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A b s t r a c t  

 

Fractionally integrated autoregressive moving average (ARFIMA) and 

Heterogeneou Autoregressive (HAR) models are estimated and their ability to predict 

the one-trading-day-ahead CAC40 realized volatility is investigated. In particular, this 

paper follows three steps: (i) The optimal sampling frequency for constructing the 

CAC40 realized volatility is examined based on the volatility signature plot. 

Moreover, the realized volatility is adjusted to the information that flows into the 

market when it is closed. (ii) We forecast the one-day-ahead realized volatility using 

the ARFIMA and the HAR models. (iii) The accuracy of the realized volatility 

forecasts is investigated under the superior predictive ability framework. According to 

the predicted mean squared error, a simple ARFIMA model provides accurate one-

trading day-ahead forecasts of CAC40 realized volatility. The evaluation of model's 

predictability illustrates that the ARFIMA  0,,1 d  forecasts of realized volatility (i) are 

statistically superior compared to its competing models, and (ii) provide adequate 

one-trading-day-ahead Value-at-Risk forecasts. 
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high frequency modeling, Value-at-Risk. 
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1 .  I n t r o d u c t i o n  

 

Several studies have used realized volatilities (computed by summing squared 

returns from ultra-high frequency data over short time intervals during the trading 

day) due to the consideration of more accurate observations of the actual volatility 

compared to the traditional variances based on daily frequency data (see Andersen et 

al., 2001a; Bollerslev et al., 2009; Bollerslev et al., 2011a). Most studies have focused 

on the theoretical and empirical properties of the realized volatility and conclude that 

accurate forecasts can be obtained by using ultra-high frequency time-series models 

(see Andersen and Bollerslev, 1998; Andersen et al., 2001b; Andersen et al., 2005; 

Ghysels and Sinko, 2006; Koopman et al., 2005; among others).  

Autoregressive Fractionally Integrated Moving Average, or ARFIMA, model 

has been considered to capture the long memory property of the realized volatility; 

see, for example, Andersen and Bollerslev (1997, 1998), Andersen et al. (2003), 

Andersen et al. (2005), Thomakos and Wang (2003), Angelidis and Degiannakis 

(2008), Giot and Laurent (2004), Koopman et al. (2005).  

Corsi (2009) suggested the Heterogeneous Autoregressive, or HAR, model 

which is an autoregressive structure of the volatilities realized over different interval 

sizes. Its economic interpretation stems from the Heterogenous Market Hypothesis 

presented by Müller et al. (1993). The basic idea is that market participants have a 

different perspective of their investment horizon. The heterogeneity, which originates 

from the difference in the time horizon, creates volatility. The model is represented 

either in terms of the sum of the realized volatility or in terms of the squared root of 

the sum of squared realized volatility (Corsi, 2009). 

Few papers have studied the realized volatility of CAC40 index. Giot and 

Laurent (2004) provide evidence of equivalent performance for the daily ARCH type 

model and the realized volatility ARFIMA model when the 1-day-ahead Value-at-

Risk (VaR) for CAC40 is to be computed. Angelidis and Degiannakis (2008) find that 

a realized volatility ARFIMA model produces more accurate one-day-ahead CAC40 

variance forecasts compared to a daily ARCH type model. However, when the 

performance of the models is investigated in VaR forecasting and simulated option 

pricing, then a realized volatility ARFIMA model does not provide statistically 

enhanced predictive power compared to a daily ARCH type model. 
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Due to data availability and liquidity considerations, we restrict our attention 

to CAC40 index from Paris stock exchange. The sample considers data from a high 

volatile period (2000-2009), which is often called as 'lost decade' (see Bollerslev et 

al., 2011b; Jones, 2011). In addition, the CAC40 index was the poorest performer 

compared to other major indices from Europe and US1; therefore, the current study 

examines CAC40 as it is the highly volatile major index with a poor performance over 

the last decade. 

