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Abstract

In this paper, the authors describe their initial investigations

in computational metaphysics. Our method is to implement ax-

iomatic metaphysics in an automated reasoning system. In this

paper, we describe what we have discovered when the theory of ab-

stract objects is implemented in prover9 (a first-order automated

reasoning system which is the successor to otter). After review-

ing the second-order, axiomatic theory of abstract objects, we show

(1) how to represent a fragment of that theory in prover9’s first-

order syntax, and (2) how prover9 then finds proofs of interesting

theorems of metaphysics, such as that every possible world is max-

imal. We conclude the paper by discussing some issues for further

research.

1. Introduction

The first steps toward a computational metaphysics begin with an ax-

iomatic metaphysics. The idea of axiomatic metaphysics is not a new

∗This paper was published in the Journal of Philosophical Logic, 36/2 (April 2007):

227–247. Subsequent to publication, the authors discovered some of the clauses needed

to represent certain propositions of object theory in prover9 were omitted. This

preprint has been corrected. The authors would like to thank Chris Menzel and Paul

Oppenheimer for extremely helpful discussions about our representation of object the-

ory in prover9 syntax. We’re also grateful to Paul Oppenheimer and Paolo Mancosu

for carefully reading the final draft and pointing out errors. A web page has been built

in support of the present paper; see <https://mally.stanford.edu/cm/> and its mirror

at <http://fitelson.org/cm/>.
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one. Since ancient times the axiomatic method has been important to

philosophers both as an example of successful systematization in specific

sciences (e.g., optics, acoustics and mathematics) as well as a possible

ideal for the exposition of philosophical theories. While the history of

the application of the axiomatic method in philosophy is complex (Man-

cosu 1996, 232, note 39), there is no doubt that Spinoza 1677 is the best

known example of this tendency. Leibniz went a step further by including

a computational component, as can be seen from the following:1

If we had it [a characteristica universalis], we should be able

to reason in metaphysics and morals in much the same way as in

geometry and analysis. (Russell 1900, 169)

If controversies were to arise, there would be no more need of dis-

putation between two philosophers than between two accountants.

For it would suffice to take their pencils in their hands, to sit down

to their slates, and to say to each other . . . : Let us calculate.

(Russell 1900, 170)

Notice that the Latin word Russell translates as ‘accountants’ is ‘Com-

putistas’, and the Latin word translated as ‘slates’ is ‘abacos’. Clearly,

this Latin usage, together with the final sentence ‘Calculemus’, reveals

that a computational metaphor is governing Leibniz’s thought.

In this paper, we show how one can implement an axiomatic meta-

physics within an automated reasoning environment, thereby validating

ideas of the ancients, Spinoza, and Leibniz. In Section 2, we review our

preferred axiomatic metaphysical theory. In Section 3, we describe a par-

tial implementation of that theory using the first-order automated rea-

soning program prover9 (the successor to otter), developed at the Ar-

gonne National Laboratory.2 In Section 4, we apply our implementation

to a well-known philosophical domain: situation and world theory (Zalta

1The first passage is from Leibniz 1890, 21:

Car si nous l’avions telle que je la conçois, nous pourrions raisonner en

metaphysique et en morale à pue pres comme en Geometrie et en Analyse

The second citation is from Leibniz 1890, 200:

Quo facto, quando orientur controversiae, non magis disputatione opus

erit inter duos philosophos, quam inter duos Computistas. Sufficiet enim

calamos in manus sumere sedereque ad abacos, et sibi mutuo . . . dicere:

calculemus.

2See <http://www.cs.unm.edu/˜mccune/prover9/>.
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1993). We conclude, in Section 5, by discussing (1) how the first-order au-

tomated model-finding program mace, which comes with prover9 and

otter, helped us to discover an error of reasoning in a previous publica-

tion on object theory, concerning the Platonic Theory of Forms (Pelletier

and Zalta 2000), and (2) some problems for future research involving ap-

plications to Leibniz’s theory of concepts and Frege’s theory of the natural

numbers.

2. Brief Review of Axiomatic Metaphysics

In this section, we review the principles of object theory, as described in

detail in Zalta 1983 and elsewhere. Object theory is naturally formulated

in a second-order modal language that has been modified only so as to

admit a second kind of atomic formula. In addition to the usual ‘exem-

plification’ formulas such as ‘Fnx1 . . . xn’, object theory allows ‘encoding’

formulas such as ‘xF 1’, where ‘F 1’ is a one-place predicate. These new

atomic formulas are to be read: x encodes F 1. (In what follows, we drop

the superscript indicating the arity of the relation in both kinds of formu-

las, since this can be inferred.) These encoding formulas represent a new

form of predication. The idea for such formulas derives from the work of

Ernst Mally (1912), who suggested that abstract objects are determined

by (i.e., encode), but need not exemplify, the properties by which we

conceive of them. On Mally’s view, any group of properties (including

inconsistent sets of properties) determine an abstract object, and this is

captured in object theory by a comprehension schema that asserts, for

any condition φ on properties, that there is an abstract object x which

encodes all and only the properties satisfying (in Tarski’s sense) φ. Object

theory asserts nothing about the properties that ordinary objects exem-

plify, though it does assert that they don’t encode properties. This is

something only abstract objects do.

Object theory has been applied in various ways, and some example

descriptions of interesting abstract objects are provided below. However,

before we state these examples, we provide a formal development of the

theory. Readers who want more of an introduction to object theory,

including more motivation and history, should consult one of the other

texts on object theory listed in the Bibliography.

