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ABSTRACT 

Knowledge of the carbon emissions elasticities of income and population is important both for 

climate change policy/negotiations and for generating projections of carbon emissions. However, 

previous estimations of these elasticities using the well-known STIRPAT framework have 

produced such wide-ranging estimates that they add little insight. This paper presents estimates 

of the STIRPAT model that address that shortcoming, as well as the issues of cross-sectional 

dependence, heterogeneity, and the nonlinear transformation of a potentially integrated variable, 

i.e., income. Among the findings are that the carbon emissions elasticity of income is highly 

robust; and that the income elasticity for OECD countries is less than one, and likely less than 

the non-OECD country income elasticity, which is not significantly different from one. By 

contrast, the carbon emissions elasticity of population is not robust; however, that elasticity is 

likely not statistically significantly different from one for either OECD or non-OECD countries. 

Lastly, the heterogeneous estimators were exploited to reject a Carbon Kuznets Curve: while the 

country-specific income elasticities declined over observed average income-levels, the trend line 

had a slight U-shape.   

 

Keywords: Carbon Kuznets Curves; Kaya identity; population and environment; nonstationary 

panels; cross sectional dependence; nonlinearities in environment and development. 
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1. Introduction and background 

Improved understanding of the carbon emissions elasticities of income and population is 

important both for climate change policy/negotiations and for generating projections of 

emissions. Indeed, the Kaya Identity—which treats total carbon emissions as a product of 

population GDP per capita, energy use per unit of GDP, and carbon emissions per unit of energy 

consumed—plays a key role in the Intergovernmental Panel on Climate Change estimates of 

future carbon emissions (Kaya 1990). This paper uses the Kaya/STIRPAT framework to 

determine what are the carbon emissions elasticities for income and population and whether 

those elasticities differ across development/income or population levels. The paper considers two 

econometric estimation methods—the Pesaran (2006) common correlated effects mean group 

estimator (CMG) and the Eberhardt and Teal (2010) augmented mean group estimator (AMG)—

that address important (but often neglected) time-series cross-section (TSCS) issues: 

nonstationarity, cross-sectional dependence, and heterogeneity. Furthermore, the paper addresses 

an additional important empirical issue particular to environment-development research—the 

nonlinear transformation of potentially integrated variables (see Wagner 2008 and Stern 2010 for 

previous treatments). 

In addition to providing a critique of STIRPAT (Stochastic Impacts by Regression on 

Population, Affluence, and Technology) modeling, this paper bridges the STIRPAT literature 

with other socio-economic models of environmental impact that place the dependent variable in 

per capita terms—e.g., Environmental Kuznets Curve (EKC). That bridge is established by 

demonstrating that best practice suggests assuming the population elasticity is unity since 

estimations of the carbon emissions elasticity of population are: (i) not robust, (ii) typically not 

statistically significantly different from one, and (iii) do not vary systematically according to 
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either income or population size. By contrast, the estimations reported here demonstrate that the 

carbon emissions elasticity of income are: (i) highly robust, (ii) significantly less than one (but 

positive) for OECD countries, and (iii) significantly larger for non-OECD countries than for 

OECD countries (but not different from significantly one for non-OECD countries). Also, the 

heterogeneous nature of the estimators considered was exploited to show that those income 

elasticities fall with average income but do not become negative.  

Much discussion and research on national differences in the influence of population and 

of development/consumption (typically represented by GDP per capita) on key environmental 

indicators like carbon emissions are based on: (i) the IPAT equation (introduced by Ehrlich and 

Holdren 1971 and Commoner et al. 1971)—which decomposed aggregate environmental impacts 

(I) into contributions from population growth (P), growth in per capita income or consumption 

(as measures of affluence, A), and changes in technology (T); and (ii) its econometric progeny, 

coined STIRPAT by Dietz and Rosa (1997). In general, the STIRPAT model is: 

     it

d

it

c

it

b

itit eTAaPI =       (1) 

where the subscript i denotes cross-sectional units (e.g., countries), t denotes time period, the 

constant a and exponents b, c, and d are to be estimated, and e is the residual error term.  

Since Equation 1 is linear in log form, the estimated exponents can be thought of as 

elasticities (i.e., they reflect how much a percentage change in an independent variable causes a 

percentage change in the dependent variable.) Also, the T term is often treated like an intensity of 

use variable and sometimes modeled as a combination of log-linear factors. Furthermore, 

Equation 1 is no longer an accounting identity whose right and left side dimensions must 

balance, but a potentially flexible framework for testing hypotheses—such as (i) whether 

elasticities differ across development levels; (ii) whether population or GDP has a greater 
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marginal impact on the environment; and (iii) whether population’s elasticity is different from 

unity, i.e., whether population or impact/emissions grow faster.  

That last hypothesis is particularly important to test since, if population’s elasticity is one, 

then population as an independent variable could be removed (from Equation 1) via division. 

Hence, the dependent variable would be in per capita terms, and the STIRPAT model would 

collapse into a framework similar to those used in nearly all other socio-economic investigations 

of emissions/energy consumption, e.g., the EKC literature (Dinda 2004 and Stern 2004 provided 

somewhat early reviews of this vast literature). The EKC literature seeks to determine whether 

there is an inverted-U relationship between GDP per capita and emissions or other environmental 

impact measure per capita. When the dependent variable is carbon emissions per capita, these 

studies are sometimes referred to as estimating Carbon Kuznets Curves or CKC (Iwata et al. 

2011 and 2012 are recent examples). The EKC/CKC literature posits that pollution first rises 

with income and then falls after some threshold level of income/development is reached (Liddle 

2013a presents a detailed review/explanation of the differences between the STIRPAT model 

and other socio-economic models/literatures like the EKC and energy-GDP causality). 

Empirical studies of the EKC/CKC typically take the following form:
 
 

ln��/���� = ��+ ��+ ��ln�����+ ��(ln���)��
� + ��ln	(�)��+ ���  (2) 

where α  and γ  are the cross-sectional and time fixed effects, respectively, and Z is a vector of 

other drivers that is sometimes considered—similar to T in Equation 1. Hence, the primary 

difference between the STIRPAT and EKC/CKC frameworks (i.e., between Equations 1 and 2) 

is that the EKC effectively assumes that population’s elasticity is unity and correspondingly 

converts the dependent variable into per capita terms. An EKC/CKC between emissions per 

capita and income is said to exist if the coefficient �� is statistically significant and positive, 
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while the coefficient �� is statistically significant and negative. (Liddle 2004 and Richmand and 

Kaufmann 2006 argued that if the corresponding turning point occurs outside the sample range, 

the estimated relationship is more like a semi-log or log-log one than an inverted-U; however, 

many EKC analyses do not even report implied turning points, and so it is not clear how widely 

accepted this interpretation is.) 

More recently, a literature has emerged that attempts to bridge the CKC and energy-GDP 

causality literatures by adding energy consumption as an explanatory variable to the typical CKC 

model (e.g., Apergis and Payne 2009 and 2010; and Lean and Smyth 2010). Itkonen (2012) 

critiqued this new literature and called its model emissions-energy-output (EEO). Itkonen 

described the EEO model (for the single country case) as: 

�� = �+ ���+ ���+ ���
� + ��     (3) 

where C is carbon dioxide emissions per capita, E is total energy use per capita, Y is real GDP 

per capita, and u is an error term. 