Angelidis and Degiannakis (2008, p.464) note that “The effects of overnight 

returns and intra-day noise in the high frequency datasets are still an open area of 

study. An interesting issue for future research is whether different empirical measures 

of realized volatility affect the evaluation of volatility specifications’ predictability”.  

In this study, we consider straight forward implemented approaches to (i) 

construct, (ii) estimate, and (iii) forecast the one-trading-day CAC40 realized 

volatility using data over the period 2000-2009. To the best of our knowledge, this is 

the first investigation of comparing intra-day volatility models for the CAC40 index. 

The aims of the study are as follows:  (i) We construct CAC40 volatility based 

on one-minute frequency data. For the 13th of June, 2000, to 13th of October, 2009 

time period (2392 trading days), the optimal sampling frequency is defined to 7 

minutes. Giot and Laurent (2004) show that a sampling frequency of about 15 minutes 

is optimal for the CAC40; their study considers data for the time period from 3rd of 

January, 1995 to 31st of December, 1999 (1249 trading days). Hence, our analysis 

shows that, for different periods in time, there are differences in the optimal sampling 

frequency.  

Further, we compute CAC40 realized volatility accounting for changes in 

CAC40 during the hours that the stock market is closed, by taking into consideration 

the inter-day adjustment of realized volatility, proposed by Hansen and Lunde (2005).   

(ii) We forecast the one-day-ahead logarithmic realized volatility using the 

ARFIMA  ldk ,,   for  2,1,0k  and 1,0l , as well as two versions of the HAR 

model, i.e. HAR with the sum of the realized volatility, and HAR with the squared 

root of the sum of squared realized volatility.  

                                                 
1 According to Silbun (2009), the CAC40 (market value-weighted Continuous Assisted Quotation 
index) is the poorest performer with a 34pc decline, with US Dow Jones shows 8pc decline and 
German DAX declines 14pc over the decade. 
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(iii) We conduct a comparison of intra-day volatility models such as the 

ARFIMA model and the HAR-RV and HAR-sqRV models. We consider these two 

popular model frameworks, because they are straightforward and easy to implement. 

At each point in time, the models are re-estimated in order to compute one-trading-

day-ahead forecasts of the realized volatility. Then, the forecasts are evaluated 

measuring the squared distance between actual realized volatility and predicted 

realized volatility. The loss function computed as the average squared distance 

between actual and predicted realized volatility provides evidence in favor to the 

simple ARFIMA model. We conclude that the ARFIMA( 0,,1 d ) model provides the 

most accurate one-trading day-ahead forecasts of the logarithmic realized volatility, as 

well as accurate VaR forecasts. 

The structure of the paper is as follows: Section 2 provides information about 

the construction of the intra-day based realized volatility, while Section 3 describes 

the ARFIMA model as well as the HAR model. Section 4 compares the predictive 

ability of the realized volatility models based on the predicted mean squared error and 

investigates the ability of the superior model in forecasting the one-trading-day ahead 

VaR accurately. Finally, Section 5 summarizes and concludes the paper. 

 

2 .  M e a s u r i n g  R e a l i z e d  V o l a t i l i t y  

  

Hansen and Lunde (2006) and Patton (2011) showed that the use of a volatility 

proxy can lead to an evaluation appreciably differing from what would be obtained if 

the true volatility were used. According to Andersen et al. (2002), realized volatility is 

widely used in empirical finance as it is straightforward computed and it is a 

consistent estimator of integrated volatility under general nonparametric conditions. 

They argue that an important advantage of realized volatility is that it provides 

asymptotically unbiased measures and therefore approximately serially uncorrelated 

measurement errors. According to Andersen et al. (2002), “the realized volatility 

approach exploiting intraday return observations allow for directly observable return 

volatility measures that are consistent”.  

