e is transcendental

Robert Hines

November 6, 2015

e is irrational and transcendental numbers exist

The irrationality of e is straightforward to prove, and has been known since at least Euler (who first called e, "e").

Theorem. e is irrational.
Proof. Let $H_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}, H_{n}=H_{n}(1)$. Then

$$
\begin{aligned}
e-H_{n} & =\sum_{k=n+1}^{\infty} \frac{1}{k!} \\
& =\frac{1}{(n+1)!}\left(1+\frac{1}{n+2}+\frac{1}{(n+2)(n+3)}+\ldots\right) \\
& <\frac{1}{(n+1)!}\left(1+\frac{1}{n+1}+\frac{1}{(n+1)^{2}}+\ldots\right) \\
& =\frac{1}{(n+1)!} \frac{1}{1-\frac{1}{n+1}}=\frac{1}{(n+1)!} \frac{n+1}{n}=\frac{1}{n} \frac{1}{n!} .
\end{aligned}
$$

If $e=\frac{p}{q}$, then $q!\left(e-H_{q}\right) \in \mathbb{Z}$, but

$$
0<q!\left(e-H_{q}\right)<\frac{1}{q}
$$

a contradiction.
[Fun fact: $H_{n}(x) \in \mathbb{Q}[x]$ is irreducible for all n].
The moral of the proof is that H_{n} (a rational number) approximates e too well. Consider the following

Lemma (Liouville, 1844). If ξ is a real algebraic number of degree $n>1$, then there is a constant $A>0$ (depending on ξ) such that

$$
\left|\xi-\frac{h}{k}\right|>\frac{A}{k^{n}} .
$$

Proof. Suppose $p(x) \in \mathbb{Z}[x]$ is irreducible of degree n with $p(\xi)=0$. Then

$$
p(\xi)-p(h / k)=(\xi-h / k) p^{\prime}(\alpha)
$$

for some α between ξ and h / k by the mean value theorem. The left hand side is a nonzero rational number $(p(\xi)=0$ and p is irreducible so h / k is not a root) with denominator less than k^{n} so that we get

$$
\frac{1}{k^{n}} \leq\left|\xi-\frac{h}{k}\right| \sup \left\{p^{\prime}(x): x \in(\xi-1, \xi+1)\right\} .
$$

The above result can be improved to
Theorem (Thue-Siegel-Roth). For all $\epsilon>0$, there are only finitely many rational solutions to

$$
\left|\xi-\frac{h}{k}\right|<\frac{1}{k^{2+\epsilon}}
$$

if ξ is algebraic and irrational.
The $2+\epsilon$ exponent is the best possible since we have the following
Proposition. If $\xi \in \mathbb{R}$ is irrational then there are infinitely many rationals p / q such that

$$
|\xi-p / q|<1 / q^{2}
$$

Proof. This is an application of the pigeonhole principle. Two of the $n+1$ numbers $1,\{k \xi\}$ (the fractional part of $k \xi$) for $1 \leq k \leq n$ must lie in one of the n subintervals $(i / n,(i+1) / n], 0 \leq i \leq n-1$ of $(0,1]$. Hence there is a p and $1 \leq q \leq n$ such that

$$
|q \xi-p|<1 / n \text {, i.e }|\xi-p / q|<1 / n q \leq 1 / q^{2} \text {. }
$$

Infinitely many of these p / q must be distinct, else $|\xi-p / q|$ takes on a minimum value, say larger than $1 / n$ for some n, and the above construction gives a contradiction.

Transcendental numbers exist (by cardinality arguments - thanks Cantor!), but let's exhibit one explicitly (as Liouville did).

Proposition. $\xi=\sum_{n=0}^{\infty} 10^{-n!}$ is transcendental.
Proof. Let $k_{j}=10^{j!}, h_{j}=10^{j!} \sum_{n=0}^{j} 10^{-n!}$. Then $\left(h_{j}, k_{j}\right)=1\left(\operatorname{as} h_{j} \equiv 1 \bmod 10\right)$ and

$$
\begin{aligned}
\left|\xi-\frac{h_{j}}{k_{j}}\right| & =\sum_{n=j+1}^{\infty} 10^{-n!}<\sum_{n=(j+1)!}^{\infty} 10^{-n} \\
& =10^{-(j+1)!} \frac{1}{1-1 / 10}=\frac{10}{9 \cdot 10^{j!}}\left(10^{j!}\right)^{-j} \\
& <A_{j} k_{j}^{-j}
\end{aligned}
$$

where $A(j) \rightarrow 0$ as $j \rightarrow \infty$ so that ξ is transcendental by the lemma above.

e is transcendental

We now begin the proof that e is transcendental (Hermite, 1873). We have to be able to simultaneously approximate e^{x} at different values to obtain a contradiction similar to that given above for the irrationality of e.