In addition to addressing nonstationarity, cross-sectional dependence, and heterogeneity, 

the current paper provides a bridge between the STIRPAT and EKC/CKC/EEO literatures. That 

bridge is constructed by determining whether population’s elasticity should be considered to be 

different from unity, and by exploiting heterogeneous estimators to address possible 

nonlinearities—thus, avoiding the statistical pitfall of nonlinear transformations of nonstationary 

variables. Further, the lessons learned here about econometric estimation methods should be 

useful to other modelers—11 of the 17 STIRPAT studies listed in Table 1 were published in 

2010 or later. (Yet, there are many more, recent studies applying the STIRPAT framework that 

are not listed in Table 1 because they considered different dependent variables, were not cross-

national, and/or analyzed city-based/regional data rather than national-level data.)  Furthermore, 
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the EKC/CKC/EEO models continue to be popular—Itkonen (2012) cited 16 EEO studies, of 

which only two were published prior to 2009 (and, for example, Baek and Kim 2013; Saboori 

and Sulaiman 2013 used the EEO model but were published after Itkonen). 

2. Brief literature review and important empirical issues 

The cross-national, inter-temporal studies applying the STIRPAT formulation to carbon 

emissions typically found that both population and income/affluence are significant drivers (see 

Table 1). Furthermore, most studies have found that population has a greater environmental 

impact (i.e., elasticity) than affluence (e.g., Dietz and Rosa 1997; Shi 2003; Cole and Neumayer 

2004; Martinez-Zarzoso et al. 2007; Liddle and Lung 2010). However, these STIRPAT analyses 

have produced a wide range of income and population elasticity estimates—from 0.15 to 2.50 for 

income and from 0.69 to 2.75 (with several statistically insignificant findings) for population. 

Moreover, in answering the question, “is population’s elasticity significantly different from one,” 

those studies have produced highly inconsistent results. For example, Cole and Neumayer (2004) 

found population’s elasticity to be statistically indistinguishable from unity (thus, a 1% increase 

in population caused an approximate 1% increase in emissions). By contrast Shi (2003) 

estimated a particularly high elasticity for population—between 1.4 and 1.6 for all countries 

samples; when Shi separated countries by income groups, the elasticity for high income countries 

was 0.8, whereas the elasticity for middle and low income countries ranged from 1.4 to 2.0. 

Similarly, Martinez-Zarzoso et al. (2007) estimated a statistically insignificant population 

elasticity for old EU members, but an elasticity of 2.7 for recent EU accession countries. Table 1 

suggests several reasons for this substantial variation: different datasets, different additional 

variables, and, perhaps most important, whether and how nonstationarity and heterogeneity were 

addressed.  
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Table 1 

2.1 Stationarity  

Most variables used in STIRPAT analyses are stock (population) or stock-related 

variables (GDP, emissions, and energy consumption, which are influenced by stocks like 

population and physical capital); as such, those variables are highly trending and quite possibly 

nonstationary—i.e., their mean, variance, and/or covariance with other variables changes over 

time. For example, in the energy economics literature a number of researchers have found 

variables like GDP per capita, energy consumption, and carbon emissions to be nonstationary in 

levels but stationary in first differences for panels of developed and developing countries (e.g., 

Apergis and Payne 2009 and 2010; Lean and Smyth 2010; and Liddle 2013b). 

When ordinary least squares (OLS) regressions are performed on time-series (or on time-

series cross-section) variables that are not stationary, then measures like R-squared and t-

statistics are unreliable, and there is a serious risk of the estimated relationships being spurious 

(Kao 1999; Beck 2008). Yet, several STIRPAT studies that employ annual times-series cross-

section data have been unconcerned with the stationarity issue (see Table 1). (Indeed, Cole and 

Neumayer 2004 hypothesized that the much higher elasticity estimated in Shi 2003 may be 

spurious because of that paper’s use of untreated, nonstationary data.) Most of the STIRPAT 

studies that have addressed stationarity in their data have done so via first differences (e.g., Cole 

and Neumayer 2004; and Martinez-Zarzoso et al. 2007). Although first-differencing often 

transforms nonstationary variables into stationary ones, first-differencing means that the model is 

a short-run (rather than a long-run) model, and that the estimated coefficients reflect how 

percentage changes in the growth rate of independent variables relate to percentage changes in 

the growth rate of the dependent variable. By contrast, the recent CKC literature (e.g., Iwata et 
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al. 2011 and 2012) and the broader energy-GDP literature (which includes both EEO and energy-

GDP causality analyses) have estimated long run elasticities using methods that address 

nonstationarity.  

2.2 Cross-sectional dependence 

Recently, the TSCS econometric theory literature has turned its attention toward testing 

for and correcting cross-sectional dependence. For variables like GDP per capita and carbon 

emissions, cross-sectional dependence is expected because of, for example, regional and 

macroeconomic linkages that manifest themselves through (i) common global shocks, like the oil 

crises in the 1970s or the global financial crisis from 2007 onwards; (ii) shared institutions like 

the World Trade Organization, International Monetary Fund, or Kyoto Protocol; or (iii) local 

spillover effects between countries or regions. These shocks or institutions can be thought of as 

omitted variables, and are likely to be correlated with the regressors (Sarafidis and Wansbeek 

2012). When the errors of panel regressions are cross-sectionally correlated, standard estimation 

methods can produce inconsistent parameter estimates and incorrect inferences (Kapetanios et al. 

2011). Yet, Sadorsky (2014) is the only other STIRPAT analysis that employs methods to 

estimate long-run coefficients that are demonstrated to be robust to cross-sectional correlation, 

and perhaps only Wagner (2008), Stern (2010), and Mazzanti and Musolesi (2013) have 

performed such estimations in the panel EKC/CKC literature. Indeed, even the broader energy-

GDP literature typically has not estimated panel elasticities robust to cross-sectional correlation; 

known exceptions are Belke et al. (2011), Liddle (2013b), Sadorsky (2013), and Liddle and Lung 

(2013). 
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2.3 Heterogeneity and nonlinearities 

Heterogeneity, when considered, is typically addressed by splitting the panel along 

income lines (e.g., Poumanyvong and Kaneko 2010); indeed, nearly all STIRPAT studies have 

employed pooled estimators that otherwise assume the population-environment (or STIRPAT) 

relationship is the same for each country analyzed. By contrast, the estimators used in Liddle 

(2011 and 2013a) allow for a high degree of heterogeneity in the panel(s); hence, besides 

producing consistent point estimates of the panel sample means, those estimators provide 

country-specific estimates of all parameters accompanied by efficient standard normal errors. 

Indeed, Liddle (2011) demonstrated a substantial variation in individual STIRPAT elasticity 

estimations among OECD countries. And if one mistakenly assumes that the parameters are 

homogeneous (when the true coefficients of a dynamic panel in fact are heterogeneous), then all 

of the parameter estimates of the panel will be inconsistent (Pesaran and Smith 1995). The recent 

CKC and EEO literatures are mixed regarding the use of long run heterogeneous estimators; e.g., 

Apergis and Payne (2009 and 2010) and Lean and Smyth (2010) allowed for heterogeneity, 

while Iwata et al. (2011 and 2012) did not. 

The EKC/CKC literature has hypothesized that the emissions-income relationship may 

vary across income/development levels; similarly, the environmental/emissions impact of 

population could change with either development (income) level or population size. That 

question of nonlinear relationships often is addressed by including a squared term in regressions 

and testing whether the coefficient for that squared term is negative and statistically significant. 