The language of object theory is as follows:
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Object variables and constants: x, y, z, . . . ; a, b, c, . . .

Relation variables and constants: Fn, Gn, Hn, . . . ;

Pn, Qn, Rn, . . . (when n ≥ 0); p, q, r, . . . (when n=0)

Distinguished 1-place relation: E! (read: concrete)

Atomic formulas:

Fnx1 . . . xn (‘x1, . . . , xn exemplify Fn’)

xF 1 (‘x encodes F 1’)

Complex Formulas: ¬φ, φ→ ψ, ∀αφ (α any variable), 2φ

Complex Terms:

Descriptions: ıxφ

λ-predicates: [λx1 . . . xn φ] (φ no encoding subformulas)

The only difference between this language and the language of the second-

order modal predicate calculus (with descriptions and λ-expressions) is

the presence of a second atomic formula, ‘xF ’, which expresses the fact

that object x encodes property (one-place relation) F .

The most important definitions of object theory can be summarized

as follows:

&, ∨, ≡, ∃, and 3 are all defined in the usual way

O! =df [λx3E!x] (‘ordinary’)

A! =df [λx ¬3E!x] (‘abstract’)

x=E y =df O!x&O!y & 2∀F (Fx ≡ Fy)

x=y =df x=E y ∨ (A!x&A!y&2∀F (xF ≡ yF ))

F 1 =G1 =df 2∀x(xF 1 ≡ xG1)

Fn=Gn =df (where n > 1)

∀x1 . . . ∀xn−1([λy Fnyx1 . . . xn−1]=[λy Gnyx1 . . . xn−1] &

[λy Fnx1yx2 . . . xn−1]=[λy Gnx1yx2 . . . xn−1] & . . .&

[λy Fnx1 . . . xn−1y]=[λy Gnx1 . . . xn−1y])

p=q =df [λy p]=[λy q]
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The definition of relation identity, Fn = Gn, can be read more simply as

follows: if the properties that can be constructed from Fn and Gn are

identical, when considering all the pairwise ways of plugging n−1 objects

into both Fn and Gn in the same order, then Fn = Gn. In the last

definition, ‘p’ and ‘q’ are used as 0-place relation variables, which range

over propositions.

The logic underlying the theory of objects can now be summarized.

With the exception of the Logic of Descriptions, the modal closures of all

of the following are axioms:

Simplest second-order quantified S5 modal logic (Linsky and Zalta

1994), including 1st and 2nd order Barcan formulas (i.e., fixed do-

mains)

Logic of Encoding: 3xF → 2xF

Logic of Identity: α=β → [φ(α, α) ≡ φ(α, β)]

(β substitutable for α)

Logic of λ-Predicates: (β, η, and α conversion)

[λx1 . . . xn φ]y1 . . . yn ≡ φy1,...,ynx1,...,xn
(φ free of descriptions)

[λx1 . . . xn F
nx1 . . . xn] = Fn

[λx1 . . . xn φ] = [λx′1 . . . x
′
n φ
′] (φ, φ′ alphabetic variants)

Logic of Descriptions:

ψıxφz ≡ ∃x(φ & ∀y(φyx → y=x) & ψxz ) (ψ atomic/identity)

This is essentially classical S5 modal logic for the second-order modal

predicate calculus, modified only to include (a) the logic of encoding,

(b) the logic of λ-expressions (complex expressions for denoting complex

relations), and (c) the logic of definite descriptions which are rigid and

which may fail to denote. The Logic for Descriptions schema accomodates

rigid definite descriptions by requiring that only non-modal instances (and

not their modal closures) are axioms. It allows for descriptions which

may fail to denote by being applicable only to descriptions which occur

in atomic and identity formulas.

Finally, the proper axioms of object theory can be stated as follows:

O!x→ 2¬∃F xF

∃x(A!x& ∀F (xF ≡ φ)), where φ has no free xs
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The second axiom is the comprehension schema for abstract objects. No-

tice that the following is an immediate consequence of the comprehension

schema, given the logic of descriptions and the definition of identity for

objects:

ıx(A!x& ∀F (xF ≡ φ))G ≡ φGF

This says: the abstract object which encodes just the properties satisfying

φ encodes property G if and only if G satisfies φ. These proper theorems

all involve ‘canonical’ descriptions of abstract objects. In what follows,

these canonical descriptions play an important role in the applications.

Though we shall assume some familiarity with object theory, here

are some examples for those who might be encountering it for the first

time. All of the following identify abstract objects in terms of canonical

descriptions:

The Complete Concept of y =

ıx(A!x& ∀F (xF ≡ Fy))

The Actual World =

ıx(A!x& ∀F (xF ≡ ∃p(p& F =[λy p])))

The Truth Value of p =

ıx(A!x& ∀F (xF ≡ ∃q(q≡p & F =[λy q])))

The Extension of the Concept G =

ıx(A!x& ∀F (xF ≡ ∀y(Fy ≡ Gy)))

The Form of G =

ıx(A!x& ∀F (xF ≡ 2∀y(Gy → Fy)))

As an example of how the theory can be used to prove consequences

which are proper theorems of metaphysics, consider the following series

of definitions and theorems:

x � p (‘p is true in x’) =df x[λy p]

World(x) =df 3∀p[(x � p) ≡ p]

Maximal(x) =df ∀p[(x � p) ∨ (x � ¬p)]

Consistent(x) =df ¬∃p[x � (p&¬p)]

Actual(x) =df ∀p[(x � p)→ p]
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Theorem: ∀x(World(x)→ Maximal(x))

Theorem: ∀x(World(x)→ Consistent(x))

Theorem: ∃!x(World(x) & Actual(x))

Theorem: 2p ≡ ∀w(w � p)

In what follows, we show how one can use prover9 to implement this

axiomatic metaphysics, and to find proofs of the above theorems.

