAC. Dallas, TX, USA: ACM, 1993,
pp. 272�277. isbn: 0-89791-577-1.

[211] S. Minato, N. Ishiura, and S. Yajima. �Shared Binary Decision Dia-
gram with Attributed Edges for E�cient Boolean Function Manipu-
lation�. In: Proceedings of the 27th ACM/IEEE Design Automation
Conference. DAC. June 1990, pp. 52�57.

[212] A. Mishchenko and R. K. Brayton. �Scalable Logic Synthesis Us-
ing a Simple Circuit Structure�. In: Proceedings of the International
Workshop on Logic and Synthesis. IWLS. Vail, CO, USA, June 2006,
pp. 15�22.

[213] A. Mishchenko, S. Chatterjee, and R. K. Brayton. �DAG-Aware
AIG Rewriting: a Fresh Look at Combinational Logic Synthesis�.
In: Proceedings of the 43rd Annual Design Automation Conference.
DAC. San Francisco, CA, USA: ACM, 2006, pp. 532�535. isbn: 1-
59593-381-6.

[214] A. Mishchenko, S. Chatterjee, and R. K. Brayton. �Improvements
to Technology Mapping for LUT-Based FPGAs�. In: IEEE Transac-
tions on Computer-aided Design of Integrated Circuits and Systems
26.2 (Feb. 2007), pp. 240�253. issn: 0278-0070.

[215] A. Mishchenko et al. �Combinational and Sequential Mapping with
Priority Cuts�. In: Proceedings of the 2007 IEEE/ACM international
conference on Computer-aided design. ICCAD. San Jose, CA, USA:
IEEE Press, 2007, pp. 354�361. isbn: 1-4244-1382-6.

400 Bibliography

[216] A. Mishchenko et al. �Scalable Don't-care-based Logic Optimization
and Resynthesis�. In: ACM Transactions on Recon�gurable Technol-
ogy and Systems 4.4 (Dec. 2011), 34:1�34:23. issn: 1936-7406.

[217] C. W. Moon et al. �Technology Mapping for Sequential Logic Syn-
thesis�. In: Proceedings of the International Workshop on Logic and
Synthesis. IWLS. NC, USA, 1989.

[218] C. Moraga. �Hybrid GF(2)-Boolean Expressions for Quantum Com-
puting Circuits�. In: Reversible Computation. Vol. 7165. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012,
pp. 54�63.

[219] C. Moraga. �Mixed Polarity Reed-Muller Expressions for Quantum
Computing Circuits�. In: Proceeding of the Workshop Reed Muller.
RM. Finland: TICSP-Press, 2011, pp. 119�125.

[220] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 Web Ontol-
ogy Language: Structural Speci�cation and Functional-Style Syntax.
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/. 2009.

[221] T. Murata. �Petri Nets: Properties, Analysis and Applications�. In:
Proceedings of the IEEE 77 (Apr. 1989), pp. 541�580.

[222] R. Murgai et al. �Logic synthesis for programmable gate arrays�. In:
Proceedings of the 27th ACM/IEEE Design Automation Conference.
DAC. Orlando, FL, USA: ACM, 1990, pp. 620�625. isbn: 0-89791-
363-9.

[223] D. Nardi and R. J. Brachman. �An Introduction to Description Log-
ics�. In: The Description Logic Handbook: Theory, Implementation,
and Applications. Ed. by F. Baader et al. 2nd. Vol. 1. Cambridge
University Press, 2003. Chap. 1.

[224] R. M. Nosofsky et al. �Comparing Models of Rule-based Classi-
�cation Learning: A Replication and Extension of Shepard, Hov-
land, and Jenkins (1961)�. In: Memory and Cognition 3.22 (1994),
pp. 352�369.

[225] OEIS. Number of distinct n× n (0, 1) matrices after double sorting:
by row, by column, by row. The On-Line Encyclopedia of Integer
Sequences

TM

(OEIS
TM

). Feb. 2013. url: http://oeis.org/A08900
6.

[226] A. Oliveira et al. �Exact Minimization of Binary Decision Diagrams
Using Implicit Techniques�. In: IEEE Transactions on Computers
47.11 (1998), pp. 1282�1296.

Bibliography 401

[227] N. Onizawa, V. C. Gaudet, and T. Hanyu. �Low-Energy Asyn-
chronous Interleaver for Clockless Fully Parallel LDPC Decoding�.
In: IEEE Transactions on Circuits and Systems I: Regular Papers
58.8 (2011), pp. 1933�1943.

[228] OpenCores. Open Source Hardware Community. url: http://open
cores.org.

[229] P. Pacheco. An Introduction to Parallel Programming. Morgan Kauf-
mann, 2011. isbn: 978-0123742605.

[230] J. Pardey. �Parallel Controller Synthesis for VLSI Applications�.
PhD thesis. University of Bristol, 1993.

[231] M. Perkowski et al. �Multi-Level Logic Synthesis Based on Kro-
necker Decision Diagrams and Boolean Ternary Decision Diagrams
for Incompletely Speci�ed Functions�. In: VLSI Design 3.3�4 (1995),
pp. 301�313.

[232] J. L. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice-Hall, 1981.

[233] C. A. Petri. Kommunikation mit Automaten. Bonn: Schriften des
IIM Nr. 2, Institut für Instrumentelle Mathematik, 1962.

[234] N. Pippenger. Theories of Computability. Cambridge University
Press, 1997.

[235] I. Pomeranz and S. M. Reddy. �On Generating Test Sets that Re-
main Valid in the Presence of Undetected Faults�. In: Proceedings
of the Seventh Great Lakes Symposium on VLSI. GLSVLSI. Mar.
1997, pp. 20�25.

[236] C. Pommerenke. �Über die Gleichverteilung von Gitterpunkten
auf m-dimensionalen Ellipsoiden�. In: Acta Mathematica 5 (1959),
pp. 227�257.

[237] D. Popel and R. Drechsler. �E�cient Minimization of Multiple-
Valued Decision Diagrams for Incompletely Speci�ed Functions�.
In: Proceedings of the 33rd International Symposium on Multiple-
Valued Logic. Tokyo, Japan, May 2003, p. 241.

