e is transcendental

Robert Hines

November 6, 2015

e is irrational and transcendental numbers exist

The irrationality of e is straightforward to prove, and has been known since at least Euler (who first called e, "e").

Theorem. e is irrational.

Proof. Let
$$H_n(x) = \sum_{k=0}^n \frac{x^k}{k!}, H_n = H_n(1)$$
. Then

$$e - H_n = \sum_{k=n+1}^\infty \frac{1}{k!}$$

$$= \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots \right)$$

$$< \frac{1}{(n+1)!} \left(1 + \frac{1}{n+1} + \frac{1}{(n+1)^2} + \dots \right)$$

$$= \frac{1}{(n+1)!} \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{(n+1)!} \frac{n+1}{n} = \frac{1}{n} \frac{1}{n!}.$$

If $e = \frac{p}{q}$, then $q!(e - H_q) \in \mathbb{Z}$, but

$$0 < q!(e - H_q) < \frac{1}{q},$$

a contradiction.

[Fun fact: $H_n(x) \in \mathbb{Q}[x]$ is irreducible for all n].

The moral of the proof is that H_n (a rational number) approximates e too well. Consider the following

Lemma (Liouville, 1844). If ξ is a real algebraic number of degree n > 1, then there is a constant A > 0 (depending on ξ) such that

$$\left|\xi - \frac{h}{k}\right| > \frac{A}{k^n}.$$

Proof. Suppose $p(x) \in \mathbb{Z}[x]$ is irreducible of degree n with $p(\xi) = 0$. Then

$$p(\xi) - p(h/k) = (\xi - h/k)p'(\alpha)$$

for some α between ξ and h/k by the mean value theorem. The left hand side is a nonzero rational number ($p(\xi) = 0$ and p is irreducible so h/k is not a root) with denominator less than k^n so that we get

$$\frac{1}{k^n} \le \left| \xi - \frac{h}{k} \right| \sup\{ p'(x) : x \in (\xi - 1, \xi + 1) \}.$$

The above result can be improved to

Theorem (Thue-Siegel-Roth). For all $\epsilon > 0$, there are only finitely many rational solutions to

$$\left|\xi - \frac{h}{k}\right| < \frac{1}{k^{2+\epsilon}}$$

if ξ is algebraic and irrational.

The $2 + \epsilon$ exponent is the best possible since we have the following

Proposition. If $\xi \in \mathbb{R}$ is irrational then there are infinitely many rationals p/q such that

$$|\xi - p/q| < 1/q^2.$$

Proof. This is an application of the pigeonhole principle. Two of the n + 1 numbers $1, \{k\xi\}$ (the fractional part of $k\xi$) for $1 \le k \le n$ must lie in one of the n subintervals $(i/n, (i+1)/n], 0 \le i \le n-1$ of (0, 1]. Hence there is a p and $1 \le q \le n$ such that

$$|q\xi - p| < 1/n$$
, i.e $|\xi - p/q| < 1/nq \le 1/q^2$.

Infinitely many of these p/q must be distinct, else $|\xi - p/q|$ takes on a minimum value, say larger than 1/n for some n, and the above construction gives a contradiction.

Transcendental numbers exist (by cardinality arguments - thanks Cantor!), but let's exhibit one explicitly (as Liouville did).

Proposition. $\xi = \sum_{n=0}^{\infty} 10^{-n!}$ is transcendental.

Proof. Let $k_j = 10^{j!}, h_j = 10^{j!} \sum_{n=0}^{j} 10^{-n!}$. Then $(h_j, k_j) = 1$ (as $h_j \equiv 1 \mod 10$) and

$$\left| \xi - \frac{h_j}{k_j} \right| = \sum_{n=j+1}^{\infty} 10^{-n!} < \sum_{n=(j+1)!}^{\infty} 10^{-n}$$
$$= 10^{-(j+1)!} \frac{1}{1 - 1/10} = \frac{10}{9 \cdot 10^{j!}} (10^{j!})^{-j}$$
$$< A_j k_j^{-j},$$

where $A(j) \to 0$ as $j \to \infty$ so that ξ is transcendental by the lemma above.

e is transcendental

We now begin the proof that e is transcendental (Hermite, 1873). We have to be able to simultaneously approximate e^x at different values to obtain a contradiction similar to that given above for the irrationality of e.