Under the assumption that the logarithmic price of a financial asset, i.e. 

  tPlog , conforms with a diffusion process 

      tdWttPd log , (1) 
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with  t  denoting the volatility of the instantaneous returns process and  tW  being 

the Wiener process, the integrated volatility,  IV

t

2 , aggregated over the time interval 

 tt ,1  is    dxx

t

t

IV

t

2

1

2  


 . The realized volatility, 
tRV , based on the theory of 

quadratic variation2 of semi-martingales (see Barndorff-Nielsen and Shephard, 2001), 

is considered a consistent estimator of the integrated volatility.  
tRV  is defined as the 

sum of squared returns observed over very small time intervals. 

 In this paper, we consider ultra-high frequency data3 to predict the one-

trading-day-ahead CAC40 realized volatility. According to Ait-Sahalia et al. (2011, 

p.161), by considering ultra-high frequency data, we should not compute realized 

volatility at too high a frequency.  

 Table 1 presents information about the one-minute intra-day data for the 

CAC40 index. The dataset is available for 2392 trading days, from 13th of June, 2000, 

to 13th of October, 2009. The one-trading-day realized variance, at trading day t , 

based on   equidistance points in time, is defined as: 

   








1

2

1
loglog

j

ttt jj
PPRV . (2) 

Consider the case of a trading day which starts at 09:00 and ends at 15:00, 

then we get the following: (i) For a sampling frequency of 1 minute, there are 361  

equidistance points in time, (ii) for a sampling frequency of 30 minutes, there are 

13  equidistance points in time, etc. The sampling frequency should be as high as 

the market microstructure features do not induce bias to the realized volatility 

estimator (for details about market microstructure, see Alexander, 2008). The 

sampling frequency is selected according to the volatility signature plot proposed by 

Andersen et al. (2006). The volatility signature plot provides a graphical 

representation of the average realized volatility against the sampling frequency. The 

accuracy improves as the sampling frequency increases but on the other hand, at a 

high sampling frequency the market frictions is a source of additional noise in the 

estimate of volatility. The inter-day variance,  2
0

loglog tt PP 


, is decomposed into 

                                                 
2 The theory of quadratic variation as discussed by Andersen et al. (2001b) suggests that realized 
volatility is an unbiased and highly efficient estimator of return volatility. 
3 According to Engle (2000), “ultra-high frequency data is defined to be a full record of transactions 

and their associated characteristics”.  
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the realized volatility and the intra-day auto-covariances, or 

      










1

1

1

1

2
loglogloglog2loglog

110

 



j ji

ttttttt ijijjj
PPPPRVPP .  

<< TABLE 1 – HERE >> 

<< FIGURE 1 – HERE >> 

 Further, the optimal sampling frequency is chosen as the highest frequency 

for which the auto-covariance bias term minimises. In the case of CAC40 index, the 

optimal sampling frequency is defined to 7 minutes. Figure 1 depicts the volatility 

signature plot, i.e. the average intra-day auto-covariances against the sampling 

frequency f , for 40,...,2,1f . We consider the construction of the volatility 

signature plot which is a useful tool for the financial analysts4. 

 Based on Hansen and Lunde (2005), we compute the inter-day adjusted 

realized volatility as: 

      
 tttt RVPPRV 2

2

11 loglog
1

 
 . (3) 

The  21loglog
1  tt PP  term measures the closed-to-open inter-day volatility, whereas 

the  
tRV  term measures the open-to-closed intraday volatility. The parameters 1  

and 2  must be estimated from 
 

    22*

, 21

min IV

ttRVE 


 . As the  IV

t

2  is 

unobservable, Hansen and Lunde (2005) suggested solving 
 

  



*

, 21

min tRVV , as 

         *22* minargminarg t

IV

tt RVVRVE  . Figure 2 plots the CAC40 one-trading-

day realized standard deviation,  *
tRV , from 13th June 2000 to 13th October 2009, 

for the optimal sampling frequency of 7 minutes. 