3. Implementing Object Theory in Prover9

This theory of abstract objects is couched in a second-order language

with predicates, modal operators, λ-expressions, and definite descriptions.

This poses several challenges for representation and implementation in

prover9, which we describe below. However, the challenges are not as

imposing as they might seem. Models of object theory developed indepen-

dently by Dana Scott (Zalta 1983, 160–164), and by Peter Aczel (Zalta

1999, 11–13), show that the theory is essentially first-order despite being

couched in second-order language. The only aspect of object theory that

can’t be fully captured in a first-order framework is the use of comprehen-

sion schemata in formulating the axioms. But we shall sidestep this issue

by invoking particular instances of the comprehension schemata whenever

we need them.

prover9 is an automated reasoning system which supports full first-

order functional and predicate calculus with equality (but not second-

order logic or λ-expressions). Our challenge is to represent the axioms and

definitions of object theory in this environment. We must first translate

claims from the language of object theory into prover9’s language. Here,

we use four key techniques:

1. Second-order language is translated into a first-order language with

distinguished sortal predicates. Instead of quantifying over prop-

erties, propositions, etc., we quantify over a single domain, and

introduce prover9 predicates to sort the domain into properties,

objects, etc. Here we are simulating multi-sorted first-order logic.

2. The modal language of S5 is translated into quantified statements

over ‘points’, using well known semantic representation of modal

claims in first-order terms.
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3. λ-expressions are translated into complex terms involving functions.

4. Definite descriptions are represented using predicates that guarantee

the existence and uniqueness of any object satisfying them.

The first three of these techniques for representing higher-order and quan-

tified modal formulas in a multi-sorted first-order environment are dis-

cussed in chapters 6 and 7 of Manzano 1996. We will give examples of all

four techniques below.
The following table illustrates how the basic notation of object theory

can be translated into prover9 syntax. Throughout the paper, we will
write prover9 syntax in typewriter typeface.

Predicates A, B, C (A, B, C)

Constants a, b, c (a, b, c)

Variables x, y, z (x, y, z)

Functions f , g, h (f, g, h)

Quantifiers ∀, ∃ (all, exists)

Connectives & , →, ∨, ¬, = (&, ->, |, -, =)

Here, we see prover9’s formula syntax, which uses quantifiers and all
standard (infix) logical connectives. prover9’s more basic syntax is
clausal, which means quantifier-free, and using only disjunction, negation
and identity. After one supplies prover9 with well-formed formulas (in
prover9’s formula syntax) as premises and conclusion, it will ‘clausify’
these formulas by eliminating quantifiers (by Skolemizing), and convert-
ing formulas to ‘conjunctive normal form’. The resulting statements are
in ‘clausal normal form.’ Here are some examples:

Formula Clause (prover9 — Q-free, and CNF)

(∀x)(Px → Qx) -P(x) | Q(x).

(∃x)(Px&Qx) P(a). Q(a). (two clauses, new “a”)

(∀x)(∃y)(Rxy ∨ x 6= y) R(x,f(x)) | -(x = f(x)). (new “f”)

(∀x)(∀y)(∃z)(Rxyz &Rzyx) R(x,y,f(x,y)). R(f(x,y),x,y). (new “f”)

For readers unfamiliar with such clausification techniques, we recommend

chapters 1 and 10 of Kalman 2001. For details on prover9’s clause nota-

tion and syntax (which differs little from its predecessor otter (McCune

2003b)), see McCune 2006.

Next, we will briefly explain how prover9 implements (mechanical)

rules of inference. See Portoraro 2005 and Wos et al . 1992 for encyclopedic

general introductions to automated reasoning and its associated rules,
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techniques, and strategies. For our present purposes, it will suffice to

discuss just one of these rules, namely, hyperresolution. Before we explain

this rule, we first need to introduce the notion of a most general unifier

of two expressions. If θ1 and θ2 are terms, there may or may not exist

a set of substitutions σ such that σ(θ1) = σ(θ2). If such a σ exists, it

is called a unifier of θ1 and θ2, which are said to be unifiable. In such

a case, σ(θ1) (= σ(θ2)) is called a common instance of θ1 and θ2. For

example, the terms f(x, b) and f(a, y) are unifiable, with unifier {a/x,

b/y}, yielding the common instance f(a, b). But the terms f(x) and

g(y) are not unifiable, since any instance of f(x) must begin with “f”

and any instance of g(y) must begin with “g”. There are often many

unifiers of two terms (up to alphabetic variants). A substitution σ is

called a most general unifier of two terms θ1 and θ2 if it yields a most

general common instance of θ1 and θ2. For instance, {a/x, a/y} is a

unifier of f(x, y) and f(a, y), yielding the common instance f(a, a). But,

this is not a most general unifier, because the unifier {a/x, z/y} yields

the more general common instance f(a, z), which subsumes f(a, a). The

unification theorem (Robinson 1963) guarantees the existence of a unique

most general unifier for any two terms of first-order logic, and an algorithm

for computing it (called the unification algorithm). This crucial algorithm

makes it computationally feasible to implement the standard substitution

rules for classical logic. Robinson’s unification algorithm (or some variant

of it) undergirds all modern automated reasoning systems.