For a polynomial f(x), let $F(x) = \sum_{i=0}^{\infty} f^{(i)}(x)$. Integrating by parts a bajillion times, we get

$$e^x \int_0^x f(t)e^{-t}dt = F(0)e^x - F(x)$$
 (the "Hermite identity").

Consider the specific polynomial

$$f(x) = \frac{x^{p-1}(x-1)^p \cdots (x-n)^p}{(p-1)!}.$$

(*n* will be the degree of the fictitious minimal polynomial for *e* over \mathbb{Q} and *p* will be a large prime).

We have the following estimate for $0 \le k \le n$:

$$|e^{k}F(0) - F(k)| = \left| e^{k} \int_{0}^{k} f(t)e^{-t}dt \right|$$

$$\leq ne^{n} \sup_{t \in [0,n]} \{f(t)\}$$

$$= \frac{n^{p-1}(n^{p})^{n}}{(p-1)!}$$

which goes to zero as $p \to \infty$ for a fixed *n*. [Mildly interesting: this proof requires the existence of infinitely many primes.] We now show that such an estimate is impossible if *e* is algebraic by showing that $\sum_{k=1}^{n} F(0)e^k - F(k)$ is an integer between 0 and 1.

1. $F(0) \in \mathbb{Z} \setminus p\mathbb{Z}$ for p > n:

We have f(x) = a(x)b(x) where

$$a(x) = \frac{x^{p-1}}{(p-1)!}, b(x) = (x-1)\cdots(x-n)^p,$$

so that

$$f^{(N)}(x) = \sum_{i=0}^{N} a^{(i)}(x) b^{(N-i)}(x) \binom{N}{i}.$$

Note that $a^{(i)}(0) = 0$ unless i = p - 1 in which case $a^{(p-1)}(0) = 1$. Hence

$$F(0) = \sum_{N=0}^{\infty} f^{(N)}(0) = \sum_{N=0}^{\infty} \sum_{i=0}^{N} a^{(i)}(0) b^{(N-i)}(0) \binom{N}{i}$$
$$= \sum_{N=p-1}^{\infty} b^{(N-(p-1))}(0) \binom{N}{p-1}$$
$$= b(0) + p(\dots) = (-1)^{p^2} n!^p + p(\dots) \in \mathbb{Z} \setminus p\mathbb{Z} \text{ (remember that } p > n)$$

2. $F(k) \in p\mathbb{Z}$ for $1 \le k \le n$:

We have f(x) = c(x)d(x) where

$$c(x) = \frac{(x-k)^p}{(p-1)!}, d(x) = \frac{x^{p-1}(x-1)^p \cdots (x-n)^p}{(x-k)^p}$$

Note that $c^{(i)}(k) = 0$ unless i = p in which case $c^{(p)}(k) = p$. Hence

$$F(k) = \sum_{N=0}^{\infty} \sum_{i=0}^{N} c^{(i)}(k) d^{(N-i)}(k) {N \choose i}$$
$$= p \sum_{N=p}^{\infty} d^{(N-p)}(k) {N \choose p} \in p\mathbb{Z}.$$

Now, if e were algebraic, say $\sum_{k=0}^{n} c_k e^k = 0, c_k \in \mathbb{Z}, c_0 \neq 0$, and $p > |c_0|$, then

$$1 \leq \left| \sum_{k=0}^{n} c_k F(k) \right| \text{ (because } c_0, F(0) \in \mathbb{Z} \setminus p\mathbb{Z}, F(k) \in p\mathbb{Z} \text{)}$$
$$= \left| \sum_{k=0}^{n} c_k F(k) - \left(\sum_{k=0}^{n} c_k e^k \right) F(0) \right|$$
$$= \left| \sum_{k=0}^{n} c_k \left(F(k) - e^k F(0) \right) \right|$$
$$\leq M \sum_{k=0}^{n} |F(k) - e^k F(0)| \text{ (where } M = \max_k \{ |c_k| \} \text{)}$$

which is less than 1 for p large as shown above. Hence e is transcendental.

What about π ?