 Table 2 presents the descriptive statistics of (i) annualized one-trading-day 

inter-day adjusted realized daily variances,  *252 tRV , (ii) annualized one-trading-day 

inter-day adjusted realized daily standard deviations,  *252 tRV , (iii) annualized 

inter-day adjusted realized daily logarithmic standard deviations,  *252log tRV , 

and (iv) standardized log-returns, standardized with the annualized one-trading-day 

inter-day adjusted realized standard deviation,  *252 tt RVy , whereas Figure 3 

                                                 
4 The program that constructs the volatility signature plot from one-minute frequency intra-day dataset 
is available upon request. 
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plots the relative estimated densities based on Kernel bandwidths method. We observe 

that the  *252 tRV  is approximately log-normally distributed, as well as that the 

 *252 tt RVy  is approximately unconditionally normally distributed. The findings 

are in line with Andersen et al. (2000) and 2003, Giot and Laurent (2004). 

<< FIGURE 2 – HERE >> 

<< FIGURE 3 – HERE >> 

<< TABLE 2 – HERE >> 

 

3 .  I n t r a - D a y  V o l a t i l i t y  M o d e l s  

 There is significant evidence of long memory in time series, hence most recent 

studies consider the ARFIMA( ldk ,,  )  model to capture the long memory in realized 

volatility. The economic motivation behind the ARFIMA model determines from the 

long memory property of the realized volatility; see for example Andersen et al. 

(2001a, 2001b, 2003, 2006). Corsi (2009) suggested an alternative autoregressive 

framework of the volatilities realized over different interval sizes. The economic 

motivation behind the HAR model stems from the Heterogenous Market Hypothesis, 

i.e. market participants have a different perspective of their investment horizon. It is 

widely accepted that the commonly used reduced-form realized volatility models such 

as the ARFIMA and HAR are superior representations in modeling time-varying 

volatility (see Corsi et al., 2008). Corsi et al. (2008) report several extensions of the 

ARFIMA and HAR models and argue that both models have similar performance, but 

the HAR model might be preferable in practice. Based on the arguments made by 

Corsi et al. (2008) and the critical review of the major theoretical and empirical 

developments on realized volatility modeling made by McAleer and Medeiros5 

(2008), we consider these two popular models (ARFIMA and HAR) to test their 

ability to predict the one-trading-day-ahead CAC40 realized volatility. Both models 

are straightforward and easy to implement as they often require the estimation of a 

small number of parameters; therefore, they're are expected to give robust results (see  

Giot and Laurent, 2004).  

                                                 
5 McAleer and Medeiros (2008a) extended the HAR-RV model by proposing a flexible multiple 
regime smooth transition model to capture nonlinearities and long-range dependence in the time series 
dynamics, but in their recent paper they report several problems in modelling realized volatility (see 
McAleer and Medeiros, 2008b). 
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The ARFIMA( ldk ,,  ) model, initially developed by Granger (1980) and 

Granger and Joyeux (1980),  for the logarithmic of the realized volatility,   
tRVlog   

is defined as: 

           tt

d
LDRVLLC   

1log11 0
* , (4) 

where  2,0~  Nt
,   




k

i

i

iLcLC
1

,   



l

i

i

iLdLD
1

. 

Corsi (2009) suggested the Heterogeneous Autoregressive for the realized 

volatility (HAR-RV) model,  

            t

j

jt

j

jttt RVwRVwRVwwRV  
















 












22

1

*1
3

5

1

*1
2

*
110

* log22log5loglog , 

 2,0~  Nt , 

(5) 

with current trading day’s realized volatility explained by the daily, weekly and 

monthly realized volatilities.  The heterogeneity, which originates from the difference 

in the time horizon, creates volatility.  

 The HAR-sqRV model can alternatively be represented in terms of the square 

root of the sum of the realized variances:  

            ,log22log5loglog
22

1

2*1
3

5

1

2*1
2

*
110

*
t

j

jt

j

jttt RVwRVwRVwwRV   









  

 2,0~  Nt
. 