However, if the variables of interest (e.g., GDP per capita, population) are nonstationary or I(1) 

variables—as previous studies reported above as well as the tests reported below indicate they 

likely are—then regressions involving nonlinear transformations of such integrated (I(1)) 
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variables could be spurious, and their significance tests invalid (Bradford et al. 2005). (A 

variable is said to be integrated of order d, written I(d), if it must be differenced d times to be 

made stationary. Thus, a stationary variable is integrated of order zero, i.e., I(0), and a variable 

that must be differenced once to become stationary is integrated of order one or I(1).) 

Wagner (2008) further argued that all previous EKC analyses that used panel data failed 

to account for both cross-sectional dependence and the nonlinear transformation of integrated 

GDP per capita. Relatedly, Itkonen (2012) argued that the nonlinearity of the CKC model 

(irrespective of order of integration issues) is incompatible with the vector autoregression (VAR) 

models used in the EEO literature; and hence, VAR models with such transformed regressors 

produce unreliable estimates.   

Also, that polynomial model/regression does not allow for the possibility that elasticities 

are significantly different across development levels but still positive. Liddle (2013a) motivated 

the use of income-based panels to avoid this nonlinear transformation of a nonstationary variable 

while determining whether income effects differed across development/income levels. As will be 

discussed further below, we will exploit the heterogeneous estimators to determine whether GDP 

per capita’s or population’s impact is nonlinear. 

3. Model, data, and methods   

 In addition to the usual independent variables of population and income/affluence, we 

consider two technology or intensity-type variables that are variations on two variables from the 

Kaya Identity: the carbon intensity of energy and the energy intensity of GDP. As a proxy for the 

carbon intensity of energy, we consider the share of primary energy consumption from non-fossil 

fuels (i.e., geothermal, nuclear, hydro, and solar/wind), which was used in Liddle and Lung 
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(2010). Rather than include the aggregate energy-GDP ratio (or energy intensity), we consider, 

as did Liddle and Lung (2010), a measure of industrial energy intensity.  

National, aggregate carbon emissions are calculated from national, aggregate energy 

consumption; thus, for countries with carbon intensive energy sources, aggregate carbon 

emissions and aggregate energy intensity run the risk of being highly correlated by construction, 

and thus, inappropriate for regression analysis. By contrast, this measure of industrial energy 

intensity—constructed as industrial energy consumption (from the International Energy Agency) 

divided by industrial output (in GDP terms)—is not highly correlated with national carbon 

emissions (see Table 2, which shows such correlations). In addition, industrial energy intensity 

measures both the size of industrial activity and the composition of such activity (i.e., the 

presence of particularly energy intensive sectors like iron and steel and aluminum smelting); 

thus, it is preferable to measures of economic structure, like manufacturing’s or industry’s share 

of GDP. Industry is a diverse sector with respect to energy intensity, as it ranges from iron and 

steel and chemicals to textiles and the manufacturing of computing, medical, precision, and 

optical instruments. Some of those more technology-intensive manufacturing sectors may be less 

energy intense than some service sectors like transport, hospitality, and hospitals. Also, as Liddle 

and Lung (2010) argued, just because the share of economic activity from manufacturing or 

industry has declined does not mean the level of such activity has fallen; and it is the level of 

activity that should influence the level of aggregate emissions.   

Industrial energy intensity (IEI) and the share of primary energy consumption from non-

fossil fuels (Sh nff) are drawn from the International Energy Agency (IEA). Population (P), 

carbon emissions (I), and real GDP per capita (A, which is converted to USD via purchasing 

power parities) are also from the IEA. Thus, the (unbalanced) dataset consists of observations 
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over 1971-2011 from 26 OECD countries and 54 non-OECD countries. Every country with data 

beginning in at least 1985 was included (variables relating to industry output and industry energy 

consumption are what most restricted dataset coverage), and, according to World Bank data, the 

included countries accounted for 86% and 91% of 2011 world population and GDP, respectively, 

and 80% of 2010 world carbon dioxide emissions. (Appendix A lists the countries considered.) 

Summary statistics and correlations are displayed in Table 2.  

Table 2 

Table 3 displays the results of the Pesaran (2004) CD test, which employs the correlation 

coefficients between the time-series for each panel member. The null hypothesis of cross-

sectional independence is rejected for each variable and for both panels; moreover, several of the 

absolute value mean correlation coefficients are very high. The Pesaran (2007) panel unit root 

test (CIPS) allows for cross-sectional dependence to be caused by a single (unobserved) common 

factor, and that test is valid for both unbalanced panels and panels in which the cross-sectional 

and time dimensions are of the same order of magnitude; the results of that test suggest that 

carbon emissions, affluence/income, industrial energy intensity, and population are I(1). (Unit 

root test results are discussed in Appendix B and shown in accompanying tables.) 

Table 3 

Two OLS-based, heterogeneous or mean group type estimators are considered; they first 

estimate each group/cross-section specific regression and then average the estimated coefficients 

across the groups/cross-sections (standard errors are constructed nonparametrically as described 

in Pesaran and Smith 1995). Hence, the equation analyzed is: 

ititiitiitiitiiit ShnfffIEIeAdPcI εα +++++= lnlnlnlnln     (4) 
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where subscripts it denote the ith cross-section and tth time period. Again, the slope coefficients 

(ci, di, ei, and di) are heterogeneous, and the constant α represents country-specific effects. 

Both mean group estimators were specifically designed to address both stationarity and 

cross-sectional dependence/correlation in TSCS models: the Pesaran (2006) common correlated 

effects mean group estimator (CMG), and augmented mean group (AMG) estimator by 

Eberhardt and Teal (2010). The CMG estimator accounts for the presence of unobserved 

common factors by including in the regression cross-sectional averages of the dependent and 

independent variables. The AMG estimator accounts for cross-sectional dependence by including 

in the regression a common dynamic process—which is extracted from year dummy coefficients 

of a pooled regression in first differences. Both the CMG and AMG estimators are robust to 

nonstationary variables, whether cointegrated or not (Eberhardt and Teal 2010); thus, arguably, 

they do not require the pre-testing (neither to determine the existence of cointegration nor to 

confirm that all variables are of the same order of integration) that other heterogeneous, 

nonstationary panel estimators like Fully Modified OLS and Dynamic OLS require. Also, both 

the CMG and AMG estimators are robust to serial correlation (Pesaran 2006; Eberhardt and Teal 

2010, respectively); and CMG-type estimators are robust to structural breaks (Kapetanios et al. 

2011).  

For diagnostics we run the Pesaran (2004) CD test on the residuals and report the mean 

absolute correlation coefficient to determine/measure the extent of cross-sectional dependence, 

and the Pesaran (2007) CIPS test to demonstrate that the residuals are I(0). Appendix Table C.1 

displays elasticity results (and diagnostics) from several other popular TSCS estimators. The 

diagnostic results displayed in Table C.1 suggest that the CMG and AMG estimators are 

preferred (over the estimators in Table C.1) for addressing the statistical issues of concern here. 
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(For discussion of several of the estimators in Appendix C and their results see the working 

paper version, Liddle 2012.) Lastly, the CMG and AMG estimators allow the inclusion of 

individual, country-specific time trends. The decision on whether to include such trends was 

based on two factors: (i) the share of cross-sections for which such trends were statistically 

significant at the 5% level; and (ii) whether the inclusion of such trends substantially improved 

the panel cross-sectional dependence diagnostics. However, the full regression results (each 

estimation with and without individual time trends) are contained in a supplemental file.  