[238] D. A. Pospelov. Logical Methods of Analysis and Synthesis of Cir-
cuits. (in Russian). Energia, Moscow, 1974.

[239] E. Post. �The Two-Valued Iterative Systems of Mathematical Logic�.
In: Annals of Mathematical Studies 5 (1941), pp. 1�122.

[240] C. Postho� and B. Steinbach. Logic Functions and Equations - Bi-
nary Models for Computer Science. Dordrecht, The Netherlands:
Springer, 2004. isbn: 978-1-4020-2937-0.

402 Bibliography

[241] B. Preneel et al. �Propagation Characteristics of Boolean Func-
tions�. In: Proceedings of the Workshop on the Theory and Ap-
plication of Cryptographic Techniques on Advances in Cryptology.
Vol. EUROCRYPT. Springer-Verlag, New York, NY, 1991, pp. 161�
173.

[242] A. Puggelli et al. �Are Logic Synthesis Tools Robust?� In: Proceed-
ings of the 48th Design Automation Conference. DAC. San Diego,
CA, USA: ACM, 2011, pp. 633�638. isbn: 978-1-4503-0636-2.

[243] J. Rabaey (moderator). �Beyond the Horizon: The Next 10x Re-
duction in Power - Challenges and Solutions�. Plenary Technology
Roundtable. Feb. 2011.

[244] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Cir-
cuits. 2nd. Prentice-Hall, 2003.

[245] A. Ra�ev, J. Murphy, and A. Yakovlev. �Quaternary Reed-Muller
Expansions of Mixed Radix Arguments in Cryptographic Circuits�.
In: Proceedings of the 39th International Symposium on Multiple-
Valued Logic, (ISMVL). ISMVL. IEEE Computer Society Washing-
ton, May 2009, pp. 370�376.

[246] M. Rahman et al. �Two-qubit Quantum Gates to Reduce the Quan-
tum Cost of Reversible Circuit�. In: Proceedings of the 41st IEEE In-
ternational Symposium on Multiple-Valued Logic. ISMVL. Tuusulla.
May 2011, pp. 86�92.

[247] A. Raychowdhury et al. �Computing with Subthreshold Leakage:
Device/Circuit/Architecture Co-Design for Ultralow-Power Sub-
threshold Operation�. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 13.11 (2005), pp. 1213�1224.

[248] I. Reiman. �Ueber ein Problem von K. Zarankiewicz�. In: Acta Math-
ematica Academiae Scientiarum Hungaricae 9 (3 1958), pp. 269�
279. doi: 10.1007/BF02020254.

[249] S. Roman. �A problem of Zarankiewicz�. In: Journal of Combina-
torial Theory, Series A 18.2 (1975), pp. 187�198. issn: 0097-3165.
doi: 10.1016/0097-3165(75)90007-2. url: http://www.scienced
irect.com/science/article/pii/0097316575900072.

[250] O. S. Rothaus. �On `Bent' Functions�. In: Journal of Combinatorial
Theory. Vol. 20. Ser. A, 1976, pp. 300�305.

[251] P. Ruch et al. �Automatic Medical Encoding with SNOMED Cate-
gories�. In: BMC Medical Informatics and Decision Making 8.Suppl
1 (2008), S6. issn: 1472-6947. doi: 10.1186/1472-6947-8-S1-S6.
url: http://www.biomedcentral.com/1472-6947/8/S1/S6.

Bibliography 403

[252] R. Rudell. �Dynamic Variable Ordering for Ordered Binary Decision
Diagrams�. In: Proceedings of the 1993 IEEE/ACM International
Conference on Computer-Aided Design. ICCAD. Santa Clara, CA,
USA: IEEE Computer Society Press, 1993, pp. 42�47. isbn: 0-8186-
4490-7.

[253] B. Y. Rytsar. �A New Approach to the Decomposition of Boolean
Functions. 4. Non-Disjoint Decomposition: the Method of P, Q-
Partitions�. In: Cybernetics and Systems Analysis 45.3 (2009),
pp. 340�364.

[254] M. Saeedi and I. L. Markov. �Synthesis and Optimization of Re-
versible Circuits - A Survey�. In: ACM Computing Surveys (2013).
url: http://arxiv.org/abs/1110.2574.

[255] K. K. Saluja and E. H. Ong. �Minimization of Reed-Muller Canoni-
cal Expansion�. In: IEEE Transactions on Computers C-28.7 (1979),
pp. 535�537.

[256] A. Sarabi et al. �Minimal Multi-level Realization of Switching Func-
tions Based on Kronecker Functional Decision Diagrams�. In: Inter-
national Workshop on Logic & Synthesis. 1993.

[257] Z. Sasanian and M. D. Miller. �Mapping a Multiple-Control Tof-
foli Gate Cascade to an Elementary Quantum Gate Circuit�. In:
Proceedings of the 2nd International Workshop on Reversible Com-
putation. RC. Bremen. July 2010, pp. 83�90.

[258] Z. Sasanian and M. D. Miller. �Transforming MCT Circuits to
NCVW Circuits�. In: Proceedings of the 3rd International Workshop
on Reversible Computation. Vol. LNCS 7165. RC. Gent, Belgium:
Springer, 2012, pp. 77�88. isbn: 978-3-642-29516-4.

[259] T. Sasao. �Index Generation Functions: Recent Developments�. In:
International Symposium on Multiple-Valued Logic (2011), pp. 1�9.

[260] T. Sasao. Switching Theory for Logic Synthesis. Kluwer Academic
Publishers, 1999.

[261] T. Sasao and P. Besslich. �On the Complexity of mod-2 Sum PLAs�.
In: IEEE Transactions on Computers C-39.2 (1990), pp. 262�266.

[262] T. Sasao and J. T. Butler. �The Eigenfunction of the Reed-Muller
Transformation�. In: Proceedings of the 10th Reed-Muller Workshop.
RM. May 2007.

[263] T. Sasao and M. Fujita. Representations of Discrete Functions.
Kluwer Academic Publishers, 1996.