For a polynomial $f(x)$, let $F(x)=\sum_{i=0}^{\infty} f^{(i)}(x)$. Integrating by parts a bajillion times, we get

$$
e^{x} \int_{0}^{x} f(t) e^{-t} d t=F(0) e^{x}-F(x) \text { (the "Hermite identity"). }
$$

Consider the specific polynomial

$$
f(x)=\frac{x^{p-1}(x-1)^{p} \cdots \cdots(x-n)^{p}}{(p-1)!}
$$

(n will be the degree of the fictitious minimal polynomial for e over \mathbb{Q} and p will be a large prime).

We have the following estimate for $0 \leq k \leq n$:

$$
\begin{aligned}
\left|e^{k} F(0)-F(k)\right| & =\left|e^{k} \int_{0}^{k} f(t) e^{-t} d t\right| \\
& \leq n e^{n} \sup _{t \in[0, n]}\{f(t)\} \\
& =\frac{n^{p-1}\left(n^{p}\right)^{n}}{(p-1)!}
\end{aligned}
$$

which goes to zero as $p \rightarrow \infty$ for a fixed n. [Mildly interesting: this proof requires the existence of infinitely many primes.] We now show that such an estimate is impossible if e is algebraic by showing that $\sum_{k=1}^{n} F(0) e^{k}-F(k)$ is an integer between 0 and 1.

1. $F(0) \in \mathbb{Z} \backslash p \mathbb{Z}$ for $p>n$:

We have $f(x)=a(x) b(x)$ where

$$
a(x)=\frac{x^{p-1}}{(p-1)!}, b(x)=(x-1) \cdots \cdot(x-n)^{p}
$$

so that

$$
f^{(N)}(x)=\sum_{i=0}^{N} a^{(i)}(x) b^{(N-i)}(x)\binom{N}{i}
$$

Note that $a^{(i)}(0)=0$ unless $i=p-1$ in which case $a^{(p-1)}(0)=1$. Hence

$$
\begin{aligned}
F(0) & =\sum_{N=0}^{\infty} f^{(N)}(0)=\sum_{N=0}^{\infty} \sum_{i=0}^{N} a^{(i)}(0) b^{(N-i)}(0)\binom{N}{i} \\
& =\sum_{N=p-1}^{\infty} b^{(N-(p-1))}(0)\binom{N}{p-1} \\
& \left.=b(0)+p(\ldots)=(-1)^{p^{2}} n!^{p}+p(\ldots) \in \mathbb{Z} \backslash p \mathbb{Z} \text { (remember that } p>n\right) .
\end{aligned}
$$

2. $F(k) \in p \mathbb{Z}$ for $1 \leq k \leq n$:

We have $f(x)=c(x) d(x)$ where

$$
c(x)=\frac{(x-k)^{p}}{(p-1)!}, d(x)=\frac{x^{p-1}(x-1)^{p} \cdots(x-n)^{p}}{(x-k)^{p}} .
$$

Note that $c^{(i)}(k)=0$ unless $i=p$ in which case $c^{(p)}(k)=p$. Hence

$$
\begin{aligned}
F(k) & =\sum_{N=0}^{\infty} \sum_{i=0}^{N} c^{(i)}(k) d^{(N-i)}(k)\binom{N}{i} \\
& =p \sum_{N=p}^{\infty} d^{(N-p)}(k)\binom{N}{p} \in p \mathbb{Z} .
\end{aligned}
$$

Now, if e were algebraic, say $\sum_{k=0}^{n} c_{k} e^{k}=0, c_{k} \in \mathbb{Z}, c_{0} \neq 0$, and $p>\left|c_{0}\right|$, then

$$
\begin{aligned}
1 & \leq\left|\sum_{k=0}^{n} c_{k} F(k)\right|\left(\text { because } c_{0}, F(0) \in \mathbb{Z} \backslash p \mathbb{Z}, F(k) \in p \mathbb{Z}\right) \\
& =\left|\sum_{k=0}^{n} c_{k} F(k)-\left(\sum_{k=0}^{n} c_{k} e^{k}\right) F(0)\right| \\
& =\left|\sum_{k=0}^{n} c_{k}\left(F(k)-e^{k} F(0)\right)\right| \\
& \leq M \sum_{k=0}^{n}\left|F(k)-e^{k} F(0)\right|\left(\text { where } M=\max _{k}\left\{\left|c_{k}\right|\right\}\right)
\end{aligned}
$$

which is less than 1 for p large as shown above. Hence e is transcendental.