4. Results and discussion 

 Table 4 displays the regression results from the two heterogeneous panel estimators 

(CMG and AMG) for an all countries panel and with the sample divided between the 26 OECD 

countries and the 54 non-OECD countries. For all three sets of regressions all the coefficients 

have the expected signs and are statistically significant. In addition, the diagnostics are good: the 

residuals always are stationary, and either cross-sectional independence in the residuals cannot 

be rejected or cross-sectional dependence is mitigated (small mean correlation coefficients).  

The all countries panel results suggest that population’s elasticity may be significantly 

larger than that of income’s and significantly greater than unity. Yet, dividing the sample into 

two panels may be justified since, in comparing the confidence intervals for the two panels 

(OECD vs. non-OECD countries), the income elasticity for carbon emissions, when estimated 

via CMG, is greater for non-OECD countries than for OECD countries—evidence of an income 

saturation effect. (For the other three variables, the elasticities are not statistically significantly 

different between the two development groups.)  
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Table 4 

For OECD countries, the elasticity for income is significantly less than one, whereas, the 

elasticity for population is not different from one at the 5% level of statistical significance. For 

non-OECD countries, the long-run elasticity for income is not significantly different from one 

for the CMG estimator. The elasticity for population is, as for the all countries panel, greater than 

one on average; yet, only for the AMG estimator is the elasticity for population statistically 

significantly greater than one or possibly statistically significantly greater than the elasticity for 

income.  

4.1 Sensitivity/robustness over time 

 To test whether the elasticities for affluence and population are robust over time, the two 

estimators (CMG and AMG) are performed on 12 different time spans for both of the panels 

(OECD and non-OECD countries)—a total of 48 regressions (see Appendix D for the time spans 

considered). To avoid the problem of the panels differing substantially across time spans, only 

countries with data beginning in 1971 were considered. The elasticity estimations for income and 

population from those 48 panel regressions are displayed in Appendix D; we summarize those 

results here. The panel elasticities for affluence were highly robust: the average panel coefficient 

(from the different time-span regressions) was similar to that shown in Table 4; the coefficients 

were always statistically significant; and for the OECD panel, the affluence coefficient was 

statistically different (smaller) than unity in all but three of the 24 regressions—by contrast, for 

non-OECD countries, the coefficient was different from unity in only six of 24 regressions. 

 On the other hand, the population elasticity was not robust. For the CMG estimator (and 

both the OECD and non-OECD panels), the population elasticity was statistically significant in 

only four of 24 regressions. For the 24 regressions run with the AMG estimator, the population 



16 

 

elasticity was statistically significant in 21 of them; however, it was never statistically different 

from unity for the OECD panel and was only statistically significantly different from unity 

(larger) in three of 12 regressions for the non-OECD panel. (The sensitivity analysis—displayed 

in Appendix D—revealed no evidence that the size, significance, or sign of the population 

elasticity may have changed over-time, e.g., from 1970-1990 to 1990-2006.)  

4.2 Nonlinearities in population and income elasticities 

In addition to the possibility that the income and population elasticities could be different 

at different levels of development (i.e., in OECD vs. non-OECD countries), these elasticities 

could change as the level of income or population changes. Thus, we consider whether the 

individual country income/population elasticity estimates vary according to the level of 

income/population by plotting those elasticity estimates against the individual country average 

income/population for the whole sample period (rather than by including in the regression 

equation nonlinear transformations of these I(1) variables).  

4.2.1 Nonlinearities in population elasticities 

Figure 1 shows the country-specific population elasticities (from the AMG estimator) 

plotted against the individual country average GDP per capita for the sample period (for all 

countries). (The results from the CMG estimator were essentially the same.) Here, there appears 

no relationship (R-squared is 0.005)—the population elasticities do not vary meaningfully 

according to income.  

Figure 1 

Similarly, there was no relationship between the individual country population elasticity 

and country average population size. Figure 2 displays the country-specific population 

elasticities plotted against the country average population for the sample period (for all 
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countries). The resulting trend line (also shown in the figure) is (nearly) horizontal, and the R-

squared is less than 0.01. 

Figure 2 

4.2.2 Carbon emissions per capita estimates and nonlinearities in income elasticities 

It seems reasonable to estimate a model with carbon emissions per capita as the 

dependent variable (and thus no independent population variable) given (i) what we have just 

shown—that the population elasticity does not vary meaningfully according to income level or 

population size; (ii) the previous discussion of the sensitivity results—that the population 

elasticity was significantly different from unity in only about 10% of the regressions; and (iii) the 

O’Neill et al. (2012) argument that, “… if all other influences on emissions are controlled for, 

and indirect effects of population on emissions through other variables are excluded, then 

population can only act as a scale factor[,] and its elasticity should therefore be 1.” Furthermore, 

converting the dependent variable into per capita terms makes the transformed model 

comparable to the models used in nearly all other socio-economic investigations of 

emissions/energy consumption—e.g., EKC/CKC and EEO models. Table 5 displays the results 

of such carbon emissions per capita estimates. 

Table 5 

 All of the diagnostics are good: the residuals always are stationary, and cross-sectional 

independence in the residuals can never be rejected. Also, the estimates of the remaining 

variables are very similar to those estimates shown in Table 4. Again, there is evidence of an 

income saturation effect, and thus, a justification to separate dataset into (at least) two panels 

(OECD vs. non-OECD countries). Indeed, in comparing the confidence intervals for the two 

panels, there is arguably stronger evidence (than displayed in Table 4) that the income elasticity 



18 

 

for carbon emissions is greater for non-OECD countries than for OECD countries (although the 

AMG estimations are different only at the 10% significance level). 

Lastly, Figure 3 shows the country-specific income elasticity estimates (from the model 

with carbon emissions in per capita terms) plotted against the individual country average GDP 

per capita for the sample period (for all countries). (The AMG estimator was used, and again, the 

results from the CMG estimation were essentially the same.) The figure also indicates the 

quadratic trend line (which has an R-squared of 0.34). The income elasticities fell throughout the 

average income range. While two countries (Belgium and Sweden) estimated statistically 

significant negative elasticities, there is no evidence that a panel income elasticity would become 

negative—indeed, the trend line has a slight U-shaped pattern; thus, a CKC, where carbon 

emissions would eventually decline with income, is rejected. (When the CMG estimator was 

used, no countries had significant, negative estimations for the income elasticity.) Hence, using 

different methods than both Wagner (2008)—de-factored regressions—and Stern (2010)—the 

between estimator—used, we come to the same conclusion they did: when both cross-sectional 

dependence is addressed and the nonlinear transformation of potentially integrated GDP per 

capita is avoided, there is no Carbon Kuznets Curve.  

Figure 3 

5. Conclusions 

 The carbon emissions elasticity of affluence/income appears quite robust. For 

developed/OECD countries income elasticity is significantly less than one; for less 

developed/non-OECD countries income elasticity is significantly larger than that of those more 

developed countries, but not significantly different from one—i.e., carbon emissions and income 

are more or less proportional for non-OECD countries. Thus, as countries develop the carbon 
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intensity of income/consumption falls, but higher levels of income lead to higher levels of carbon 

emissions. In other words, an inverted-U relationship with income, or an Environmental/Carbon 

Kuznets Curve, is likely for carbon emissions divided by GDP, but not for carbon emissions per 

capita. (Indeed, the trend line shown in Figure 3 had a slight U-shape.) In order to test for an 

EKC/CKC relationship, we exploited the heterogeneous nature of our estimators—a method that 

avoided two related statistical issues that plagued nearly all previous (EKC/CKC and EEO) 

analyses: (i) the nonlinear transformation of a potentially integrated variable (noted and 

addressed in Wagner 2008, and addressed in Stern 2010); and (ii) the nonlinear transformation of 

a regressor in a VAR model (noted in Itkonen 2012). Furthermore, it could be argued that the 

heterogeneous-based approach used here has certain advantages: (i) it is simpler than de-factored 

regressions (used in Wagner 2008); and (ii) it is more robust to the presence of difference 

stationary regressors, does not preclude the possibility of cointegration modeling, and (relatedly) 

takes fuller account of all time-variant information unlike the between estimator (used in Stern 

2010). Moreover, the approach used here—in contrast to the polynomial of income 

model/approach—explicitly allows for the possibility that elasticities are significantly different 

across development levels but still always positive.  