404 Bibliography

[264] T. Sasao and M. Matsuura. �BDD Representation for Incompletely
Speci�ed Multiple-Output Logic Functions and its Applications to
Functional Decomposition�. In: Proceedings of the 42nd Design Au-
tomation Conference. DAC. June 2005, pp. 373�378.

[265] T. Sasao and M. Fujita, eds. Representations of Discrete Func-
tions. Norwell, MA, USA: Kluwer Academic Publishers, 1996. isbn:
0792397207.

[266] H. Savoj and R. K. Brayton. �The Use of Observability and Ex-
ternal Don't Cares for the Simpli�cation of Multi-Level Networks�.
In: Proceedings of the 27th ACM/IEEE Design Automation Con-
ference. DAC. Orlando, FL, USA: ACM, 1990, pp. 297�301. isbn:
0-89791-363-9.

[267] C. Schlegel and L. Perez. Trellis and Turbo Coding. John Wiley and
Sons, 2004.

[268] H. Schnoor. �Algebraic Techniques for Satis�ability Problems�. PhD
thesis. Gottfried Wilhelm Leibniz Universität Hannover, 2007.

[269] I. Schnoor. �The Weak Base Method for Constraint Satisfaction�.
PhD thesis. Gottfried Wilhelm Leibniz Universität Hannover, 2008.

[270] C. Scholl et al. �Minimizing ROBDD Sizes of Incompletely Speci�ed
Boolean Functions by Exploiting Strong Symmetries�. In: Proceed-
ings of the 1997 European conference on Design and Test. EDTC.
1997.

[271] N. O. Scott and G. W. Dueck. �Pairwise Decomposition of To�oli
Gates in a Quantum Circuit�. In: Proceedings of the 18th ACM Great
Lakes Symposium on VLSI. GLSVLSI. Orlando, FL, USA: ACM,
2008, pp. 231�236. isbn: 978-1-59593-999-9.

[272] A. Sedra and K. C. Smith. Microelectronic Circuits. 6th. Oxford
University Press, 2011.

[273] E. Sentovich et al. SIS: A System for Sequential Circuit Synthesis.
Tech. rep. UCB/ERL M92/41. EECS Department, University of
California, Berkeley, 1992.

[274] G. Shafat and I. Levin. �Recognition vs Reverse Engineering in
Boolean Concepts Learning�. In: International Conference on Cog-
nition and Exploratory Learning in the Digital Age. CELDA. 2012,
pp. 65�72.

Bibliography 405

[275] J. L. Shafer et al. �Enumeration of Bent Boolean Functions by
Recon�gurable Computer�. In: 18th Annual International IEEE
Symposium on Field-Programmable Custom Computing Machines.
FCCM. Charlotte, NC: IEEE Computer Society, 2010, pp. 265�272.
url: http://faculty.nps.edu/butler/PDF/2010/Schafer_et_al
_Bent.pdf.

[276] C. E. Shannon. �The Synthesis of Two-Terminal Switching Circuits�.
In: The Bell Systems Technical Journal 28 (1949), pp. 59�98.

[277] C. E. Shannon. �A Mathematical Theory of Communication�. In:
The Bell System Technical Journal 27 (July 1948), pp. 379�423,
623�656.

[278] T. Shiple et al. �Heuristic Minimization of BDDs Using Don't
Cares�. In: Tech. Rept. M93/58. EECS Department, University of
California, Berkeley, 1993.

[279] T. Siegenthaler. �Correlation Immunity of Nonlinear Combining
Functions for Cryptographic Applications�. In: IEEE Transactions
on Information Theory. Vol. IT-30(5). 1984, pp. 776�780.

[280] J. E. Smith. �On Necessary and Su�cient Conditions for Multi-
ple Fault Undetectability�. In: IEEE Transactions on Computers
C-28.10 (Oct. 1979), pp. 801�802. issn: 0018-9340.

[281] M. Soeken et al. �Optimizing the Mapping of Reversible Circuits to
Four-Valued Quantum Gate Circuits�. In: Proceedings of the 42nd
IEEE International Symposium on Multiple-Valued Logic. ISMVL.
May 2012, pp. 173�178.

[282] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.4.1.

[283] R. Sridhar and S. Iyengar. �E�cient Parallel Algorithms for Func-
tional Dependency Manipulations�. In: Proceedings of the Second
International Conference on Databases in Parallel and Distributed
Systems. ICPADS. Dublin, Ireland: ACM, 1990, pp. 126�137. isbn:
0-8186-2052-8. doi: 10.1145/319057.319078.

[284] A. Srinivasan et al. �Algorithms for Discrete Function Manipula-
tion�. In: Digest of Technical Papers of the 1990 IEEE International
Conference on Computer-Aided Design. ICCAD. Nov. 1990, pp. 92�
95.

[285] M. Stan and W. Burleson. �Bus-Invert Coding for Low-Power I/O�.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 3.1 (1995), pp. 49�58.

406 Bibliography

[286] M. Stankovi¢, S. Stojkovi¢, and R. S. Stankovi¢. �Representation
of Incompletely Speci�ed Binary and Multiple-Valued Logic Func-
tions by Compact Decision Diagrams�. In: Proceedings of the In-
ternational Symposium on Multiple-Valued Logic. ISMVL. Victoria,
BC, Canada, May 2012, pp. 142�147.

[287] R. S. Stankovi¢. �Some Remarks on Basic Characteristics of Deci-
sion Diagrams�. In: Proceedings of the 4th International Workshop
on Applications of Reed-Muller Expansion in Circuit Design. RM.
Victoria, BC, Canada, Aug. 1999, pp. 139�146.

[288] R. S. Stankovi¢ et al. �Circuit Synthesis from Fibonacci Decision
Diagrams�. In: VLSI Design 14.1 (2002), pp. 23�34.

[289] R. S. Stankovi¢ et al. �Progress in Applications of Boolean Func-
tions�. In: ed. by T. Sasao and J. T. Butler. Morgan & Claypool
Publishers, 2010. Chap. Equivalence Classes of Boolean Functions,
pp. 1�31.

[290] B. Steinbach and C. Postho�. �An Extended Theory of Boolean
Normal Forms�. In: Proceedings of the 6th Annual Hawaii Inter-
national Conference on Statistics, Mathematics and Related Fields.
Honolulu, Hawaii, 2007, pp. 1124�1139.