Here is a proof that π is irrational in the spirit of Hermite.

For a polynomial f(x), let $F(x) = \sum_{n=0}^{\infty} (-1)^n f^{(2n)}(x)$ (this mimics $\sin x$ in the way we mimicked e^x before). We have

$$\frac{d}{dx}(F'(x)\sin x - F(x)\cos x) = f(x)\sin x, \int_0^{\pi} f(x)\sin x \, dx = F(0) + F(\pi).$$

If $\pi = a/b$ were rational, consider the polynomial

$$f(x) = \frac{b^n}{n!} x^n (\pi - x)^n = \frac{1}{n!} x^n (a - bx)^n \in \mathbb{Q}[x].$$

We have bounds

$$0 < \int_0^{\pi} f(x) \sin x \, dx \le \frac{b^n \pi^{2n}}{n!} \int_0^{\pi} \sin x \, dx = \frac{2(\pi^2 b)^n}{n!} \to 0 \text{ as } n \to \infty.$$

Note that $f^{(k)}(0) = 0$ for $0 \le k < n$ as f has a zero of order n at zero. We also have $f^{(k)}(0) \in \mathbb{Z}$ for $k \ge n$ by the following (easy) lemma.

Lemma. For $p(x) \in \mathbb{Z}[x]$, k! divides all the coefficients of $p^{(k)}(x)$.

Proof. $\frac{d^k}{dx^k}x^n = k! \binom{n}{k}x^{n-k}$ for $k \leq n$ and higher derivatives are zero.

Hence $f^{(k)}(0) \in \mathbb{Z}$ for all k. Finally note that

$$f(x) = f(\pi - x), f^{(k)}(x) = (-1)^k f^{(k)}(\pi - x)$$

so that $f^{(k)}(\pi) = (-1)^k f^{(k)}(0) \in \mathbb{Z}$ for all k. Therefore $F(0) + F(\pi) \in \mathbb{Z}$, a contradiction, and π is irrational.

We can prove that π is transcendental using the methods we used for e, although the details are slightly more tedious. We start with the identity $e^{\pi i} + 1 = 0$. If πi were algebraic (degree n), we would have

$$0 = \prod_{i=1}^{n} (1 + e^{\gamma_i}) = \sum_{\epsilon_i \in \{0,1\}} e^{\sum_i \epsilon_i \gamma_i} = a + \sum_{i=1}^{m} e^{\alpha_i}$$

where the γ_i are the galois conjugates of πi , $a = 2^n - m$ are the number of zero exponents in the first sum (note that $a \ge 1$), and the α_i are the non-zero exponents in the first sum.

Thinking about symmetric functions for a while (details omitted), we see that

$$\phi(x) = \prod_{\epsilon_i \in \{0,1\}} \left(x - \sum_{i=1}^n \epsilon_i \gamma_i \right) \in \mathbb{Q}[x].$$

Divide by x^a and clear denominators to get a polynomial

$$\psi(x) = \sum_{i=0}^{m} b_i x^i \in \mathbb{Z}[x], b_m > 0, b_0 \neq 0$$

whose roots are exactly the α_i . Furthermore, assume $b_m \alpha_i$ is an algebraic integer for all i.

Once again we apply the "Hermite identity," this time to the polynomial

$$f(x) = \frac{b_m^{(m-1)p}}{(p-1)!} x^{p-1} \psi^p(x) = \frac{b_m^{mp}}{(p-1)!} x^{p-1} \prod_{i=1}^m (x - \alpha_i)^p.$$

Plug in $x = \alpha_i$ and sum over *i* to get

$$-aF(0) - \sum_{i=1}^{m} F(\alpha_i) = \sum_{i=1}^{m} e^{\alpha_i} \int_0^{\alpha_i} f(t) e^{-t} dt.$$

Our goal, as before, is to show that the LHS is a non-zero integer but that the RHS can be made arbitrarily small. We have

$$F(0) = (-1)^{mp} b_m^{mp} \left(\prod_i \alpha_i\right)^p \in \mathbb{Z} \backslash p\mathbb{Z}$$

for large p. We also have

$$\sum_{i=1}^{m} F(\alpha_i) = p b_m^{mp} \sum_i \alpha_i^{p-1} \prod_{j \neq i} (\alpha_i - \alpha_j)^p \in p\mathbb{Z}$$

for large p because it is symmetric in α_i and the denominator is cleared by b_m^{mp} .