In contrast to income, the carbon emissions elasticity of population is not at all robust. 

The only statements we can make with much confidence are: (i) that the population elasticity is 

likely not statistically significantly different from one—even though its estimated mean is often 

greater than one (the accompanying confidence intervals are typically very large); and (ii) that 

the population elasticity does not vary systematically according to either income/development 

level or aggregate population size. Perhaps, modelers should expect population to function only 

as a scaling factor; or alternatively, modelers may want to use the population variable as a 
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measure to capture “other influences” or missing variables by research design—to compare 

urban vs. rural populations, for example. Yet, as demonstrated here, even when one addresses the 

time-series properties of population via the most current TSCS estimation methods, the 

population elasticity still is not robust (when different time spans were examined).  

Hence, given (i) the likelihood that the elasticity of population is not different from unity; 

(ii) the lack of robustness in estimating the population elasticity (even when state-of-the-art 

TSCS methods are used); and (iii) the difficulty in establishing population’s integration 

properties in the absence of very long time dimensioned data, should modelers take the “P” out 

of STIRPAT (i.e., divide the dependent variable by population)? Removing population as an 

explanatory variable likely would remove an important source of the cross-analyses robustness 

problem. Indeed, STIRPAT analyses that have employed cross-sectional data only (no time 

varying observations) have estimated population elasticites not significantly different from one 

or at least very near one (see Table 1 in O’Neill et al. 2012); this phenomenon is true even for 

studies considering different dependent variables (e.g., fuelwood consumption by Knight and 

Rosa 2012), or different units/scales of analysis (e.g., US county-level data in Roberts 2011; 

international city-based data in Liddle 2013c). And converting most or all of the variables into 

per capita (or percentage/share terms as in urbanization and age structure) also mitigates 

heteroscedasticity-related issues. Per capita measured variables result in differences (estimation 

errors) between countries—like Switzerland and United States or China and Taiwan—that are 

much smaller than such differences resulting from the use of aggregate measurements. Finally, 

converting the dependent variable into per capita terms would make the transformed model 

comparable to the models used in nearly all other socio-economic investigations of 

emissions/energy consumption (e.g., EKC).  
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Table 1. Cross-national, inter-temporal STIRPAT studies estimating the drivers of CO2 emissions.  Values indicate elasticities of emissions with 

respect to changes in GDP per capita (income) and population size.   

Study Affluence/income Population size Additional variables Data structure Addressed 

nonstationarity? 

Sadorsky, 2014 1.14 (SR); 0.90 (LR) 1.33 (SR); 2.52 (LR) Energy-GDP ratio TSCS: 16 emerging 

countries, 1971-2009 

Yes, via AMG 

estimator 

Knight et al., 

2013
 a

 

0.59 2.25 Urbanization TSCS: 29 OECD countries, 

1970-2007 

Yes, via first 

difference model 

Liddle, 2013c
 c
 1.00 (overall); 0.44 

(HI); 1.00 (MI); 0.97 

(LI) 

1.05 (overall); 0.68 (HI); 

0.86 (MI); 0.70 (LI) 

 TSCS: 23 HI, 25 MI, & 37 LI 

countries, 1971-2007 
Yes, via panel 

cointegration & 

panel FMOLS 

Zhu et al., 2012 1.12 0.79 Energy consumption; 

urbanization 

TSCS: 20 non-OECD 

countries, 1992-2008 
Yes, via first 

difference model 

Jorgenson & 

Clark, 2012 

0.93 1.55 Urbanization; trade share of 

GDP 

Panel: 86 countries, 1960-

2005 at 5-yr intervals 

Mitigated via panel 

data structure 

Menz & Welsch, 

2012
 a

 

0.36 0.78 Age structure; birth cohort; 

share of electricity from coal; 

urbanization 

Panel: 26 OECD countries; 

1960-2005 at 5-yr 

intervals 

Mitigated via panel 

data structure 

Martinez-

Zarzoso & 

Maruotti, 2011
 a
 

0.72 NS Energy-GDP ratio; GDP share 

for industry; urbanization  

TSCS: 88 non-OECD 

countries, 1975-2003 

Yes, via difference 

model
 b

 

Liddle, 2011
 c
 1.06 2.35 Age structure TSCS: 22 OECD countries, 

1960-2007 

Yes, via panel 

cointegration & 

panel FMOLS 

Poumanyvong 

& Kaneko, 2010
 

a
 

1.08 (overall); 0.83 

(HI); 0.99 (MI); 2.50 

(LI) 

1.12 (overall); 1.12 (HI); 

1.23 (MI); 1.75 (LI) 

Energy-GDP ratio; GDP share 

for service & industry; 

urbanization 

TSCS: 33 HI, 43 MI, and 23 

LI countries, 1975-2005 

Yes, via first 

difference model 

Jorgenson & 

Clark, 2010
 a
 

0.65 (overall); 0.95 

(OECD); 0.64 (non-

OECD) 

1.43 (overall); 1.65 (OECD); 

1.27 (non-OECD) 

Trade as share of GDP; 

urbanization 

Panel: 22 DC and 64 LDC; 

1960-2005 at 5-yr 

intervals 

Yes, via first 

difference model & 

panel structure 

Jorgenson et al., 

2010
 a e

 

0.33 0.70 Share population aged 15-64; 

GDP share for manufacturing; 

urbanization; share 

population living in urban 

slums 

TSCS: 57 LDC, 1990-2005 Yes, via first 

difference model 

Liddle & Lung, 

2010
 a

 

0.57 0.69 Age structure; energy-GDP 

ratio for industry; Share of 

Panel: 17 OECD countries, 

1960-2005 at 5-yr 

Mitigated via panel 

data structure 
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primary energy from nonfossil 

fuels; urbanization 

intervals 

York, 2008 0.50 1.87 Aged dependency ratio; 

Urbanization; FDI as share of 

GDP; military personnel per 

1000 

TSCS: 15 FSR, 1992-2000 No 

Martinez-

Zarzoso et al., 

2007
 a

 

0.42 (overall); 0.15 

(15 old EU); 0.34 (8 

new EU) 

NS (overall); 0.71
d
 (15 old 

EU); 2.73 (8 new EU) 

Energy-GDP ratio; GDP share 

for industry 

TSCS: 23 EU countries, 

1975-1999 

Yes, via first 

difference model 

York, 2007
 e
 0.70 2.75 Share of old dependent 

population; urbanization 

TSCS: 14 EU countries; 

1960-2000 

No 

Fan et al., 2006 
f
 0.30 (overall);0.54 

(HI); 0.21 (UMI); 0.28 

(LMI); 0.33 (LI) 

0.68 (overall); 0.57 (HI); 0.33 

(UMI); 0.44 (LMI); 0.26 (LI) 
Share population aged 15-64; 

Energy-GDP ratio; 

urbanization 

TSCS: 218 countries, 1975-

2000 
No 

Cole & 

Neumayer, 2004
 

a
 

0.89 0.98 Age structure; Average 

household size; Energy-GDP 

ratio; GDP share for 

manufacturing; urbanization 

TSCS: 86 countries, 1975-

1998 

Yes, via first 

difference model 

Shi, 2003 0.80 0.83 (HI); 1.42 (UMI); 1.97 

(LMI); 1.58 (LI) 

GDP share for manufacturing 

& service 

TSCS: 88 countries, 1975-

1996 

No 

Notes: 
a
 estimations were performed in first differences or with a lagged dependent variable; and thus, those elasticities could be interpreted as short-run (as 

opposed to long-run). 
b
 Martinez-Zarzoso & Maruotti perform panel unit root tests that suggest the variables are panel I(0); however, as discussed in the text, 

this is a highly unusual result; and thus, we report their results from a difference generalized method of moments model.
 c  

dependent variable was CO2 

emissions from all (domestic) transport activity. 
d
 statistically significant at p < 0.10. 

e
 dependent variable was total energy use. f estimations performed via 

partial least squares; hence results may not be compatible with other studies.  