[291] B. Steinbach and C. Postho�. �Arti�cial Intelligence and Creativity
- Two Requirements to Solve an Extremely Complex Coloring Prob-
lem�. In: Proceedings of the 5th International Conference on Agents
and Arti�cial Intelligence. Ed. by J. Filipe and A. Fred. Vol. 2.
ICAART. Valencia, Spain, 2013, pp. 411�418. isbn: 978-989-8565-
39-6.

[292] B. Steinbach and C. Postho�. �Search Space Restriction for Maximal
Rectangle-Free Grids�. In: 10th International Workshop on Boolean
Problems. IWSBP. 2012.

[293] B. Steinbach and C. Postho�. �Solution of the Last Open Four-
Colored Rectangle-free Grid - an Extremely Complex Multiple-
Valued Problem�. In: Proceedings of the IEEE 43nd International
Symposium on Multiple-Valued Logic. ISMVL. Toyama, Japan,
2013, pp. 302�309. isbn: 978-0-7695-4976-7. doi: 10.1109/ISMVL
.2013.51.

[294] B. Steinbach and C. Postho�. �The Solution of Ultra Large Grid
Problems�. In: 21st International Workshop on Post-Binary ULSI
Systems. Victoria, BC, Canada, May 2012, pp. 1�10.

Bibliography 407

[295] B. Steinbach, C. Postho�, and W. Wessely. �Approaches to Shift
the Complexity Limitations of Boolean Problems�. In: Proceedings
of the Seventh International Conference on Computer Aided Design
of Discrete Devices. CAD DD. Minsk, Belarus, Nov. 2010, pp. 84�
91. isbn: 978-985-6744-63-4.

[296] B. Steinbach, W. Wessely, and C. Postho�. �Several Approaches to
Parallel Computing in the Boolean Domain�. In: 1st International
Conference on Parallel, Distributed and Grid Computing. PDGC.
Jaypee University of Information Technology Waknaghat, Solan,
H.P., India, Oct. 2010, pp. 6�11. isbn: 978-1-4244-7672-5.

[297] B. Steinbach, ed. 10th International Workshop on Boolean Problems.
IWSBP. Freiberg, Germany, Sept. 2012. isbn: 978-3-86012-438-3.

[298] B. Steinbach. �XBOOLE - A Toolbox for Modelling, Simulation,
and Analysis of Large Digital Systems�. In: System Analysis and
Modeling Simulation 9.4 (1992), pp. 297�312.

[299] B. Steinbach and C. Postho�. �Boolean Di�erential Calculus�. In:
Progress in Applications of Boolean Functions. San Rafael, CA,
USA: Morgan & Claypool Publishers, 2010, pp. 55�78.

[300] B. Steinbach and C. Postho�. �Boolean Di�erential Calculus - The-
ory and Applications�. In: Journal of Computational and Theoretical
Nanoscience 7.6 (2010), pp. 933�981. issn: 1546-1955.

[301] B. Steinbach and C. Postho�. Boolean Di�erential Equations. Mor-
gan & Claypool Publishers, June 2013. isbn: 978-1627052412. doi:
10.2200/S00511ED1V01Y201305DCS042.

[302] B. Steinbach and C. Postho�. Logic Functions and Equations - Ex-
amples and Exercises. Springer Science + Business Media B.V.,
2009. isbn: 978-1-4020-9594-8.

[303] G. Strang. Introduction to Linear Algebra (3rd ed.) Wellesley, Mas-
sachusetts: Wellesley-Cambridge Press, 2003, pp. 74�76.

[304] V. Strassen. �Gaussian Elimination is Not Optimal�. In: Numerical
Mathematics 13 (1969), pp. 354�356.

[305] V. P. Suprun. �A Table Method for Polynomial Decomposition of
Boolean Functions�. In: Kibernetika 1 (1987). (in Russian), pp. 116�
117.

[306] V. P. Suprun. �Fixed Polarity Reed-Muller Expressions of Symmet-
ric Boolean Functions�. In: Workshop on Applications of the Reed-
Muller Expansion in Circuit Design. RM. 1995, pp. 246�249.

408 Bibliography

[307] V. P. Suprun. �Method of the Conversion DNF of the Boolean Func-
tions to Canonical Zhegalkin Polynomial�. In: Automatika i vichis-
litelnaia technika 2 (1984). (in Russian), pp. 78�81.

[308] V. P. Suprun. �Polynomial Expression of Symmetric Boolean Func-
tions�. In: Izvestia akademii nauk SSSR. Tekhicheskaia Kibernetika
4 (1985). (in Russian), pp. 123�127.

[309] Synopsys Power Compiler. url: http://www.synopsys.com/tools
/implementation/rtlsynthesis/pages/powercompiler.aspx.

[310] M. Szpyrka. Petri Nets in Modeling and Analysis of Concurrent
Systems. Polish. Warszawa: WNT, 2008.

[311] M. Szyprowski and P. Kerntopf. �A Study of Optimal 4-Bit Re-
versible Circuit Synthesis from Mixed-Polarity To�oli Gates�. In:
Proceedings of the 12th IEEE Conference on Nanotechnology. IEEE-
NANO. Aug. 2012.

[312] M. Szyprowski and P. Kerntopf. �An Approach to Quantum Cost
Optimization in Reversible Circuits�. In: Proceedings of the 11th
IEEE Conference on Nanotechnology. IEEE-NANO. Aug. 2011,
pp. 1521�1526.

[313] M. Szyprowski and P. Kerntopf. �Optimal 4-Bit Reversible Mixed-
Polarity To�oli Circuits�. In: Proceedings of the 4th International
Workshop on Reversible Computation. RC. Copenhagen, Denmark:
Springer, 2012, pp. 138�151. isbn: 978-3-642-36314-6.

[314] M. Szyprowski and P. Kerntopf. �Reducing Quantum Cost in Re-
versible To�oli Circuits�. In: Proceedings of the 10th Reed-Muller
Workshop. RM. 2011, pp. 127�136. eprint: 1105.5831. url: http:
//arxiv.org/abs/1105.5831.