(6) 

 

4 .  F o r e c a s t i n g  C A C 4 0  R e a l i z e d  V o l a t i l i t y    

 

L o s s  F u n c t i o n  -  E v a l u a t i o n  C r i t e r i o n    

The ability of the models to forecast the one-trading day-ahead realized 

volatility is evaluated according to the predicted mean squared error loss function. 

The predicted mean squared error is the most widely applied loss function in 

comparing the ability of a model to predict the realized volatility: 

 
      




 
T

t

tttSE RVRVT

~

1

2*
1|1

1 loglog
~  , (7) 

where  
ttRV |1  denotes the trading day's 1t  forecasting realized volatility computed 

at trading day t , and  *
1tRV  denotes the measure of the realized volatility at trading 
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day 1t . Because of high non-linearity in volatility models, there is a variety of 

statistical functions, such as the median absolute error, the heteroskedasticity adjusted 

mean squared error, the  Gaussian likelihood loss function, etc., that measure the 

distance between actual and predicted volatility (see for example Walsh and Tsou, 

1998, Andersen et al., 1999, Saez, 1997, Bollerslev et al., 1994). 

Τhe realized volatility,   *
1log tRV , is a proxy measure for the integrated 

variance,  
  IV

tt

2
1,log  , over the one-day time interval  1, tt . Hansen and Lunde 

(2006) derived conditions which ensure that the ranking of any two variance forecasts 

by a loss function is the same (i.e. consistent ranking) whether the ranking is done via 

the true and unobserved variance,  
  IV

tt

2
1,log  , or via a conditionally unbiased 

volatility proxy such as the realized volatility,   *
1log tRV . A sufficient condition for 

a consistent ranking is that, for the loss function  
       tt

IV

tt RV |1
2

1, log,log  , the 

quantity   
      

 
  22

1,

|1
2

1,
2

log

log,log

IV

tt

tt

IV

tt RV











 

 does not depend on   
ttRV |1log  .  The predicted 

mean squared error loss function ensures the equivalence of the ranking of volatility 

models. 

Numerous forecast evaluation criteria exist in the literature but none is 

generally acceptable. For a detailed investigation about evaluation of volatility 

models, see Xekalaki and Degiannakis (2010, p.357). Of course another approach 

could be the evaluation of the forecast density instead of the point forecasts. More 

information about density forecasts is available in Berkowitz (2001) and Diebold et 

al. (1998). 

 

O n e - T r a d i n g - D a y  A h e a d  V o l a t i l i t y  F o r e c a s t s    

The ARFIMA  ldk ,,   model is estimated, for  2,1,0k , and 1,0l . In total, 

8 models are considered. Each model is re-estimated every trading day, for 1392
~ T  

days, based on a rolling sample of 1000T


 days. The one-day-ahead logarithmic 

realized volatility forecasts,   
ttRV |1log  , are computed as: 

ARFIMA  ldk ,,    
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                 
tit

l

i

it

i

d

tit

k

i

it

i

k

i

t

i

t

tt LdLRVLccRV
t

|1
1

|1
11

0|1 1log1log 






  








   , (8) 

where6            ...1
!2

1

!1

1
11 2  

LddLdL
tttd t

. 

HAR-RV  

                   









 

22

1

*
1

1
3

5

1

*
1

1
2

*
10|1 ,log22log5loglog

j

jt

t

j

jt

t

t

tt

tt RVwRVwRVwwRV
  (9) 

HAR-sqRV  

                    ,log22log5loglog
22

1

2*
1

1
3

5

1

2*
1

1
2

*
110|1 










 

j

jt

t

j

jt

t

t

tt

tt RVwRVwRVwwRV
  (10) 

Consider for example the ARFIMA  1,,1 d  model; the parameter vector to be 

estimated at each trading day t  is            ttttt
dcd 011 ,,,  . For each model the 

vector  t  is re-estimated every trading day, for 1
~

,...,1,  TTTTt


 days. 