 

TSCS: time-series cross-section. NS= not statistically significant at the p < 0.10 level or higher. SR=short run. LR=long run. AMG=augmented mean group. FMOLS=fully 

modified ordinary least squares. OECD=Organization for Economic Cooperation and Development; EU=European Union; FSR=former Soviet republics; DC=developed 

countries; LDC=less developed countries; HI=high income; MI=middle income; LI=low income; UMI=upper-middle income; LMI=lower-middle income.  
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Table 2. Summary statistics and correlations (all variables in natural logs). 
Variable Obs Mean Std. dev. Min. Max. 

CO2 3280 3.37 2.05 -1.66 8.98 

A 3280 8.64 1.27 5.48 11.21 

Pop 3280 16.67 1.49 12.25 21.02 

IEI 3144 -2.21 0.83 -6.55 0.49 

Sh nff 3277 -3.47 1.65 -9.24 -0.18 

      

Correlations CO2 A Pop IEI Sh nff 

CO2 1     

A 0.519 1    

Pop 0.648 -0.235 1   

IEI 0.157 -0.176 0.100 1  

Sh nff 0.112 0.340 -0.072 -0.022 1 

 
 

 

Table 3. Cross-sectional dependence: Absolute value mean correlation coefficients and Pesaran 

(2004) CD test. 
 Variables 

Panels Log CO2 Log A Log Pop Log IEI Log Sh n ff 

OECD countries 0.70 0.96 0.90 0.72 0.57 

(26) (18.3*) (108.1*) (87.9*) (51.5*) (33.0*) 

Non-OECD 

countries (54) 

0.76 

(134.5*) 

0.65 

(93.1*) 

0.98 

(209.3*) 

0.43 

(17.2*) 

0.50 

(29.0*) 

Notes: CO2 is aggregate carbon emissions; A is real GDP per capita; Pop is population; IEI is 

industry energy intensity; Sh nff is share of nonfossil fuels in primary energy. Absolute value 

mean correlation coefficient shown. CD-test statistic is in parentheses. Null hypothesis is cross-

sectional independence. Statistical significance indicated by * < 0.001. 
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Table 4. Heterogeneous panel STIRPAT estimations. Aggregate carbon emissions dependent 

variable. 95% confidence intervals in brackets. 
 All countries (80) OECD countries (26) Non-OECD countries (54) 

 CMG AMG CMG AMG CMG AMG 

Log A 0.81** 

[0.69 0.93] 

0.87** 

[0.74 0.99] 

0.58** 

[0.41 0.75] 

0.71** 

[0.58 0.84] 

0.89** 

[0.74 1.04] 

0.83** 

[0.71 0.95] 

Log Pop 1.38* 
[0.98 1.78] 

1.85** 
[1.29 2.41] 

0.81* 
[0.03 1.59] 

1.26** 
[0.33 2.20] 

1.32** 
[0.95 1.70] 

1.87** 
[1.61 2.15] 

Log IEI 0.18** 

[0.15 0.22] 

0.18** 

[0.14 0.23] 

0.17** 

[0.10 0.24] 

0.16** 

[0.09 0.24] 

0.17** 

[0.12 0.21] 

0.19** 

[0.13 0.25] 

Log sh nff -0.14** 

[-0.17 -0.10] 

-0.13** 

[-0.17 -0.10] 

-0.12** 

[-0.16 -0.07] 

-0.13** 

[-0.17 -0.08] 

-0.13** 

[-0.17 -0.09] 

-0.13** 

[-0.18 -0.09] 

       

Obs 3141 3141 1045 1045 2096 2096 

RMSE 0.054 0.064 0.030 0.036 0.063 0.081 

Order of 

integration 

I(0) I(0) I(0) I(0) I(0) I(0) 

Mean rho 0.17 0.17 0.14 0.16 0.18 0.18 

CD (p) 2.3 (0.02) -0.5 (0.60) 0.2 (0.87) -1.2 (0.25) 0.3 (0.76) 0.9 (0.36) 

Notes: A is real GDP per capita; Pop is population; IEI is industry energy intensity; sh nff is 

share of nonfossil fuels in primary energy. Obs is observations, and RMSE is the root mean 

squared error. * and ** indicate statistical significance at the 5% and 1% levels, respectively. 

Diagnostics: Order of integration of the residuals is determined from the Pesaran (2007) CIPS 

test: I(0)=stationary. Mean rho is the mean absolute correlation coefficient of the residuals from 

the Pesaran (2004) CD test. CD is the test statistic from that test along with the corresponding p-

value in parentheses. The null hypothesis is cross-sectional independence.  

 

 

 

  



29 

 

Table 5. Heterogeneous panel estimations. Carbon emissions per capita dependent variable. 95% 

confidence intervals in brackets. 
 OECD countries (26) Non-OECD countries (54) 

 CMG AMG CMG AMG 

Log A 0.57* 

[0.37 0.77] 

0.75* 

[0.61 0.89] 

0.97* 

[0.79 1.14] 

0.96* 

[0.83 1.09] 

Log IEI 0.17* 

[0.10 0.25] 

0.16* 

[0.07 0.25] 

0.20* 

[0.14 0.26] 

0.20* 

[0.12 0.28] 

Log sh nff -0.12* 

[-0.16 -0.08] 

-0.13* 

[-0.18 -0.09] 

 

-0.13* 

[-0.16 -0.09] 

-0.12* 

[-0.17 -0.07] 

 

Obs 1045 1045 2096 2096 

RMSE 0.034 0.039 0.071 0.092 

Order of integration I(0) I(0) I(0) I(0) 

Mean rho 0.18 0.19 0.19 0.19 

CD (p) -0.1 (0.94) -1.3 (0.20) 1.4 (0.15) 0.9 (0.35) 

Notes: A is real GDP per capita; IEI is industry energy intensity; sh nff is share of nonfossil fuels 

in primary energy. Obs is observations, and RMSE is the root mean squared error. * indicates 

statistical significance at the 0.1% level. 

Diagnostics: Order of integration of the residuals is determined from the Pesaran (2007) CIPS 

test: I(0)=stationary. Mean rho is the mean absolute correlation coefficient of the residuals from 

the Pesaran (2004) CD test. CD is the test statistic from that test along with the corresponding p-

value in parentheses. The null hypothesis is cross-sectional independence.  
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Figure 1. Individual country population elasticity estimates (from AMG) and the country average 

GDP per capita for the sample period (for all countries). Trend line and R-squared also shown. 
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Figure 2. Individual country population elasticity estimates (from AMG) and the natural log of 

country average population for the sample period (for all countries). Trend line and R-squared 

also shown. 
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Figure 3. Individual country income elasticity estimates (from AMG) and the country average 

GDP per capita for the sample period (for all countries). Carbon emissions per capita is the 

dependent variable. Trend line, equation, and R-squared also shown. 
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Appendix A. List of countries (by World Bank three letter code). 