Hyperresolution was also invented by Robinson (1965). Kalman (2001,

chapter 2) gives many detailed examples of hyperresolution inferences in

otter. We will provide just a brief introduction to hyperresolution here.

Basically, hyperresolution is a generalization/mechanization of the modus

ponens (or disjunctive syllogism) rule of classical logic, based on most

general unification rather than arbitrary substitution. In general, hyper-

resolution infers from a mixed clause (a clause containing both positive

and negative atomic subformulae) or negative clause (a clause contain-

ing only negative atomic subformulae) as nucleus, and positive clauses

(with only positive literals) as satellites, one or more positive clauses as

hyperresolvents. The inference is made by using the satellites to cancel,

or “clash” against, or “resolve”, the negative literals in the nucleus. For

example, from the nucleus -P | M and the satellite P, hyperresolution

enables us to infer the hyperresolvent M by clashing the satellite against

the negative literal in the nucleus; from the nucleus -P(x) | M(x) and
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the satellite P(s), hyperresolution enables us to infer the hyperresolvent

M(s) by clashing the satellite against the negative literal -P(s) in the “in-

stance” -P(s) | M(s). Here are some examples of valid hyperresolution

inferences:

-P | M.

P.

∴ M.

-P(x) | M(x).

P(x).

∴ M(x).

-L(x,f(b)) | L(x,f(a)).

L(y,f(y)).

∴ L(b,f(a)).

So far, this sounds just like modus ponens (or disjunctive syllogism). But,

unlike modus ponens, hyperresolution must make use of most general com-

mon instances, rather than the arbitrary common instances that are al-

lowed in standard classical logical inferences. Thus,

-P(x) | M(x).

P(x).

∴ M(a).

is not a valid hyperresolution inference! In this case, M(a) is strictly less

general than M(x), which is the correct hyperresolution conclusion, based

on the most general instance of the nucleus -P(x) | M(x) that can be

clashed with the satellite P(x). While this may seem like a limitation,

it turns out that resolution techniques are complete for first-order logic

without equality (Robinson 1965).3 In the case above, hyperresolution

yields M(x), which subsumes the desired M(a).

prover9 establishes the validity of first-order arguments via reductio

ad absurdum: prover9 reasons from the conjunction of the premises and

the denial of the conclusion of a valid argument to a contradiction. Here

3We have chosen to discuss here only theorems of object theory that do not in-

volve equality reasoning (see the next section for concrete examples). Of course,

many theorems of object theory do explicitly involve equality reasoning. For such

problems, we have used (in addition to hyperresolution) paramodulation (Robinson

and Wos 1969) and demodulation (Wos et al . 1967), which are mechanical rules for

first-order equality reasoning that have been efficiently implemented in otter and

prover9. See Wos et al . 1992 and Kalman 2001 for extensive discussions of auto-

mated first-order equality reasoning. And, see our computational metaphysics website

(at <https://mally.stanford.edu/cm/> or <http://fitelson.org/cm/>) for several ex-

amples of object theoretic reasoning involving equality. We have omitted such problems

from the present discussion for reasons of simplicity and economy of presentation. It

is worth noting, however, that (in principle) the use of equality rules like paramod-

ulation (in addition to hyperresolution) can be eliminated by the addition of explicit

(relational) equality axioms (Kowalski 1970). As such, this does not (in principle)

constitute a significant loss of generality in our discussion.
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is a simplified description of prover9’s main loop, which is similar to

otter’s (McCune 2006, 2003b; Kalman 2001):

1. Begin with a list of premises and a list of conclusions, the latter

having a single member (the conclusion) at the outset.

2. Add the denial of the conclusion to the list of premises.

3. Using inference rules, e.g., hyperresolution (and/or other forms of

resolution), paramodulation (and/or other equality rules – see fn. 3),

infer all clauses you can.

4. Process the clauses (check for subsumption, apply restriction strate-

gies, etc.), discard unusable ones, and add the remaining ones to the

list of conclusions.

5. Pick a member of the list of conclusions (using a heuristic — default

is “pick shortest” or “best first” — others can be used), and add it

to the list of premises.

6. Repeat steps 3 – 5 until you reach a contradiction (i.e., until you

derive P and -P, for some atomic prover9 sentence P). ./

Consider, as an example, the following simple argument:

∀x(Greek(x)→ Person(x)).

∀x(Person(x)→ Mortal(x)).

Greek(socrates).

———–

Mortal(socrates)

Here’s a simple prover9 proof of the above:

1 Greek(socrates). [clausify]

2 -Mortal(socrates). [clausify]

3 -Greek(x) | Person(x). [clausify]

4 -Person(x) | Mortal(x). [clausify]

5 Person(socrates). [resolve (3 a 1 a)]

6 -Person(socrates). [resolve (4 b 2 a)]

7 [F]. [resolve (6 a 5 a)]

To implement axiomatic metaphysics in this framework, second-order

object theory must be represented in prover9’s first-order language with
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at least two sortal predicates: Property and Object. In addition, exem-

plification formulas of the form ‘Fx’ and encoding formulas of the form

‘xF ’ (which are the two forms of predication in object theory) can be

represented in prover9 as follows:

all x all F (Ex1(F,x) -> Property(F) & Object(x)).

all x all F (Enc(x,F) -> Property(F) & Object(x)).