Table 3 presents, for the 8 models, the average of the squared one-step-ahead 

prediction errors,       



 

T

t

ttt RVRVT

~

1

2

1|1
1 loglog

~  , whereas Figure 4 depicts the one-

trading-day-ahead logarithmic realized volatility forecast from the ARFIMA( 0,,1 d ) 

model, for the total of the 1392
~ T  trading days. The ARFIMA( 0,,1 d ) has the 

lowest value of the loss function, 0.272630. 

<< TABLE 3 – HERE >> 

<< FIGURE 4 – HERE >> 
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V o l a t i l i t y  F o r e c a s t i n g  A b i l i t y  E v a l u a t i o n    

Hansen (2005) extended the work of White (2000) and provided a framework 

for comparing statistically the predictive ability of a seemingly best performing 

forecasting model, from a large set of potential models. Hansen's test, named Superior 

Predictive Ability, or SPA, test, investigates the null hypothesis that the best 

performing forecasting model is not outperformed by the competing models against 

the alternative hypothesis that best performing forecasting model is inferior to one or 

more of its competing models.  

 Let us denote as  
 i

SEt  the value of the predicted squared error of model i  at 

time t , or  
 

 
      2*

1|1 loglog 
  ttti

i

SEt RVRV . The best performing forecasting 

model 
i  is tested against the i , for 7,...,1  Mi , competing models. The SPA 

statistic equals to: 
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TMVTMSPA .7 

A high p-value indicates evidence in support of the hypothesis that the 

benchmark model is superior to one or more of the opponent models. As the p-value 

of the test is 0.8577, it appears that there is evidence supporting the hypothesis that 

the forecasting ability of the ARIMA  0,,1 d  model is superior to its competitors8. 

 Under the assumption of  2,0~  Nt , the quantity te
  is log-normally 

distributed. Hence the unbiased estimator of the realized variance is computed 

as  
     2

||, 5.0logexp 
  ttttun RVRV . Moreover, the one-day-ahead realized variance 

forecasts are computed as: 

 
       






  

2
|1|1,

2

1
logexp t

ttttun RVRV 
  . (11) 

Figure 5 plots the CAC40 one-trading-day-ahead realized standard deviation 

forecast,  
 

ttunRV |1,  , from the ARFIMA( 0,,1 d ), for the 1392
~ T  trading days. 

<< FIGURE 5 – HERE >> 

                                                 

7 The value of    
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1~
 and the p-values of the SPA statistic are estimated by 

Politis and Romano’s (1994) stationary bootstrap method. 
8 The results obtained from the Superior Predictive Ability test are available upon request. 
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V a R  F o r e c a s t i n g  -  A  F i n a n c i a l  A p p l i c a t i o n    

 An important application of volatility forecasts is the prediction of the Value-

at-Risk (VaR) measure. VaR quantifies the maximum loss for a portfolio of assets 

under normal market conditions over a given period of time and at a certain 

confidence level (95% or 99%). Having estimated the one-trading-day realized 

volatility, the one-trading-day ahead VaR can be calculated as: 

   
  ,|1,

)1(
|1

  ttuntt RVNVaR 

   (8) 

where  N  is the th  quantile of the standard normal distribution. In the continuous 

time case of equation (1) the instantaneous returns and the integrated volatility 

process are related via the Wiener process9. Therefore, in the discrete time case, the 

daily log-returns and the realized volatility would be related via the normal 

distribution. The observed 95% VaR failure rate10 is 3.95%, whereas the 99% VaR 

failure rate is 1.15%. Figures 6 and 7 plot the one-trading-day ahead 95% and 99% 

VaR forecasts, respectively. Based on Kupiec (1995) test we examine the null 

hypothesis that the observed violation rate, TN
~

, for N  denoting the number of days 

on which a violation occurred, is statistically equal to the expected violation rate,  . 