[315] S. S. Tehrani, S. Mannor, and W. Gross. �Fully Parallel Stochastic
LDPC Decoders�. In: IEEE Transactions on Signal Processing 56.11
(2008), pp. 5692�5703.

[316] A. Thayse and M. Davio. �Boolean Di�erential Calculus and its
Application to Switching Theory�. In: IEEE Transactions on Com-
puters C-22.4 (Apr. 1973), pp. 409�420.

[317] J. Tkacz and M. Adamski. �Wyznaczanie SM - pokrycia bezpiecznej
Sieci Petriego Metoda Komputerowego Wnioskowania�. In: Pomi-
ary, Automatyka, Kontrola (Nov. 2011), pp. 1397�1400.

[318] T. To�oli. �Reversible Computing�. In: Proceedings of the 7th Collo-
quium on Automata, Languages and Programming. ICALP. London,
UK, UK: Springer-Verlag, 1980, pp. 632�644.

Bibliography 409

[319] C.-C. Tsai and M. Marek-Sadowska. �Boolean Function Classi�ca-
tion via Fixed-Polarity Reed-Muller Forms�. In: IEEE Transactions
on Computers C-46.2 (1997), pp. 173�186.

[320] Z. Tu and Y. Deng. Algebraic Immunity Hierarchy of Boolean Func-
tions. 2007. url: http://eprint.iacr.org/2007/259.pdf.

[321] R. Ubar. �Complete Test Pattern Generation for Combinational
Networks�. In: Proceedings Estonian Academy of Sciences, Physics
and Mathematics 4 (1982). (in Russian), pp. 418�427.

[322] R. Ubar. �Fault Diagnosis in Combinational Circuits by Solving
Boolean Di�erential Equations�. In: Automatics and Telemechanics
11 (1979). (in Russian), pp. 170�183.

[323] R. Ubar, S. Kostin, and J. Raik. �Multiple Stuck-at-Fault Detection
Theorem�. In: 2012 IEEE 15th International Symposium on Design
and Diagnostics of Electronic Circuits Systems. DDECS. Apr. 2012,
pp. 236�241.

[324] R. Ubar. �Test Generation for Digital Circuits Using Alternative
Graphs�. Russian. In: Proceedings of Tallinn Technical University
409 (1976), pp. 75�81.

[325] R. Ubar. �Test Synthesis with Alternative Graphs�. In: IEEE Design
and Test of Computers 13.1 (1996), pp. 48�57.

[326] R. Ubar, S. Kostin, and J. Raik. �About Robustness of Test Patterns
Regarding Multiple Faults�. In: 13th Latin American Test Workshop.
LATW. Apr. 2012, pp. 1�6.

[327] R. Ubar et al. �Structural Fault Collapsing by Superposition of
BDDs for Test Generation in Digital Circuits�. In: 2010 11th In-
ternational Symposium on Quality Electronic Design. ISQED. Mar.
2010, pp. 250�257.

[328] R. Vigo. �Categorical Invariance and Structural Complexity in Hu-
man Concept Learning�. In: Journal of Mathematical Psychology 53
(2009), pp. 203�221.

[329] A. Viterbi. �Error Bounds for Convolutional Codes and an Asymp-
totically Optimum Decoding Algorithm�. In: IEEE Transactions on
Information Theory 13.2 (1967), pp. 260�269.

[330] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

[331] A. Wang and A. Chandrakasan. �A 180mV FFT Processor Us-
ing Subthreshold Circuit Techniques�. In: IEEE International Solid-
State Circuits Conference. ISSCC. Feb. 2004, pp. 292�293.

410 Bibliography

[332] I. Webster and S. E. Tavares. �On the Design of S-Boxes�. In:
Advances in Cryptology - CRYPTO'85. Vol. 218. Springer-Verlag,
Berlin, Germany, 1986, pp. 523�534.

[333] M. Werner. Algorithmische Betrachtungen zum Zarankiewicz Prob-
lem. Seminararbeit, TU Freiberg, Germany. May 2012. url: http:
//11235813tdd.blogspot.de/2012/02/zarankiewicz-problem.ht
ml.

[334] N. Weste and D. Harris. CMOS VLSI Design - A Circuits and Sys-
tems Perspective. 4th. Boston: Pearson Education, 2011.

[335] Wikipedia. Grigorchuk Group. 2013. url: http://en.wikipedia.o
rg/wiki/Grigorchuk_group.

[336] Wikipedia. Growth Rate (Group Theory). 2013. url: http://en.w
ikipedia.org/wiki/Growth_rate_(group_theory).

[337] R. Wille and R. Drechsler. Towards a Design Flow for Reversible
Logic. Dordrecht: Springer, 2010.

[338] R. Wille, M. Saeedi, and R. Drechsler. �Synthesis of Reversible Func-
tions Beyond Gate Count and Quantum Cost�. In: Proceedings of the
18th International Workshop on Logic and Synthesis. IWLS. Berke-
ley. Aug. 2009, pp. 43�49.

[339] C. Winstead et al. �An Error Correction Method for Binary and
Multiple-Valued Logic�. In: IEEE International Symposium on
Multiple-Valued Logic. ISMVL. May 2011, pp. 105�110.

[340] M. Wi±niewska, R. Wi±niewski, and M. Adamski. �Usage of Hy-
pergraph Theory in Decomposition of Concurrent Automata�. In:
Pomiary, Automatyka, Kontrola (July 2007), pp. 66�68.

[341] M. Wi±niewska. Application of Hypergraphs in Decomposition of
Discrete Systems. Lecture Notes in Control and Computer Science,
Vol. 23. Zielona Góra: University of Zielona Góra Press, 2012, p. 143.

[342] S. Wolfram. Echelon Form. 2007. url: http://eprint.iacr.org/2
007/259.pdf.

[343] S. Yamashita, S. Minato, and M. D. Miller. �Synthesis of Semi-
classical Quantum Circuits�. In: Proceedings of the 2nd Interna-
tional Workshop on Reversible Computation. RC. Bremen. July
2010, pp. 93�99.

[344] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide.
Tech. rep. Technical Report 1991 IWLS-UG-Saeyang, MCNC, Jan.
1991.