What about π ?

Here is a proof that π is irrational in the spirit of Hermite.
For a polynomial $f(x)$, let $F(x)=\sum_{n=0}^{\infty}(-1)^{n} f^{(2 n)}(x)$ (this mimics $\sin x$ in the way we mimicked e^{x} before). We have

$$
\frac{d}{d x}\left(F^{\prime}(x) \sin x-F(x) \cos x\right)=f(x) \sin x, \int_{0}^{\pi} f(x) \sin x d x=F(0)+F(\pi)
$$

If $\pi=a / b$ were rational, consider the polynomial

$$
f(x)=\frac{b^{n}}{n!} x^{n}(\pi-x)^{n}=\frac{1}{n!} x^{n}(a-b x)^{n} \in \mathbb{Q}[x] .
$$

We have bounds

$$
0<\int_{0}^{\pi} f(x) \sin x d x \leq \frac{b^{n} \pi^{2 n}}{n!} \int_{0}^{\pi} \sin x d x=\frac{2\left(\pi^{2} b\right)^{n}}{n!} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Note that $f^{(k)}(0)=0$ for $0 \leq k<n$ as f has a zero of order n at zero. We also have $f^{(k)}(0) \in \mathbb{Z}$ for $k \geq n$ by the following (easy) lemma.

Lemma. For $p(x) \in \mathbb{Z}[x]$, $k!$ divides all the coefficients of $p^{(k)}(x)$.
Proof. $\frac{d^{k}}{d x^{k}} x^{n}=k!\binom{n}{k} x^{n-k}$ for $k \leq n$ and higher derivatives are zero.
Hence $f^{(k)}(0) \in \mathbb{Z}$ for all k. Finally note that

$$
f(x)=f(\pi-x), f^{(k)}(x)=(-1)^{k} f^{(k)}(\pi-x)
$$

so that $f^{(k)}(\pi)=(-1)^{k} f^{(k)}(0) \in \mathbb{Z}$ for all k. Therefore $F(0)+F(\pi) \in \mathbb{Z}$, a contradiction, and π is irrational.

We can prove that π is transcendental using the methods we used for e, although the details are slightly more tedious. We start with the identity $e^{\pi i}+1=0$. If πi were algebraic (degree n), we would have

$$
0=\prod_{i=1}^{n}\left(1+e^{\gamma_{i}}\right)=\sum_{\epsilon_{i} \in\{0,1\}} e^{\sum_{i} \epsilon_{i} \gamma_{i}}=a+\sum_{i=1}^{m} e^{\alpha_{i}}
$$

where the γ_{i} are the galois conjugates of $\pi i, a=2^{n}-m$ are the number of zero exponents in the first sum (note that $a \geq 1$), and the α_{i} are the non-zero exponents in the first sum.

Thinking about symmetric functions for a while (details omitted), we see that

$$
\phi(x)=\prod_{\epsilon_{i} \in\{0,1\}}\left(x-\sum_{i=1}^{n} \epsilon_{i} \gamma_{i}\right) \in \mathbb{Q}[x] .
$$

Divide by x^{a} and clear denominators to get a polynomial

$$
\psi(x)=\sum_{i=0}^{m} b_{i} x^{i} \in \mathbb{Z}[x], b_{m}>0, b_{0} \neq 0
$$

whose roots are exactly the α_{i}. Furthermore, assume $b_{m} \alpha_{i}$ is an algebraic integer for all i.

Once again we apply the "Hermite identity," this time to the polynomial

$$
f(x)=\frac{b_{m}^{(m-1) p}}{(p-1)!} x^{p-1} \psi^{p}(x)=\frac{b_{m}^{m p}}{(p-1)!} x^{p-1} \prod_{i=1}^{m}\left(x-\alpha_{i}\right)^{p} .
$$

Plug in $x=\alpha_{i}$ and sum over i to get

$$
-a F(0)-\sum_{i=1}^{m} F\left(\alpha_{i}\right)=\sum_{i=1}^{m} e^{\alpha_{i}} \int_{0}^{\alpha_{i}} f(t) e^{-t} d t .
$$

Our goal, as before, is to show that the LHS is a non-zero integer but that the RHS can be made arbitrarily small. We have

$$
F(0)=(-1)^{m p} b_{m}^{m p}\left(\prod_{i} \alpha_{i}\right)^{p} \in \mathbb{Z} \backslash p \mathbb{Z}
$$

for large p. We also have

$$
\sum_{i=1}^{m} F\left(\alpha_{i}\right)=p b_{m}^{m p} \sum_{i} \alpha_{i}^{p-1} \prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right)^{p} \in p \mathbb{Z}
$$

for large p because it is symmetric in α_{i} and the denominator is cleared by $b_{m}^{m p}$.
We now estimate the integral on the RHS:

$$
\left|e^{\alpha_{i}} \int_{0}^{\alpha_{i}} f(t) e^{-t} d t\right| \leq\left(\left|\alpha_{i}\right|\left|b_{m}^{m-1}\right||\psi|\left(\left|\alpha_{i}\right|\right)\right)^{p} /(p-1)!\rightarrow 0
$$

as $p \rightarrow \infty$.