The likelihood ratio statistic equals to 

  NNT
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N
LR  
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
















 

~
~

1log2~~1log2  and is chi-squared distributed 

with one degree of freedom. The p-values of Kupiec test for 95% and 99% VaR are 

0.0627 and 0.5841, respectively. We also conduct Christoffersen's (1998) test which 

examines the null hypothesis that the VaR failures are independently distributed over 

time against the alternative hypothesis that the failures tend to be clustered.  The 

likelihood ratio statistic is computed as 

                                                 
9 I.e.      1,0~ NtttWtW  . 
10 Percentage of trading days that the log-returns are lower than the VaR measure. 
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chi-squared distributed with one degree of freedom11. The p-values of Christoffersen 

test for 95% and 99% VaR are 0.3569 and 0.5417, respectively12. Both tests provide 

p-values which do not reject the hypotheses i) that the observed violation rate is 

statistically equal to the expected violation rate as well as ii)  that the VaR failures are 

independently distributed over time. 

 The period analyzed spans the start of the financial crisis, since January, 2008. 

According to Figure 2, apparently, the realized volatility is higher in the period of the 

crisis than during the period of 2000-2007. The descriptive statistics inform us that, 

for the period 2000-2007, the mean and median of the annualized realized volatility, 

 *252 tRV , are 12.08% and 10.87%, respectively. On the other hand, during the 

financial crisis, the mean and median of  *252 tRV , are 29.97% and 25.72%, 

respectively.  

However, focusing on the period from January, 2008 up to October, 2009, the 

p-values of Kupiec test for 95% and 99% VaR are 0.6328 and 0.2829, respectively. 

Therefore, the ARFIMA( 0,,1 d ) model does not fail to provide accurate one-trading-

day ahead VaR forecasts, during the financial crisis, despite the increase of the 

magnitude of volatility. For more information about the performance of widely-

accepted approaches to estimate VaR before and after the financial crisis of 2008 you 

are referred to Degiannakis et al. (2012). 

<< FIGURE 6 – HERE >> 

<< FIGURE 7 – HERE >> 

 

5 .  C o n c l u s i o n    

Many high-frequency forecasting approaches have been proposed (Bollerslev 

et al., 1994; Andersen et al., 2003) but those approaches suffer from a lack of inter-

day adjusted realized volatility measures. Hence it is interesting to see straight 

                                                 
11 

ij
n  is the number of observations with value i  followed by j  for 1,0, ji , and   1

j ijijij
nn  

are the corresponding probabilities. For 1, ji  a violation occurred, 
ij

  indicates the probability that 

 1,0j  occurs at time t , given that  1,0i  occurred at time 1t . 
12 Pearson’s goodness-of-fit test and Engle and Manganelli’s (2004) dynamic quantile test provide 
qualitatively similar results. 
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forward implemented frameworks for volatility forecasting using ultra-high frequency 

datasets.  

In this paper we (i) construct, (ii) estimate, and (iii) forecast the one-trading-

day CAC40 realized volatility, using data over the period 2000-2009, by employing 

ARFIMA and HAR models.  

According to the robust loss function that measures the squared distance 

between forecast and actual realized volatility, the ARFIMA( 0,,1 d ) model provides, 

for the CAC40 index, the most accurate one-trading day-ahead forecasts of the 

logarithmic realized volatility. The ARFIMA( 0,,1 d ) model not only minimizes the 

predictive mean squared error loss function but it is superior to its competitors in 

terms of forecasting accuracy. The present paper provides evidence in favor to a 

simple ARFIMA model for predicting the one-trading day-ahead CAC40 logarithmic 

realized volatility. 