It is important to remember here, and in what follows, that the variables

F and x are both untyped. prover9 treats the above formulas as if they

were the following:

all x all y (Ex1(y,x) -> Property(y) & Object(x)).

all x all y (Enc(x,y) -> Property(y) & Object(x)).

But it is convenient to use the variable F instead of y in what follows,

since it helps one to remember the sortal categories of the arguments

to relations and functions. Note that 2-place predication requires a new

relation: Ex2(R,x,y), etc.

Quantified modal (S5) claims can be translated into prover9 Kripke-

style (Manzano 1996, chapter 7), with the use of a third sortal predicate:

Point (not World!4).

all F all x all w (Ex1(F,x,w) ->

Property(F) & Object(x) & Point(w)).

Here is an example of a simple theorem in object theory and how it gets

translated into prover9:

Necessarily, every object exemplifies some property.

2(∀x)(∃Q)Qx.

We can translate this into the following prover9 formula:

all p all x ((Point(p) & Object(x)) ->

(exists Q (Property(Q) & Ex1(Q,x,p))).

prover9 will process such a formula appearing in an input file and

clausify it as:

4We emphasize the use of the predicate Point and not the predicate World since

the latter is a defined concept in world theory. The former is merely a semantic device

for translating modal claims into prover9 syntax.
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-Point(p) | -Object(x) | Property(f(p,x)).

-Point(p) | -Object(x) | Ex1(f(p,x),x,p).

The next obstacle to overcome involves propositions and complex

properties. Propositions can’t be defined as 0-place properties (prover9

has no such properties), so a fourth sortal predicate is required: Proposi-

tion. For instance, we’ll need to represent in prover9 the fact that if

p is a proposition, then so is its negation ¬p. We can do so using the

following formula:

all p (Proposition(p) -> Proposition(~p)).

Notice that we use ˜ to form a term which is a negation of the proposition

p, rather than the symbol ‘-’, which is prover9’s syntax for formula

negation.

Complex properties (i.e., λ-expressions) can be represented in prover9

using functions. E.g., we represent the property being such that p (‘[λyp]’)

using a functor VAC:

all p (Proposition(p) <-> Property(VAC(p))).

all x all p all w ((Object(x) & Proposition(p) & Point(w)) ->

(Ex1(VAC(p),x,w) <-> True(p,w))).

Finally, definite descriptions are represented as follows. In object the-

ory, one finds, for example, the following definition of The Form of F

(‘ΦF ’), where ‘⇒’ is necessary implication:

ıx(A!x& ∀G(xG ≡ F ⇒ G))

We represent this in prover9 syntax by using the following two predi-
cates. To represent ΦF , for example, we must first define z is a Form of
F , and then define z is the Form of F , as follows.5

all z all F ((Object(z) & Property(F)) ->

(IsAFormOf(z,F) <->

(Ex1(A,z,W) &

(all G (Property(G) -> (Enc(z,G) <-> Implies(F,G))))))).

5The expression ‘Ex1(A,z,W)’ is used to assert that z exemplifies the property of

being abstract (‘A’) at the distinguished semantic point W. Recall that the exemplifi-

cation extension of a property such as A can vary from point to point. The definition

therefore tells us what it is for an object z to be a Form of F at the distinguished point

W, not what it is for an object z to be a Form of F at an arbitrary point w.
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all z all F ((Object(z) & Property(F)) ->

(IsTheFormOf(z,F) <->

(IsAFormOf(z,F) &

(all y ((Object(y) & IsAFormOf(y,F)) -> y=z))))).

Now, if one wants to assert “x is the Form of F” in prover9, one writes

IsTheFormOf(x,F).

With our four sortal predicates and the other techniques in place,

prover9 requires the following explicit sorting conditions, which assert

that the sorts are disjoint:

all x (Property(x) -> -Object(x)).

all x (Property(x) -> -Proposition(x)).

all x (Property(x) -> -Point(x)).

all x (Proposition(x) -> -Object(x)).

all x (Proposition(x) -> -Point(x)).

all x (Point(x) -> -Object(x)).

With these techniques we’ve used prover9 to find proofs (without

guiding it using known lemmas) of all the theorems reported in Zalta

1993 on world theory and situation theory. The proof of one of these

theorems is described in Section 4. We’ve also used prover9 to find

proofs (again, without guiding its search) of the theorems reported in

Pelletier and Zalta 2000 on the Third Man Argument, with one exception.

The exception is discussed in Section 5, where we show how mace, the

automated model-finding program that comes with prover9, helped us

to discover a countermodel to one of the propositions alleged to be a

theorem of object theory in Pelletier and Zalta 2000.

4. Example prover9 Proof of a Theorem of

Object Theory

We now present the prover9 proof of the claim that every world is

maximal from axioms, theorems and definitions of object theory. We used

the following axioms and definitions; in each case, we present the original

version in object theory followed by both its translation and clausification

in prover9:
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1. Negations of propositions are propositions. (Metalogical Theorem)

all p (Proposition(p) -> Proposition(~p)).

This clausifies to:

-Proposition(x) | Proposition(~x).

2. ‘Truth at a point’ is coherent. (Metalogical Theorem)

all w all p ((Point(w) & Proposition(p)) ->

(True(~p,w) <-> -True(p,w))).

This clausifies to:

-Point(x) | -Proposition(y) | True(~y,x) | True(y,x).