Bibliography 411

[345] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0. User Guide. Microelectronic Center, 1991.

[346] S. Yanushkevich et al. Decision Diagram Technique for Micro - and
Nanoelectronic Design. CRC Press, Taylor & Francis, Boca Raton,
London, New York, 2006.

[347] T. Yasufuku et al. �Di�culty of Power Supply Voltage Scaling in
Large Scale Subthreshold Logic Circuits�. In: IEICE Transactions
on Electronics E93-C.3 (2010), pp. 332�339.

[348] Z. Ying and L. Yanjuan. �A Multiple Faults Test Generation Algo-
rithm Based on Neural Networks and Chaotic Searching for Digital
Circuits�. In: 2010 International Conference on Computational In-
telligence and Software Engineering. CiSE. Dec. 2010, pp. 1�3.

[349] A. D. Zakrevskij. Parallel Algorithms of Logical Control. (in Rus-
sian). Moscow: Second edition, URSS, 2003.

[350] A. D. Zakrevskij, Y. Pottosin, and L. Cheremisinova. Design of Log-
ical Control Devices. Tallinn: TUT Press, 2009.

[351] Z. Zilic and Z. G. Vranesic. �Using Decision Diagrams to Design
ULMs for FPGAs�. In: IEEE Transactions on Computers C-47.9
(1998), pp. 971�982.

[352] K. Zuse. Der Computer, mein Lebenswerk (The Computer, My
Life's Work). Springer, Berlin, 1984, pp. 1�220. isbn: 978-3-540-
13814-3.

List of Authors

Jaakko Astola

Department of Signal Processing
Tampere University of Technology
Tampere, Finland

E-Mail: Jaakko.Astola@tut.fi

Anna Bernasconi

Department of Computer Science
Università di Pisa
Pisa, Italy

E-Mail: annab@di.unipi.it

Ariel Burg

Faculty of Engineering
Bar-Ilan University
Ramat-Gan, Israel

E-Mail: burgariel@gmail.com

Jon T. Butler

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California, U.S.A.

E-Mail: jbutler@nps.edu

Valentina Ciriani

Department of Computer Science
Università degli Studi di Milano
Milano, Italy

E-Mail: valentina.ciriani@unimi.it

414 List of Authors

Alexis De Vos

Elektronika en informatiesystemen
Universiteit Gent
Gent, Belgium

E-Mail: alex@elis.UGent.be

Petr Fi²er

Faculty of Information Technology
Czech Technical University in Prague
Prague, Czech Republic

E-Mail: fiserp@fit.cvut.cz

Vincent C. Gaudet

Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

E-Mail: vcgaudet@ecemail.uwaterloo.ca

Danila A. Gorodecky

United Institute of Informatic Problems
National Acacemy of Science of Belarus
Belarusian State University
Minsk, Belarus

E-Mail: danila.gorodecky@gmail.com

Andrei Karatkevich

Institute of Computer Engineering and Electronics
University of Zielona Góra
Zielona Góra, Poland

E-Mail: A.Karatkevich@iil.uz.zgora.pl

Osnat Keren

Faculty of Engineering
Bar-Ilan University
Ramat-Gan, Israel

E-Mail: osnat.keren@biu.ac.il

415

Pawel Kerntopf

Warsaw University of Technology
Warsaw, Poland

E-Mail: p.kerntopf@ii.pw.edu.pl

Ilya Levin

Science and Technology Education Department
Tel-Aviv University
Tel-Aviv, Israel

E-Mail: ilia1@post.tau.ac.il

M. Eric McCay

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California, U.S.A.

E-Mail: vobis132@gmail.com

Arne Meier

Institut für Theoretische Informatik
Leibniz Universität
Hannover, Germany

E-Mail: meier@thi.uni-hannover.de

Claudio Moraga

Unit of Fundamentals of Soft Computing
European Centre for Soft Computing
Mieres, Asturias, Spain

E-Mail: claudio.moraga@softcomputing.es

Christian Posthoff

Department of Computing and Information Technology
The University of the West Indies
Trinidad & Tobago

E-Mail: christian@posthoff.de

416 List of Authors

Hillel Rosensweig

Science and Technology Education Department
School of Education
Tel-Aviv University
Tel-Aviv, Israel

E-Mail: hillelro@yahoo.com

Jan Schmidt

Faculty of Information Technology
Czech Technical University in Prague
Prague, Czech Republic

E-Mail: schmidt@fit.cvut.cz

Gabi Shafat

Science and Technology Education Department
School of Education
Tel-Aviv University
Tel-Aviv, Israel

E-Mail: gash69@gmail.com

Pantelimon St nic

Department of Applied Mathematics
Naval Postgraduate School
Monterey, California, U.S.A.

E-Mail: psanica@nps.edu

Milena Stankovi¢

Department of Computer Science
University of Ni²
Ni², Serbia

E-Mail: Milena.Stankovic@elfak.ni.ac.r40s

Radomir S. Stankovi¢

Department of Computer Science
University of Ni²
Ni², Serbia

E-Mail: Radomir.Stankovic@gmail.com

417

Stanislav Stankovi¢

Department of Signal Processing
Tampere University of Technology
Tampere, Finland

E-Mail: Stanislav.Stankovic@tut.fi

Bernd Steinbach

Institute of Computer Science
Freiberg University of Mining and Technology
Freiberg, Germany

E-Mail: steinb@informatik.tu-freiberg.de

Suzana Stojkovi¢

Department of Computer Science
University of Ni²
Ni², Serbia

E-Mail: Suzana.Stojkovic@elfak.ni.ac.rs

Valery P. Suprun

United Institute of Informatic Problems
National Acacemy of Science of Belarus
Belarusian State University
Minsk, Belarus