Our findings should be of direct interest to market participants, analysts and 

policymakers who deal with ultra-high frequency intraday datasets. For further 

research, we suggest the comparison of a wider set of volatility models. The volatility 

of realized volatility, which can be consider as an estimate of the integrated quarticity, 

may also exhibit time-variation (for details about integrated quarticity, see Barndorff-

Nielsen and Shephard, 2006). Our approach can easily be extended to allow for the 

adequacy of the first order autoregressive long memory model to provide adequate 

forecasts of realized volatility for other financial assets (indices, stocks, and exchange 

rates).  
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F i g u r e s  &  T a b l e s  

Figure 1. CAC40 volatility signature plot.  Average daily squared log-returns and 

average intra-day auto-covariance against sampling frequencies of 40,...,2,1f  

minutes. 
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Figure 2. The CAC40 one-trading-day realized standard deviation,  *
tRV , from 

13th June 2000 to 13th October 2009. Optimal sampling frequency of 7 minutes. 
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Figure 3. The estimated density of (i) annualized one-trading-day inter-day adjusted realized daily 

variances,  *252 tRV , (ii) annualized one-trading-day inter-day adjusted realized daily standard 

deviations,  *252 tRV , (iii) annualized inter-day adjusted realized daily logarithmic standard 

deviations,  *252log tRV , and (iv) standardized log-returns, standardized with the annualized one-

trading-day inter-day adjusted realized standard deviation,  *252 tt RVy . 
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Figure 4. The CAC40 one-trading-day-ahead logarithmic realized volatility, 
  

ttRV |1log  , from the ARFIMA( 0,,1 d ) model, for 1392
~ T  trading days.   

The dotted line presents the difference      
ttt RVRV |1

*
1 loglog   . 
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Figure 5. The CAC40 one-trading-day-ahead realized standard deviation forecast, 

 
 

ttunRV |1,  , from the ARFIMA( 0,,1 d ) model, for 1392
~ T  trading days.   

 

The dotted line presents the difference  
    *

1|1,   tttun RVRV . 
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Figure 6. The CAC40 daily log-returns against the one-trading-day ahead 95% VaR 

forecasts, from the ARFIMA( 0,,1 d ) model, for 1392
~ T  trading days.   

 
The line presents the 95% VaR, and the dots present the daily log-returns. 
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Figure 7. The CAC40 daily log-returns against the one-trading-day ahead 99% VaR 

forecasts, from the ARFIMA( 0,,1 d ) model, for 1392
~ T  trading days.   

 
The line presents the 99% VaR, and the dots present the daily log-returns. 
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Table 1. Information about the intra-day data.  

Index 

Number of 
intra-day  

(1 minute) 
observations 

Number 
of days 

First day Last day 
Optimal 

sampling 
frequency 

CAC40 1.285.783 2392 13th June 2000 13th October 2009 7 minutes 
 

 

 

Table 2. Descriptive statistics of (i) annualized one-trading-day inter-day adjusted realized daily 

variances,  *252 tRV , (ii) annualized one-trading-day inter-day adjusted realized daily standard 

deviations,  *252 tRV , (iii) annualized inter-day adjusted realized daily logarithmic standard 

deviations,  *252log tRV , and (iv) standardized log-returns, standardized with the annualized 

one-trading-day inter-day adjusted realized standard deviation,  *252 tt RVy . 

 Mean Median Maximum Minimum Std.Dev Skewness Kurtosis 
 *252 tRV  578.8 317.4 21924.7 16.6 993.7 8.1 115.2 

 *252 tRV  20.6 17.8 148.1 4.1 12.5 2.5 14.6 

 *252log tRV  2.88 2.88 5.00 1.40 0.52 0.27 3.01 

 *252 tt RVy  0.003 0.001 0.189 -0.177 0.06 0.08 2.56 

 

 

Table 3. The average of the squared one-step-ahead prediction errors, 

      



 

T

t

ttt RVRVT

~

1

2*
1|1

1 loglog
~  , for 1392

~ T . 

ARFIMA  0,,0 d   0.274550 ARFIMA  0,,2 d   0.272767 
ARFIMA  1,,0 d   0.272637 ARFIMA  1,,2 d   0.273602 
ARFIMA  0,,1 d   0.272630 HAR-RV 0.273167 
ARFIMA  1,,1 d  0.272686 HAR-sqRV 0.273706 

 

 