-Point(x) | -Proposition(y) | -True(~y,x) | -True(y,x).

3. Maximal(x) =df ∀p(x |= p ∨ x |= ¬p)6 (Definition)

all x (Object(x) -> (Maximal(x) <->

(Situation(x) & (all p (Proposition(p) ->

TrueIn(p,x) | TrueIn(~p,x)))))).

This clausifies to:

6A few clarificatory notes about this definition are in order. First, as noted above

at the end of Section 2, where ‘truth in’ is defined, ‘p is true in x’ is written ‘x |= p’ in

object theory, and in prover9, this gets written as ‘TrueIn(p,x)’. Second, maximality

is defined on situations, which in object theory are objects x such that ∀F (xF →
∃p(F =[λy p])), i.e., objects x such that every property x encodes is a property of the

form being such that p, for some proposition p. Since the definition of a situation will

play no role in the proof, we omit the representation of this definition in prover9.

Third, truth in a situation is not to be confused with truth at a point in the semantic

structure. So we must distinguish TrueIn(p,x) where x is a situation from True(p,y)

where y is a point (i.e., an index in our Kripke translation for modal content). The

latter was used in the representation of Proposition 2 above.
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-Object(x)| -Maximal(x) | Situation(x).

-Object(x)| -Maximal(x) | -Proposition(z)| TrueIn(z,x).

-Object(x)| Maximal(x) | -Situation(x) | Proposition(f1(x)).

-Object(x)| Maximal(x) | -Situation(x) | -TrueIn(f1(x),x).

-Object(x)| Maximal(x) | -Situation(x) | -TrueIn(~f1(x),x).

4. World(x) =df 3∀p(x |= p ≡ p) (Definition)

all x (Object(x) -> (World(x) <->

(Situation(x) & (exists y (Point(y) &

(all p (Proposition(p) ->

(TrueIn(p,x) <-> True(p,y))))))))).

This clausifies to:

-Object(x) | -World(x) | Situation(x).

-Object(x) | -World(x) | Point(f2(x)).

-Object(x) | -World(x) | -Proposition(y) | -TrueIn(y,x) | True(y,f2(x)).

-Object(x) | -World(x) | -Proposition(y) | TrueIn(y,x) | -True(y,f2(x)).

-Object(x) | World(x) | -Situation(x) | -Point(y) | Proposition(f3(x,y)).

-Object(x) | World(x) | -Situation(x) | -Point(y) | TrueIn(f3(x,y),x) | True(f3(x,y),y).

-Object(x) | World(x) | -Situation(x) | -Point(y) | -TrueIn(f3(x,y),x) | -True(f3(x,y),y).

5. Worlds are objects. (MetaTheorem)

all x (World(x) -> Object(x)).

This clausifies to:

-World(x) | Object(x)

Now the claim to be proved is that all worlds are maximal:

Theorem: ∀x(World(x)→ Maximal(x))

all x (World(x) -> Maximal(x)).

This clausifies to:

-World(x) | Maximal(x).
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After prover9 clausifies the premises and the negation of the conclusion,

it then implements its main loop. When it prints out a proof, it only lists

the clauses that were actually used in the proof. So, in the first 11 steps

of the following proof, the reader will find that not all of the clauses

connected with the above premises are used in the proof. For example,

not all of the clauses in the clausification of premises 3 and 4 above are

used in the following proof.

1 -Proposition(x) | Proposition(~x). [clausify].

2 -Point(x) | -Proposition(y) | True(~y,x) | True(y,x). [clausify].

3 -Object(x) | Maximal(x) | -Situation(x) | Proposition(f1(x)). [clausify].

4 -Object(x) | Maximal(x) | -Situation(x) | -TrueIn(f1(x),x). [clausify].

5 -Object(x) | Maximal(x) | -Situation(x) | -TrueIn(~f1(x),x). [clausify].

6 -Object(x) | -World(x) | Situation(x). [clausify].

7 -Object(x) | -World(x) | Point(f2(x)). [clausify].

8 -Object(x) | -World(x) | -Proposition(y) | TrueIn(y,x) | -True(y,f2(x)). [clausify].

9 -World(x) | Object(x). [clausify].

10 World(c1). [clausify].

11 -Maximal(c1). [clausify].

12 Object(c1). [hyper(9,a,10,a)].

13 Point(f2(c1)). [hyper(7,a,12,a,b,10,a)].

14 Situation(c1). [hyper(6,a,12,a,b,10,a)].

15 Proposition(f1(c1)). [hyper(3,a,12,a,c,14,a),unit_del(a,11)].

16 True(~f1(c1),f2(c1)) | True(f1(c1),f2(c1)). [hyper(2,a,13,a,b,15,a)].

17 Proposition(~f1(c1)). [hyper(1,a,15,a)].

18 TrueIn(~f1(c1),c1) | True(f1(c1),f2(c1)). [hyper(8,a,12,a,b,10,a,c,17,a,e,16,a)].

19 TrueIn(f1(c1),c1) | TrueIn(~f1(c1),c1). [hyper(8,a,12,a,b,10,a,c,15,a,e,18,b)].

20 TrueIn(f1(c1),c1). [hyper(5,a,12,a,c,14,a,d,19,b),unit_del(a,11)].

21 $F. [hyper(4,a,12,a,c,14,a,d,20,a),unit_del(a,11)].

We have chosen a relatively simple proof here, for ease of exposition.