E-Mail: suprun@bsu.by

Marek Szyprowski

Warsaw University of Technology
Warsaw, Poland

E-Mail: m.szyprowski@ii.pw.edu.pl

Gabriella Trucco

Department of Computer Science
Università degli Studi di Milano
Milano, Italy

E-Mail: Gabriella.Trucco@unimi.it

Raimund Ubar

Tallinn University of Technology
Tallinn, Estonia

E-Mail: raiub@pld.ttu.ee

418 List of Authors

Steven Vandenbrande

Elektronika en informatiesystemen
Universiteit Gent
Gent, Belgium

E-Mail: Steven.Vandenbrande@UGent.be

Raphaël Van Laer

Elektronika en informatiesystemen
Universiteit Gent
Gent, Belgium

E-Mail: Raphael.VanLaer@UGent.be

Matthias Werner

Institute of Computer Science
Freiberg University of Mining and Technology
Freiberg, Germany

E-Mail: wmatthias@t-online.de

Remigiusz Wi±niewski

University of Zielona Góra
Zielona Góra, Poland

E-Mail: R.Wisniewski@iil.uz.zgora.pl

INDEX OF AUTHORS 419

Index of Authors

A

Astola, Jaakko 231

B

Bernasconi, Anna 263
Burg, Ariel 332
Butler, Jon T. 171

C

Ciriani, Valentina 263

D

De Vos, Alexis349

F

Fi²er, Petr 213, 263

G

Gaudet, Vincent C.189
Gorodecky, Danila A.247

K

Karatkevich, Andrei 288
Keren, Osnat 145
Keren, Osnat 332
Kerntopf, Pawel 369

L

Levin, Ilya145, 332

M

McCay, M. Eric 171
Meier, Arne 158
Moraga, Claudio 359

P

Postho�, Christian 3, 14, 31, 63,
87, 98, 105, 110, 121

R

Rosensweig, Hillel 145

S

Schmidt, Jan 213
Shafat, Gabi145
St nic , Pantelimon 171
Stankovi¢, Radomir S. 231
Stankovi¢, Stanislav 231
Stankovi¢, Milena 278
Stankovi¢, Radomir S. 278
Steinbach, Bernd . . 3, 14, 31, 63,

87, 98, 105, 110, 121
Stojkovi¢, Suzana 278
Suprun, Valery P. 247
Szyprowski, Marek 369

T

Trucco, Gabriella 263

420 INDEX OF AUTHORS

U

Ubar, Raimund303

V

Vandenbrande, Steven 349

Van Laer, Raphaël 349

W

Werner, Matthias 51
Wi±niewski, Remigiusz 288

INDEX 421

Index

Symbols

⊥ . 159
maxrf(m,n) , 11
maxc4f(m,n) 8
> . 159

A

ABC . 213
ABS . 4
accessibility problem

graph 166
hypergraph 166

activity
switching 195

ADD . 304
adjacency matrix90
AIG . 213
algebraic attack 174
algebraic immunity . . 171, 176
algorithm

backtracking 299
exact 61
greedy299
iterative 24, 214
recursive 20, 35, 42
restricted recursive 23
sum-product 208

And-Inverter-Graph 213
ANF 173, 175

annihilator 174, 176
application

biomedical 190
aps . 101
architectural voltage

scaling 200
ASIC . 221
ATPG 305
attack 172

algebraic 172
linear172

AWGN 207
axiom .162

B

base . 161
BCL . 146
BDD 213, 231, 240

algebraic 304
edge-valued 304
free 304
multi-rooted 304
reduced ordered 304
shared 304
structurally synthesized . 303
zero-suppressed 304

bead 231, 233
behavior

dynamic 194
memory7

422 INDEX

static194
BER . 207
bijection 359
binary decision diagram

multi-terminal 232
bipartite graph

complete89
bit error rate207
BLIF . 216
block cipher172
BMD . 304
body

of a grid 40
of a slot 40

body of a grid39
Boolean

function 173
Boolean Algebra 3
Boolean Concept

Learning . . . 146, 155
Boolean equation15
Boolean function 175

symmetric 147, 248
Boolean Minimizer 269
Boolean problems

complexity 5
Boolean Rectangle

Problem 10
Boolean space 15
Boolean value 10
Boolean values 9
Boolean variable 10
BOOM 269
BRP . 10
bus-invert coding 204

C

CAD .303
capacitance

parasitic 200
carrier vector 248
CD-Search 270
CEL . 17
channel coding 207
ciphertext171
circuit

asynchronous 206
combinatorial7, 213
many-qubits 357
one-qubit 350
quantum 357, 359
reversible 349, 359
sequential 7
two-qubits 350

clasp . 108
clause . 114
clock

cycle 205
edge205
signal 205

clone 158, 159
CMOS 189, 191
cnf-�le 114
code

convolutional207, 208
low-density parity-check 207
trellis-structured 207

cofactor
Shannon 266

color condition 91
coloring method

largest-�rst (LF) 299
smallest-last (SL) 299

complement 17
complementary metal oxide

semiconductor . . 189
complete evaluation . . . 14, 15
complexity 12, 147

algorithmic 149

INDEX 423

Boolean function 148
cognitive 148, 153
computational 149
exponential 31
of information149
Shannon 149
structural149

composition 158
computer

�rst (Z1)4
recon�gurable 183

computing
quantum 350
reversible 349

concept
B-Q162
atomic 161
Boolean 146
description161

concurrency graph 290
controlled NOT gate349
convergence 228
cost

quantum 359, 369
count . 14
CPL . 17
CPU . 4
cryptanalysis172
CUDD 216
current

short-circuit 196
sub-threshold leakage . . . 190

cycle . 7
chordless 294
monochromatic 90

D

DC-set 265
high preference 268

low preference268
DD . 231
decision diagram 231

binary 231
functional 304
multi-terminal binary . . . 240
multi-valued 304
shape 231
ternary 304
Walsh 232, 242

decode . 88
decomposition

Shannon 253
degree

of a function 175
of a term 175

delay201, 202
design

low-power 190
DFS-search 298
DIF .101
di�erence 17
Discrete Mathematics 88
DL . 158
DNF . 313
domain