Generalizations

Theorem (Lindemann-Weierstrass, 1885). If $\alpha_{1}, \ldots, \alpha_{k}$ are distinct algebraic numbers, then $e^{\alpha_{1}}, \ldots, e^{\alpha_{k}}$ are linearly independent over $\overline{\mathbb{Q}}$.

We also have the solution of Hilbert's seventh problem
Theorem (Gelfond-Schneider, 1934). For algebraic a $\notin\{0,1\}$ and irrational algebraic b, a^{b} is transcendental.

So numbers such as $2^{\sqrt{2}}, i^{i}$ are transcendental.
Another generalization due to Lang (an axiomatization of Schneider's methods) is
Theorem. Suppose K is a number field, $\left\{f_{i}\right\}_{i=1}^{n}$ meromorphic functions of order $\leq \rho$ such that $K\left(\left\{f_{i}\right\}_{i}\right)$ has transcendence degree ≥ 2 over K and $K\left[\left\{f_{i}\right\}_{i}\right]$ is closed under differentiation. If $\left\{w_{j}\right\}_{j=1}^{m}$ are distinct complex numbers such that $f_{i}\left(w_{j}\right) \in K$ for all i, j then $m \leq 20 \rho[K: \mathbb{Q}]$.
Theorem (Hermite-Lindemann). e^{α} is transcendental for all $\alpha \in \overline{\mathbb{Q}} \backslash\{0\}$.
Proof. The proof that π is transcendental directly generalizes to this. Or, take the meromorphic functions in the theorem above to be z, e^{z} and K to be $\mathbb{Q}\left(\alpha, e^{\alpha}\right)$. Theses function take values in K for z any integer multiple of α.
Theorem (Schneider). If \wp is a Weierstrass a function with g_{2}, g_{3} algebraic, then $\wp(\alpha)$ is transcendental for all $\overline{\mathbb{Q}} \backslash\{0\}$.
Sketch. First the relevant definitions. If $\Lambda \subseteq \mathbb{C}$ is a rank two lattice, define

$$
\wp(z ; \Lambda)=\frac{1}{z^{2}}+\sum_{w \in \Lambda \backslash\{0\}} \frac{1}{(z-w)^{2}}-\frac{1}{w^{2}} .
$$

Then \wp satisfies the algebraic differential equation

$$
\wp^{\prime 2}=4 \wp^{3}-g_{2} \wp-g_{3}
$$

where

$$
g_{2}=60 \sum_{w \in \Lambda \backslash\{0\}} \frac{1}{w^{4}}, g_{3}=140 \sum_{w \in \Lambda \backslash\{0\}} \frac{1}{w^{6}} .
$$

Addition formula, etc.?????

A far-reaching generalization of the theorem of Gelfond-Schneider is
Theorem (Baker, 1966). If $\left\{\alpha_{i}\right\}_{i=1}^{n}$ and $\left\{\beta_{i}\right\}_{i=0}^{n}$ are algebraic (and $\alpha_{i} \neq 0$) of degree at most d and with heights at most A, B (for $\left\{\alpha_{i}\right\}_{i=1}^{n}$ and $\left\{\beta_{i}\right\}_{i=0}^{n}$ respectively) then

$$
\Lambda:=\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n}
$$

is either zero or $|\Lambda|>B^{-C}$ for an effectively computable constant C depending only on n, d, A, and $\left\{\log \alpha_{i}\right\}_{i}$. [The height of an algebraic number γ is $\max _{i}\left\{\left|c_{i}\right|\right\}$ where $\sum_{i} c_{i} x^{i}$ is the minimal polynomial of γ over \mathbb{Z}.]

For related results and applications, such as the class number one problem for imaginary quadratic fields:
$\mathbb{Q}(\sqrt{-d})$ with $d>0$ has class number one iff $d \in\{1,2,3,7,11,19,43,67,163\}$,
Baker was awarded a Fields medal in 1970.

References

[1] Baker, Alan, Transcendental Number Theory
[2] Niven, Ivan, Irrational Numbers
[3] http://math.stanford.edu/~ksound/TransNotes.pdf