OECD (26)  Non-OECD (54) 
AUS IRL  AGO EGY NPL 

AUT ISL  ALB ETH PAK 

BEL ITA  ARG GAB PAN 

CAN JPN  BGD GHA PER 

CHE KOR  BGR GTM PHL 

DEU LUX  BOL HND SDN 

DNK NLD  BRA IDN SLV 

ESP NOR  CHL IND TGO 

FIN NZL  CHN IRN THA 

FRA POL  CIV JAM TUN 

GBR PRT  CMR KEN TUR 

GRC SWE  COG LKA URY 

HUN USA  COL MAR VEN 

   CRI MEX VNM 

   CUB MMR ZAF 

   DOM MOZ ZAR 

   DZA MYS ZMB 

   ECU NGA ZWE 
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Appendix B. Unit root tests 

Appendix Table B.1 displays the results of the Pesaran (2007) panel unit root test (CIPS). 

The null hypothesis of the test is nonstationarity; thus, if the null is rejected in levels, the series is 

assumed to be I(0); however, if the null fails to reject when in levels, but is rejected when in first 

differences, the series is assumed to be I(1). The CIPS test results suggest that carbon emissions, 

affluence/income, and industrial energy intensity are I(1); however, the results for population are 

ambiguous—depending on the choice of lag structure and trend inclusion, it could be I(0) or I(1). 

Appendix Table B.1 

Yet, population is a classic stock variable: population in period t is exactly equal to the 

population in period t-1 less the deaths, plus the births and net migration (that occurred over the 

intervening time). In other words, unlike for GDP, we do understand the “data generation 

process” for population, and that process is the same everywhere. Unless the change in 

population (births and net migration less deaths) is equal to zero over time, population likely 

does not have a constant mean (i.e., is not stationary). Innovations to fertility and mortality rates 

(e.g., education of girls leading to changes in desired family size or wide-spread adoption of 

health/safety measures like hand-washing) do cause permanent changes; but after an adjustment 

period, we would expect fertility and mortality rates to be constant. Therefore, we expect 

population to be a I(1) variable, i.e., trending over time, but its change or first difference has a 

(nonzero) constant mean.   

The problem in calculating population’s order of integration (as demonstrated by the 

results in Appendix Table B.1) is likely a manifestation of the poor/limited power of unit root 

tests when the time dimension is relatively short. (Time-series econometricians consider 50 

observations to be “short.”) Hence, we create a long panel (1820-2008) consisting of 19 OECD 
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countries via data compiled by Angus Madison 

(http://www.ggdc.net/MADDISON/oriindex.htm). Now the CIPS test produces a highly robust 

result of I(1). Appendix Table B.2 shows that with lags varying from zero to eight and with or 

without a trend in the regression, population is confirmed as a I(1) variable at the highest levels 

of significance.  

 

Appendix Table B.2 

Appendix Table B.1. Pesaran (2007) panel unit root tests for 80 country sample.  
 Variables in Levels 

 Constant w/o trend  Constant w/ trend 

No. lags 1 2 3  1 2 3 

        

Log Pop 0.000 0.995 0.996  0.000 0.001 0.001 

Log CO2 0.042 0.150 0.353  0.998 0.999 1.000 

Log A 0.998 1.000 0.998  0.653 0.993 0.828 

Log IEI 0.068 0.896 0.778  0.620 0.999 0.999 

Log sh nff 0.000 0.000 0.070  0.000 0.000 0.033 

 Variables in first differences 

No. lags 1 2 3  1 2 3 

        

Log Pop 0.000 0.000 0.000  0.000 0.000 0.000 

Log CO2 0.000 0.000 0.000  0.000 0.000 0.000 

Log A 0.000 0.000 0.000  0.000 0.000 0.000 

Log IEI 0.000 0.000 0.000  0.000 0.000 0.000 

Log sh nff 0.000 0.000 0.000  0.000 0.000 0.000 

Notes: P-values shown for null hypothesis of I(1). Pop is population. CO2 is aggregate carbon 

emissions; A is real GDP per capita; IEI is industry energy intensity; sh nff is share of nonfossil 

fuels in primary energy. 
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Appendix Table B.2. Pesaran (2007) panel unit root tests for population of a panel of 19 OECD 

countries, 1820-2008. 

 Constant w/o trend Constant w/ trend 

Number of 

lags 

level First 

difference 

conclusion level First 

difference 

conclusion 

0 3.12 

(1.00) 

-15.55 

(0.00) 

I(1) 11.04 

(1.00) 

-15.80 

(0.00) 

I(1) 

1 1.44 

(0.92) 

-13.76 

(0.00) 

I(1) 6.15 

(1.00) 

-13.86 

(0.00) 

I(1) 

2 1.86 

(0.96) 

-10.76 

(0.00) 

I(1) 5.75 

(1.00) 

-10.32 

(0.00) 

I(1) 

3 1.52 

(0.94) 

-9.76 

(0.00) 

I(1) 5.35 

(1.00) 

-9.19 

(0.00) 

I(1) 

4 1.91 

(0.97) 

-7.72 

(0.00) 

I(1) 5.68 

(1.00) 

-7.00 

(0.00) 

I(1) 

5 1.58 

(0.94) 

-6.64 

(0.00) 

I(1) 5.11 

(1.00) 

-5.66 

(0.00) 

I(1) 

6 1.51 

(0.94) 

-5.16 

(0.00) 

I(1) 5.19 

(1.00) 

-3.93 

(0.00) 

I(1) 

7 1.16 

(0.88) 

-4.62 

(0.00) 

I(1) 4.89 

(1.00) 

-3.42 

(0.00) 

I(1) 

8 1.10 

(0.86) 

-3.71 

(0.00) 

I(1) 4.91 

(1.00) 

-2.44 

(0.01) 

I(1) 

Notes: Pesaran (2007) Z-statistic with associated p-value (in parentheses) shown. Null 

hypothesis is the series is I(1). 

Countries: Australia, Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, 

Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and 

United States. 

Data from http://www.ggdc.net/MADDISON/oriindex.htm.  
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Appendix C: Additional time series, cross section estimators 

 

POLS:   Pooled OLS with time dummies 

2FE:   Fixed effects with time dummies (two-way fixed effects) 

2FE-LDV:  Fixed effects with lagged dependent variable and time dummies 

FE-Prais:  Prais-Winsten serial correlation correction with country and time dummies 

FD-OLS:   OLS with variables in first differences and time dummies 

P-FMOLS: Pooled version of Fully Modified OLS. FMOLS involves a semi-

parametric correction for serial correlation and endogeneity.  

P-DOLS: Pooled version of Dynamic OLS. DOLS involves adding leads and lags of 

the first differences of the explanatory variables in order to address 

endogeneity and serial correlation. One lead and one lag of each are 

added. 

MG-FMOLS: Mean group FMOLS, where the panel estimates are the average over the 

individual cross-section FMOLS estimates. 

MG-DOLS: Mean group DOLS, where the panel estimates are the average over the 

individual cross-section DOLS estimates. One lead and one lag of each 

RHS variable and common time dummies were added. Performed by 

STATA command xtpedroni, which was developed by Timothy Neal. 