Readers interested in seeing how prover9 proves the other theorems in

Zalta 1993 and the bona fide theorems in Pelletier and Zalta 2000 are en-

couraged to consult<https://mally.stanford.edu/cm/> or<http://fitelson.-

org/cm/>. Some of those proofs are very complex.

5. Observations

Why did we choose a first-order system like prover9, instead of a higher-

order system? When we started this project, the only higher-order sys-

tems with which we were familiar were systems designed mainly for veri-

fication, e.g., Boyer and Moore’s (1979) system nqthm . But we wanted

the reasoning engine to discover proofs of non-trivial depth rather than
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merely verifying them. Moreover, we wanted to be able to constructively

establish the consistency of the premises used in the proofs of the theo-

rems. So we decided to use the first-order systems prover9 and mace,

which are flexible, powerful, and robust first-order systems for proving

theorems and finding models, respectively, and which are freely available

and compile easily on a wide variety of platforms. More recently, we have

become aware of the existence of various higer-order theorem provers that

can find non-trivial proofs (rather than just verifying known proofs).7 But

one advantage of our current approach is that we have both proofs of our

theorems and models of the premises involved in the theorems. This gives

us an automated check of the consistency of our assumptions. Our current

focus is on whether any limitations of our first-order approach arise when

we attempt to automate the reasoning concerning Leibniz’s theory of con-

cepts (Zalta 2000). This involves far more complexity in terms of nested

definite descriptions and λ-expressions. We discuss this issue further in

Section 5.2.

5.1 mace

prover9 and otter come with an especially powerful tool, mace, which

allows one to find finite models of arbitrary finite sets of first-order for-

mulas (McCune 2003a). Once prover9 finds a proof of a theorem of

computational metaphysics, we then use mace to find a model of the

premises alone, to ensure that the premises used in prover9’s proof are

consistent. And whenever we encounter a proposition that is supposed

to be a theorem of axiomatic metaphysics but for which prover9 can’t

find a proof, we then use mace to see whether there is a countermodel,

i.e., a model of both the premises and the negation of the conclusion.

Indeed, mace led us to discover that one of the propositions alleged to

7Despite the fact that second-order logic is undecidable, it turns out that true au-

tomated theorem proving (and not mere verification) for second-order logic is possible

(in principle). That is, the methods of resolution and unification can be extended to

second-order logic (Pietrzykowski 1973). Interestingly, however, these methods cannot

be extended to third-order logic (Huet 1973). See Kohlhase 1998 for a recent survey

of theorem proving techniques for higher-order logical systems. Be that as it may,

it is not clear to us whether existing higher-order theorem-proving systems would be

more effective for the present applications. Moreover, as far as we know, there are

no (general purpose) higher-order model finding programs. Thus, moving to a higher-

order framework would mean forfeiting our ability to automatically find models for the

premises of the theorems we prove.
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be a theorem in Pelletier and Zalta 2000 is not in fact such.

Consider ‘Theorem 4’ in Pelletier and Zalta 2002. It is stated in terms

of the following definitions:

F ⇒ G =df 2∀x(Fx→ Gx).

The Form of F (‘ΦF ’) =df ıx(A!x& ∀G(xG ≡ F ⇒ G))

ParticipatesPH(x, y) =df ∃F (y=ΦF & xF )

Now the proposition alleged to be Theorem 4 was:

xF ≡ ParticipatesPH(x,ΦF )

After translating these definitions and claims into prover9 syntax, we

found that prover9 didn’t seem to be able to find a proof. We therefore

used mace to check for countermodels to both directions of the bicondi-

tional.

Indeed, the right-to-left direction of the biconditional has a counter-

model. We therefore take the opportunity here to correct the error in the

earlier paper, by briefly describing the countermodel. In what follows, we

shall identify object b and property P such that:

ParticipatesPH(b,ΦP ) & ¬bP

To form the countermodel, choose P to be the necessarily empty property

being-Q-and-not-Q (for some arbitrary propertyQ) and consider a second,

distinct necessarily empty property T , say being-round-and-square. That

is, let P = [λz Qz & ¬Qz] and let T = [λz Rz & Sz]. Note that in object

theory, one may consistently assert that P 6= T even though 2∀x(Px ≡
Tx). The reason is that identity for properties (‘F = G’) is defined as

2∀x(xF ≡ xG). So properties may be distinct even though necessarily

equivalent.

Now consider ΦP and ΦT . Even though P 6= T , it is provable in

object theory that ΦP = ΦT . To see this, note the following theorems

of quantified modal logic, namely, that necessarily empty properties are

necessarily equivalent and that necessarily equivalent properties entail the

same properties, i.e.,8

8Here is a simple, semantic-based sketch of the former, which relies on the fact

that the modal logic of object theory is the simplest possible: fixed domains, S5 with

Barcan formulas, and no accessibility relation. Assume F and G are necessarily empty.
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[2∀y¬Fy & 2∀y¬Gy]→ 2∀x(Fx ≡ Gx)

2∀x(Fx ≡ Gx)→ ∀H(F⇒H ≡ G⇒H).

So, we can infer from these two theorems that necessarily empty properties

P and T entail the same properties. But, by definition, ΦP encodes all

and only the properties entailed by P , and ΦT encodes all and only the

properties entailed by T . Since P and T entail the same properties, ΦP
and ΦT encode the same properties. Thus, ΦP = ΦT , by the definition of

identity for abstract objects.