Boolean 88, 94
multiple-valued 88

don't care263
observability 263
satis�ability263
weighted263

drain . 191
dual . 161

E

EBD . 4
EDP . 202
EFC-net 296

424 INDEX

elementary SBF248
encode . 88
encryption 171
energy 202

electrical 195
energy-delay product202
equation

characteristic15
restrictive 15

error correcting code 337
BCH 344
minimum distance of . . . 343

ESBF . 248
ESC . 4
ESPRESSO 216, 217
ESPRESSO-EXACT 217
EVDD 304

F

fan-out194
re-convergent 305

FDD . 304
FEC . 207
Feynman gate349
FFR . 306
�nite state machine 288
forward error control 207
FPGA 221
Fredkin gate 349
FSM . 288
function

a�ne 172
bent172
Boolean 173
completely speci�ed 278
incompletely 278
linear172

G

gate . 191

AND 359
MCT 369
NAND .7
NOT 349
controlled NOT 349, 369
fan-out free 359
Feynman 349
Fredkin 349
logic191, 193
multi-control To�oli 369
Peres 349, 369
quantum 369
reversible 359, 369
terminal 191, 192
To�oli 349, 359, 369
transistor 191

Gaussian integer 352
Gaussian rational 352
Gaussian reduction174
GPU . 5
graph . 5

bipartite 6
cycle-4-free7
directed6
edge . 5
perfect 293
undirected 6
unweighted6
vertex 5
weighted 6

grid . 9, 90
body 127
head 127

ground 191
growth rate 354

H

hardware
adaptive, Walsh-based . . 334

INDEX 425

HCL . 145
HDL . 218
HDTV . 3
head of a grid 34

maximal 34
head row 31, 32
homogeneous SBF 248
Human Concept

Learning . . . 145, 156

I

implicant pool 269
interpretation 162
intractability 158
inverter 193
ITRS . 189

K

key . 173
keystream173
Kirchho� 192
knowledge transfer 117
Konrad Zuse 4

L

Latin square 125, 126
lattice

Post's 158
law

current 192
LDPC 207
LFSR . 173
library
NCT370, 374
NCVW 372, 374, 378, 379
NCV 372, 374, 379

Lie group 356
line

ancillary 359
linear check 333

for a polynomial338
universal 342

list of ternary vectors 15
logic

description158
subthreshold 203

look-up table217
LUT 186, 217

M

MAC . 334
matrix

adjacency 9
unitary 351, 359

matrix method 255
maximal grid38
maxrf(m,n) 10
MDD . 304
microprocessor

manycore 201
multicore 201

minterm 179, 263
model .162
Moore's Law 4
MOS .191
MOSFET 191
MSAF 304
MTBDD 232, 240, 304
MVSIS213

N

net
EFC 290
�ight . 6
rail . 6
road . 6
SM .290

426 INDEX

NMOS 191
NNF . 163
node

high-impedance 192
noise

Gaussian 207
normal form

algebraic 173, 175
NP-hard 216
NTV 16, 102
number

all rectangles 12
grid patterns 12
rectangles 12

number of ternary vectors . 16

O

ODC . 263
OFF-set 265
ON-set264
operator

Boolean 161
order

monotone 24
orthogonal 101
orthogonality 180
over�ow algorithm 52

P

parity-check node
processor 209

PCNPs 209
PDP . 202
Peres gate349, 369
permutation20
Petri net 288
PLA . 216
placement200
plaintext/cleartext 171

PMOS 191
polynomial-unate function

negative polarity 249
polynomial-unate SBF

positive polarity 248
power . 202

consumption 199
leakage 197
optimization 199
short-circuit 196
switching 195

power consumption
main sources 190
models 191

power set 162
power-delay product 202
problem

Bongard 154
multiple-valued 88
unate covering 271

processing
asynchronous 206

projection158

Q

quadruple 112

R

ratio
signal-to-noise207

RE . 156
re-synthesis 213

advantages228
iterative 221

recon�gurable computer . .174
rectangle

monochromatic 91
rectangle condition

four-valued94

INDEX 427

rectangle-free condition . . . 91
recursion 20
reduced cyclic model 117
reduced truth vector 248
reducibility 158
Reed-Muller form

positive polarity 175
Reed-Muller polynomial . .247
Reed-Muller spectrum

negative reduced 249
reduced249

regenerative property 193
region

fan-out free 306
relationship

one-to-one 308
restricted ordered evaluation

of subspaces 27
reverse engineering 156
ROBDD 304
role . 161
row echelon form 179, 181

reduced 179, 181

S

SAT . 105
satis�ability158
satis�ability problem

TBox-concept 162
SBF . 248
SDC . 263
selects ternary vector17
set di�erence 101
set of valued numbers 248
Shannon 253, 266
SHJ .148
SIA . 189
signals

handshaking 206

Silicon Industry
Association 189

SIS . 213
skew . 205
slot .31, 32

body 35
slot principle 31
slot width 31, 32
SM-component 290
SM-cover 290
SNR . 207
solution 15
SOP 221, 267
source 191
SPA . 209
square 233
square root of NOT gate . . .349
SRC-6 178, 182, 183, 186
SSAF . 304
SSBDD 303
stack .102
stuck-at-fault

multiple 304
single304

STV . 17
subgraph

monochromatic 91
subnet 290
subspace 24
subsumption 158
superposition 306
SV_SIZE 17
switch operation 239
switching power 190

T

taxonomy
power 197

TBox . 162

428 INDEX

TDD .304
term . 175
test group305
test pair 305
testing

blind 340
functional 332
functional level 332
gate level 332
o�-line 332
on-line 332
spectral 333

throughput 200
To�oli gate349, 369
transeunt triangle method 250
transistor

length 192
metal-oxide-semiconductor

�eld-e�ect 191
n-type enhancement

MOS 191
OFF 192
ON 192
p-type enhancement

MOS 191
threshold 192
width 192

triangular binary matrix . 251
TVL 15, 101

U

UCP . 271
unitary matrix 356

V

value
logical 7

variable
multiple-valued 88

variable node processors . .209
vector

binary 17, 101
ternary 17, 101

verify . 14
VHDL 218
VLSI . 303
VNPs . 209

W

Walsh functions 336
Walsh spectrum 243, 333, 336

of a polynomial 336
WbAH334
WDD 232, 242

X

XBOOLE 15, 101

Z

Zarankiewicz Function
direct result 54

Zarankiewicz Problem 11
ZBDD 304
Zhegalkin polynomial 247
Zhegalkin spectrum

reduced249
ZP . 11