 

P-FMOLS, P-DOLS, and MG-FMOLS were performed in EViews. In theory, FMOLS and 

DOLS require successful cointegration pretesting (not performed/shown).
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Appendix Table C.1. Additional STRIPAT estimations on 80 country sample. Aggregate carbon emissions dependent variable.  
 Pooled Estimators Heterogeneous Estimators 

 POLS 2FE 2FE-LDV FE-Prais FD-OLS P-FMOLS P-DOLS  MG-FMOLS MG-DOLS 

Log A 1.25** 1.14** 0.18** 1.01** 0.80** 0.91** 0.79**  0.84** 1.09** 

Log Pop 1.11** 1.87** 0.29** 1.10** 1.73** 1.23** 1.14**  1.11** 1.91** 

Log IEI 0.51** 0.31** 0.044** 0.27** 0.24** 0.32** 0.20**  0.21** 0.20** 

Log sh nff -0.11** -0.07** -0.02** -0.07** -0.07** -0.10** -0.08**  -0.17** -0.21** 

LDV/AR   0.86** 0.98       

           

Obs 3141 3141 3075 3141 3061 3061 2901  3061 2901 

Order of 

integration 

I(1) I(1) I(0) I(1) I(0) I(1) I(0)  I(1) I(0) 

Mean rho 0.54 0.45 0.16 0.54 0.14 0.51 0.21  0.51 0.15 

CD (p) -3.7 (0.00) -2.5 (0.01) -2.3 (0.02) -3.6 (0.00) -2.2 (0.03) 6.5 (0.00) 5.3 (0.00)  4.2 (0.00) 1.8 (0.07) 

Notes: A is real GDP per capita; Pop is population; IEI is industry energy intensity; sh nff is share of nonfossil fuels in primary 

energy. LDV/AR refers to the coefficient for the lagged dependent variable or AR term. Obs is observations. ** indicates statistical 

significance at the 1% level. 

Diagnostics: Order of integration of the residuals is determined from the Pesaran (2007) CIPS test: I(0)—stationary, I(1)—
nonstationary. Mean rho is the mean absolute correlation coefficient of the residuals from the Pesaran (2004) CD test. CD is the test 

statistic from that test along with the corresponding p-value in parentheses. The null hypothesis is cross-sectional independence.  

 

While all the estimated elasticities are apparently statistically significant and many are similar in magnitude, several of the estimators 

produced nonstationary residuals (surprisingly so for both FMOLS ones). Also, cross sectional independence in the residuals was 

rejected for all estimators (at least at the 10% level); however, four estimators (2FE-LDV, FD-OLS, P-DOLS, and MG-DOLS) 

mitigated this correlation (as can be seen from relatively low mean rho statistics).
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Appendix D. Time span robustness of long-run affluence and population estimations. Aggregate 

carbon emissions dependent variable. Panel coefficients for population and affluence along with 

their 95% confidence intervals in brackets shown. 

 Non-OECD countries (45)  OECD countries (25) 

Time CMG AMG  CMG AMG 

span Log A Log Pop Log A Log Pop  Log A Log Pop Log A Log Pop 

1971-

1991 

0.88 

[0.68 1.07] 

0.82 

[020 1.44] 

0.89 

[0.72 1.06] 

0.93 

[0.64 1.22] 

 0.68 

[0.41 0.93] 

0.97 

[-0.24 2.18] 

0.78 

[0.63 0.92] 

0.95 

[-0.35 2.25] 

1975-

1995 

0.66 

[0.47 0.85] 

3.13 

[0.002 6.26] 

0.82 

[0.62 1.01] 

1.03 

[0.70 1.36] 

 0.55 

[0.34 0.76] 

0.26 

[-0.99 1.50] 

0.73 

[0.59 0.88] 

1.26 

[-0.08 2.59] 

1980-

2000 

0.74 

[0.61 0.88] 

-1.07 

[-4.40 2.27] 

0.72 

[0.50 0.94] 

1.26 

[0.58 1.05] 

 0.41 

[0.13 0.69] 

0.21 

[-1.72 2.15] 

0.66 

[0.48 0.83] 

1.22 

[0.27 2.18] 

1990-

2011 

0.86 

[0.64 1.07] 

0.80 

[-0.53 2.13] 

0.82 

[0.58 1.05] 

1.65 

[1.35 1.95] 

 0.52 

[0.24 0.81] 

0.28 

[-0.32 0.89] 

0.64 

[0.50 0.78] 

1.00 

[0.09 1.90] 

1985-

2005 

0.92 

[0.72 1.13] 

0.07 

[-1.40 1.53] 

0.77 

[0.60 0.94] 

1.03 

[0.58 1.48] 

 0.50 

[0.18 0.82] 

-0.36 

[-2.66 1.94] 

0.63 

[0.44 0.83] 

0.48 

[-0.23 1.19] 

1971-

1996 

0.82 

[0.64 1.00] 

0.78 

[0.03 1.53] 

0.90 

[0.71 1.09] 

0.99 

[0.64 1.33] 

 0.72 

[0.53 0.91] 

0.92 

[-0.005 1.85] 

0.72 

[0.58 0.85] 

1.01 

[0.15 1.86] 

1975-

2000 

0.78 

[0.60 0.97] 

1.55 

[-0.39 3.48] 

0.88 

[0.66 1.09] 

1.21 

[0.88 1.54] 

 0.51 

[0.31 0.70] 

0.53 

[-0.46 1.54] 

0.65 

[0.51 0.78] 

1.63 

[0.34 2.92] 

1980-

2005 

0.85 

[0.68 1.02] 

-0.002 

[-1.94 1.93] 

0.91 

[0.72 1.11] 

1.27 

[0.96 1.59] 

 0.44 

0.20 0.67] 

-0.08 

[-1.68 1.52] 

0.64 

[0.46 1.35] 

0.69 

[0.02 1.35] 

1985-

2011 

1.04 

[0.81 1.27] 

0.56 

[-0.74 1.86] 

0.81 

[0.64 0.98] 

1.34 

[1.07 1.64] 

 0.55 

[0.27 0.84] 

0.01 

[-0.74 0.76] 

0.65 

[0.51 0.79] 

0.62 

[0.003 1.24] 

1971-

2001 

0.82 

[0.64 1.00] 

0.86 

[0.15 1.58] 

0.96 

[0.78 1.14] 

1.13 

[0.80 1.45] 

 0.66 

[0.45 0.87] 

0.77 

[-0.19 1.74] 

0.67 

[0.52 0.80] 

1.21 

[0.12 2.30] 

1975-

2005 

0.90 

[0.75 1.06] 

1.03 

[-0.53 2.59] 

0.97 

[0.81 1.13] 

1.20 

[0.92 1.48] 

 0.51 

[0.30 0.72] 

0.76 

[-0.41 1.92] 

0.68 

[0.53 0.83] 

1.10 

[0.23 1.97] 

1980-

2011 

0.90 

[0.73 1.08] 

0.70 

[-0.59 1.99] 

0.87 

[0.69 1.04] 

1.38 

[1.12 1.64] 

 0.51 

[0.31 0.72] 

0.58 

[-0.23 1.40] 

0.62 

[0.46 0.78] 

0.91 

[0.53 1.29] 

Note: Only countries with data from 1971 were considered; the dropped countries were: Albania, Angola, 

Bulgaria, Ethiopia, Mozambique, Nigeria, Panama, Poland, Uruguay, and Vietnam.  

 