Now to complete the countermodel, let b be the abstract object that

encodes exactly one property, namely, T . We can establish (i) Partici-

patesPH(b,ΦP ), and (ii) ¬bP . To establish (i), we have to show:

∃F (ΦP =ΦF & bF )

But this follows by Existential Generalization after conjoining the facts

that ΦP = ΦT and bT . To show (ii), note that by definition, b encodes

only a single property, namely, T . Since P 6= T , it follows that ¬bP .

So, we’ve identified objects, properties, and Forms that constitute a

counterexample to the ‘theorem’, since we have established:

ParticipatesPH(b,ΦP ) & ¬bP

Thus, Theorem 4 in Pelletier and Zalta 2000 should have been weakened

to:

Theorem 4: xF → ParticipatesPH(x,ΦF )

Our research in computational metaphysics shows, however, that the

other nine theorems in Pelletier and Zalta 2000 are correct.9

It follows immediately that they are necessarily equivalent, i.e., that 2∀x(Fx ≡ Gx).

If neither F nor G are exemplified by any objects at any possible world, then F and

G are exemplified by all and only the same objects at every possible world.

Here is now a semantic-based proof of the latter. Assume F and G are necessarily

equivalent. Now, for the left-to-right direction, assume that for an arbitrary property

H, F ⇒ H, i.e., that 2∀x(Fx → Hx). If we can show G ⇒ H, we are done (without

loss of generality, since the proof of the right-to-left direction goes exactly the same

way). To show 2∀x(Gx → Hx), we first prove the embedded, non-modal universal

claim holds at an arbitrary world, say w. So, for an arbitrary object, say c, suppose

Gc at w. Then since G and F are necessarily equivalent, they are equivalent at w, so it

follows that Fc at w. But F necessarily implies H, and so materially implies H at w.

Thus, Hc. So, we’ve proved, with respect to an arbitrary object c and world w, that

Gc → Hc at w. Thus, by universal generalization on c and then w, we’ve established

2∀x(Gx→ Hx), i.e., G⇒ H.
9See <https://mally.stanford.edu/cm/> or <http://fitelson.org/cm/>.
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5.2 Future Research Questions

Despite the above successes and reasons for using prover9, our cur-

rent research suggests that new techniques might be required when the

complexity of the theorems increases. We are currently working on the

question, how should we automate the proofs of the theorems reported

in Zalta 2000, concerning Leibniz’s theory of concepts? And after that,

we want to find proofs of theorems reported in Zalta 1999, concerning

Frege’s theory of the natural numbers in the Grundgesetze. Our research

suggests that the representation of object theory’s second-order language

used so far may face certain difficulties when more complex applications

are considered. We conclude by describing one such issue which has come

up during the course of our research and which suggests that more so-

phistication may be needed.

In object theory, the Leibnizian notion the concept of G (‘cG’) is de-

fined in exactly the same way as the Platonic Form of G (ΦG) is defined,

namely, as (Zalta 2000):

cG = ıx(A!x& ∀F (xF ≡ G⇒ F ))

By analogy with our earlier discussion of defining The Form of F , we
would represent The Concept G in prover9 in terms of the following
two predicates:

all z all G ((Object(z) & Property(G)) ->

(IsAConceptOf(z,G) <->

(Ex1(A,z,W) &

(all F (Property(F) -> (Enc(z,F) <-> Implies(G,F))))))).

all z all G ((Object(z) & Property(G)) ->

(IsTheConceptOf(z,G) <->

(IsAConceptOf(z,G) &

(all y ((Object(y) & IsAConceptOf(y,G)) -> y=z))))).

In the usual way, the second definition tells us that an object z is the

concept of G whenever z is a concept of G and any other concept of G is

identical to z.

Now unlike the work we did with Platonic Forms, the theorems for

Leibnizian concepts involve other abstract objects defined in terms of

complex definite descriptions. For example, such notions as x ⊕ y (the

sum of the concepts x and y) and cF∨G (the disjunctive concept of

F and G) are introduced.10 These notions would also be defined in

10In Zalta 2000, the first is explicitly defined as:
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prover9’s language in two steps, yielding the terms IsTheSumOf(z,x,y)

and IsTheDisjConceptOf(z,G,H).

Now Theorem 4 of the Leibnizian theory of concepts is:

∀G,H(cG ⊕ cH = cG∨H)

i.e., in prover9’s language:

all G all H all x all y all z all u

((Property(G) & Property(H) & Object(x) & Object(y) & Object(z) &

Object(u) & IsTheConceptOf(x,G) & IsTheConceptOf(y,H) &

IsTheSumOf(z,x,y) & IsTheDisjConceptOf(u,G,H)) -> z=u).

As one can imagine, there is a great deal of quantifer depth and clausal

complexity involved in representing all the requisite definite descriptions

and proving Theorem 4 in prover9. The automated reasoning engine

populates the search space with a large number of clauses and this space

grows much larger as prover9 executes its main loop.

We haven’t yet been able to prove Theorem 4 in prover9. At this

point, we are unsure whether our failure here is due only to issues of

computational complexity or to a more fundamental shortcoming of our

first-order representation of claims with this depth of embedding.

If this problem proves to be intractable for first-order methods and

systems, we may move to a higher-order automated reasoning system in

our future work (e.g., Leibniz’s theory of concepts and Frege’s theory

of numbers). We hope to report on any results using such higher-order

reasoning systems, or further results in our current first-order framework,

should they become available.
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