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e is irrational and transcendental numbers exist

The irrationality of e is straightforward to prove, and has been known since at least Euler
(who first called e, “e”).

Theorem. e is irrational.

Proof. Let Hn(x) =
n∑
k=0

xk

k!
, Hn = Hn(1). Then

e−Hn =
∞∑

k=n+1

1

k!

=
1

(n+ 1)!

(
1 +

1

n+ 2
+

1

(n+ 2)(n+ 3)
+ . . .

)
<

1

(n+ 1)!

(
1 +

1

n+ 1
+

1

(n+ 1)2
+ . . .

)
=

1

(n+ 1)!

1

1− 1
n+1

=
1

(n+ 1)!

n+ 1

n
=

1

n

1

n!
.

If e = p
q
, then q!(e−Hq) ∈ Z, but

0 < q!(e−Hq) <
1

q
,

a contradiction.

[Fun fact: Hn(x) ∈ Q[x] is irreducible for all n].

The moral of the proof is that Hn (a rational number) approximates e too well.
Consider the following

Lemma (Liouville, 1844). If ξ is a real algebraic number of degree n > 1, then there is
a constant A > 0 (depending on ξ) such that∣∣∣∣ξ − h

k

∣∣∣∣ > A

kn
.
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Proof. Suppose p(x) ∈ Z[x] is irreducible of degree n with p(ξ) = 0. Then

p(ξ)− p(h/k) = (ξ − h/k)p′(α)

for some α between ξ and h/k by the mean value theorem. The left hand side is a non-
zero rational number (p(ξ) = 0 and p is irreducible so h/k is not a root) with denominator
less than kn so that we get

1

kn
≤
∣∣∣∣ξ − h

k

∣∣∣∣ sup{p′(x) : x ∈ (ξ − 1, ξ + 1)}.

The above result can be improved to

Theorem (Thue-Siegel-Roth). For all ε > 0, there are only finitely many rational solu-
tions to ∣∣∣∣ξ − h

k

∣∣∣∣ < 1

k2+ε

if ξ is algebraic and irrational.

The 2 + ε exponent is the best possible since we have the following

Proposition. If ξ ∈ R is irrational then there are infinitely many rationals p/q such
that

|ξ − p/q| < 1/q2.

Proof. This is an application of the pigeonhole principle. Two of the n + 1 numbers
1, {kξ} (the fractional part of kξ) for 1 ≤ k ≤ n must lie in one of the n subintervals
(i/n, (i+ 1)/n], 0 ≤ i ≤ n− 1 of (0, 1]. Hence there is a p and 1 ≤ q ≤ n such that

|qξ − p| < 1/n, i.e |ξ − p/q| < 1/nq ≤ 1/q2.

Infinitely many of these p/q must be distinct, else |ξ − p/q| takes on a minimum value,
say larger than 1/n for some n, and the above construction gives a contradiction.

Transcendental numbers exist (by cardinality arguments - thanks Cantor!), but let’s
exhibit one explicitly (as Liouville did).

Proposition. ξ =
∑∞

n=0 10−n! is transcendental.

Proof. Let kj = 10j!, hj = 10j!
∑j

n=0 10−n!. Then (hj, kj) = 1 (as hj ≡ 1 mod 10) and∣∣∣∣ξ − hj
kj

∣∣∣∣ =
∞∑

n=j+1

10−n! <
∞∑

n=(j+1)!

10−n

= 10−(j+1)! 1

1− 1/10
=

10

9 · 10j!
(10j!)−j

< Ajk
−j
j ,

where A(j)→ 0 as j →∞ so that ξ is transcendental by the lemma above.



e is transcendental

We now begin the proof that e is transcendental (Hermite, 1873). We have to be able
to simultaneously approximate ex at different values to obtain a contradiction similar to
that given above for the irrationality of e.

For a polynomial f(x), let F (x) =
∑∞

i=0 f
(i)(x). Integrating by parts a bajillion times,

we get

ex
∫ x

0

f(t)e−tdt = F (0)ex − F (x) (the “Hermite identity”).

Consider the specific polynomial

f(x) =
xp−1(x− 1)p · · · · · (x− n)p

(p− 1)!
.

(n will be the degree of the fictitious minimal polynomial for e over Q and p will be a
large prime).