We now estimate the integral on the RHS:

$$\left| e^{\alpha_i} \int_0^{\alpha_i} f(t) e^{-t} dt \right| \le \left(|\alpha_i| |b_m^{m-1}| |\psi|(|\alpha_i|) \right)^p / (p-1)! \to 0$$

as $p \to \infty$.

Generalizations

Theorem (Lindemann-Weierstrass, 1885). If $\alpha_1, \ldots, \alpha_k$ are distinct algebraic numbers, then $e^{\alpha_1}, \ldots, e^{\alpha_k}$ are linearly independent over $\overline{\mathbb{Q}}$.

We also have the solution of Hilbert's seventh problem

Theorem (Gelfond-Schneider, 1934). For algebraic $a \notin \{0,1\}$ and irrational algebraic b, a^b is transcendental.

So numbers such as $2^{\sqrt{2}}$, i^i are transcendental.

Another generalization due to Lang (an axiomatization of Schneider's methods) is

Theorem. Suppose K is a number field, $\{f_i\}_{i=1}^n$ meromorphic functions of order $\leq \rho$ such that $K(\{f_i\}_i)$ has transcendence degree ≥ 2 over K and $K[\{f_i\}_i]$ is closed under differentiation. If $\{w_j\}_{j=1}^m$ are distinct complex numbers such that $f_i(w_j) \in K$ for all i, j then $m \leq 20\rho[K:\mathbb{Q}]$.

Theorem (Hermite-Lindemann). e^{α} is transcendental for all $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$.

Proof. The proof that π is transcendental directly generalizes to this. Or, take the meromorphic functions in the theorem above to be z, e^z and K to be $\mathbb{Q}(\alpha, e^{\alpha})$. Theses function take values in K for z any integer multiple of α .

Theorem (Schneider). If \wp is a Weierstrass a function with g_2, g_3 algebraic, then $\wp(\alpha)$ is transcendental for all $\overline{\mathbb{Q}} \setminus \{0\}$.

Sketch. First the relevant definitions. If $\Lambda \subseteq \mathbb{C}$ is a rank two lattice, define

$$\wp(z;\Lambda) = \frac{1}{z^2} + \sum_{w \in \Lambda \setminus \{0\}} \frac{1}{(z-w)^2} - \frac{1}{w^2}.$$

Then \wp satisfies the algebraic differential equation

$$\wp'^2 = 4\wp^3 - g_2\wp - g_3$$

where

$$g_2 = 60 \sum_{w \in \Lambda \setminus \{0\}} \frac{1}{w^4}, g_3 = 140 \sum_{w \in \Lambda \setminus \{0\}} \frac{1}{w^6}$$

Addition formula, etc.????

A far-reaching generalization of the theorem of Gelfond-Schneider is

Theorem (Baker, 1966). If $\{\alpha_i\}_{i=1}^n$ and $\{\beta_i\}_{i=0}^n$ are algebraic (and $\alpha_i \neq 0$) of degree at most d and with heights at most A, B (for $\{\alpha_i\}_{i=1}^n$ and $\{\beta_i\}_{i=0}^n$ respectively) then

 $\Lambda := \beta_0 + \beta_1 \log \alpha_1 + \dots + \beta_n \log \alpha_n$

is either zero or $|\Lambda| > B^{-C}$ for an effectively computable constant C depending only on n, d, A, and $\{\log \alpha_i\}_i$. [The height of an algebraic number γ is $\max_i\{|c_i|\}$ where $\sum_i c_i x^i$ is the minimal polynomial of γ over \mathbb{Z} .]

For related results and applications, such as the class number one problem for imaginary quadratic fields:

 $\mathbb{Q}(\sqrt{-d})$ with d > 0 has class number one iff $d \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\},$

Baker was awarded a Fields medal in 1970.

References

- [1] Baker, Alan, Transcendental Number Theory
- [2] Niven, Ivan, Irrational Numbers
- [3] http://math.stanford.edu/~ksound/TransNotes.pdf