We have the following estimate for 0 ≤ k ≤ n:

|ekF (0)− F (k)| =
∣∣∣∣ek ∫ k

0

f(t)e−tdt

∣∣∣∣
≤ nen sup

t∈[0,n]

{f(t)}

=
np−1(np)n

(p− 1)!

which goes to zero as p → ∞ for a fixed n. [Mildly interesting: this proof requires the
existence of infinitely many primes.] We now show that such an estimate is impossible if
e is algebraic by showing that

∑n
k=1 F (0)ek − F (k) is an integer between 0 and 1.

1. F (0) ∈ Z\pZ for p > n:

We have f(x) = a(x)b(x) where

a(x) =
xp−1

(p− 1)!
, b(x) = (x− 1) · · · · · (x− n)p,

so that

f (N)(x) =
N∑
i=0

a(i)(x)b(N−i)(x)

(
N

i

)
.

Note that a(i)(0) = 0 unless i = p− 1 in which case a(p−1)(0) = 1. Hence

F (0) =
∞∑
N=0

f (N)(0) =
∞∑
N=0

N∑
i=0

a(i)(0)b(N−i)(0)

(
N

i

)
=

∞∑
N=p−1

b(N−(p−1))(0)

(
N

p− 1

)
= b(0) + p(. . . ) = (−1)p

2

n!p + p(. . . ) ∈ Z\pZ (remember that p > n).



2. F (k) ∈ pZ for 1 ≤ k ≤ n:

We have f(x) = c(x)d(x) where

c(x) =
(x− k)p

(p− 1)!
, d(x) =

xp−1(x− 1)p · · · · · (x− n)p

(x− k)p
.

Note that c(i)(k) = 0 unless i = p in which case c(p)(k) = p. Hence

F (k) =
∞∑
N=0

N∑
i=0

c(i)(k)d(N−i)(k)

(
N

i

)
= p

∞∑
N=p

d(N−p)(k)

(
N

p

)
∈ pZ.

Now, if e were algebraic, say
∑n

k=0 cke
k = 0, ck ∈ Z, c0 6= 0, and p > |c0|, then

1 ≤

∣∣∣∣∣
n∑
k=0

ckF (k)

∣∣∣∣∣ (because c0, F (0) ∈ Z\pZ, F (k) ∈ pZ)

=

∣∣∣∣∣
n∑
k=0

ckF (k)−

(
n∑
k=0

cke
k

)
F (0)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

ck
(
F (k)− ekF (0)

)∣∣∣∣∣
≤M

n∑
k=0

|F (k)− ekF (0)| (where M = max
k
{|ck|})

which is less than 1 for p large as shown above. Hence e is transcendental.

What about π?

Here is a proof that π is irrational in the spirit of Hermite.
For a polynomial f(x), let F (x) =

∑∞
n=0(−1)nf (2n)(x) (this mimics sinx in the way

we mimicked ex before). We have

d

dx
(F ′(x) sinx− F (x) cosx) = f(x) sinx,

∫ π

0

f(x) sinxdx = F (0) + F (π).

If π = a/b were rational, consider the polynomial

f(x) =
bn

n!
xn(π − x)n =

1

n!
xn(a− bx)n ∈ Q[x].

We have bounds

0 <

∫ π

0

f(x) sinxdx ≤ bnπ2n

n!

∫ π

0

sinxdx =
2(π2b)n

n!
→ 0 as n→∞.

Note that f (k)(0) = 0 for 0 ≤ k < n as f has a zero of order n at zero. We also have
f (k)(0) ∈ Z for k ≥ n by the following (easy) lemma.



Lemma. For p(x) ∈ Z[x], k! divides all the coefficients of p(k)(x).

Proof. dk

dxk
xn = k!

(
n
k

)
xn−k for k ≤ n and higher derivatives are zero.

Hence f (k)(0) ∈ Z for all k. Finally note that

f(x) = f(π − x), f (k)(x) = (−1)kf (k)(π − x)

so that f (k)(π) = (−1)kf (k)(0) ∈ Z for all k. Therefore F (0) +F (π) ∈ Z, a contradiction,
and π is irrational.

We can prove that π is transcendental using the methods we used for e, although
the details are slightly more tedious. We start with the identity eπi + 1 = 0. If πi were
algebraic (degree n), we would have

0 =
n∏
i=1

(1 + eγi) =
∑

εi∈{0,1}

e
∑

i εiγi = a+
m∑
i=1

eαi

where the γi are the galois conjugates of πi, a = 2n−m are the number of zero exponents
in the first sum (note that a ≥ 1), and the αi are the non-zero exponents in the first sum.

Thinking about symmetric functions for a while (details omitted), we see that

φ(x) =
∏

εi∈{0,1}

(
x−

n∑
i=1

εiγi

)
∈ Q[x].

Divide by xa and clear denominators to get a polynomial

ψ(x) =
m∑
i=0

bix
i ∈ Z[x], bm > 0, b0 6= 0

whose roots are exactly the αi. Furthermore, assume bmαi is an algebraic integer for all
i.

Once again we apply the “Hermite identity,” this time to the polynomial

f(x) =
b

(m−1)p
m

(p− 1)!
xp−1ψp(x) =

bmpm
(p− 1)!

xp−1

m∏
i=1

(x− αi)p.

Plug in x = αi and sum over i to get

−aF (0)−
m∑
i=1

F (αi) =
m∑
i=1

eαi

∫ αi

0

f(t)e−tdt.

Our goal, as before, is to show that the LHS is a non-zero integer but that the RHS can
be made arbitrarily small. We have

F (0) = (−1)mpbmpm

(∏
i

αi

)p

∈ Z\pZ



for large p. We also have
m∑
i=1

F (αi) = pbmpm
∑
i

αp−1
i

∏
j 6=i

(αi − αj)p ∈ pZ

for large p because it is symmetric in αi and the denominator is cleared by bmpm .
We now estimate the integral on the RHS:∣∣∣∣eαi

∫ αi

0

f(t)e−tdt

∣∣∣∣ ≤ (|αi||bm−1
m ||ψ|(|αi|)

)p
/(p− 1)!→ 0

as p→∞.

Generalizations

Theorem (Lindemann-Weierstrass, 1885). If α1, . . . , αk are distinct algebraic numbers,
then eα1 , . . . , eαk are linearly independent over Q.

We also have the solution of Hilbert’s seventh problem

Theorem (Gelfond-Schneider, 1934). For algebraic a 6∈ {0, 1} and irrational algebraic
b, ab is transcendental.

So numbers such as 2
√

2, ii are transcendental.
Another generalization due to Lang (an axiomatization of Schneider’s methods) is

Theorem. Suppose K is a number field, {fi}ni=1 meromorphic functions of order ≤ ρ
such that K({fi}i) has transcendence degree ≥ 2 over K and K[{fi}i] is closed under
differentiation. If {wj}mj=1 are distinct complex numbers such that fi(wj) ∈ K for all i, j
then m ≤ 20ρ[K : Q].

Theorem (Hermite-Lindemann). eα is transcendental for all α ∈ Q\{0}.
Proof. The proof that π is transcendental directly generalizes to this. Or, take the
meromorphic functions in the theorem above to be z, ez and K to be Q(α, eα). Theses
function take values in K for z any integer multiple of α.

Theorem (Schneider). If ℘ is a Weierstrass a function with g2, g3 algebraic, then ℘(α)
is transcendental for all Q\{0}.
Sketch. First the relevant definitions. If Λ ⊆ C is a rank two lattice, define

℘(z; Λ) =
1

z2
+

∑
w∈Λ\{0}

1

(z − w)2
− 1

w2
.

Then ℘ satisfies the algebraic differential equation

℘′2 = 4℘3 − g2℘− g3

where

g2 = 60
∑

w∈Λ\{0}

1

w4
, g3 = 140

∑
w∈Λ\{0}

1

w6
.

Addition formula, etc.?????



A far-reaching generalization of the theorem of Gelfond-Schneider is

Theorem (Baker, 1966). If {αi}ni=1 and {βi}ni=0 are algebraic (and αi 6= 0) of degree at
most d and with heights at most A,B (for {αi}ni=1 and {βi}ni=0 respectively) then

Λ := β0 + β1 logα1 + · · ·+ βn logαn

is either zero or |Λ| > B−C for an effectively computable constant C depending only on
n, d, A, and {logαi}i. [The height of an algebraic number γ is maxi{|ci|} where

∑
i cix

i

is the minimal polynomial of γ over Z.]

For related results and applications, such as the class number one problem for imag-
inary quadratic fields:

Q(
√
−d) with d > 0 has class number one iff d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163},

Baker was awarded a Fields medal in 1970.
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