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SUMMARY 

This report examines the energy conversion mechanisms 
which govern the emission of low frequency sound from an axi- 
symmetric jet pipe of arbitrary nozzle contraction ratio in 
the case of low Mach number nozzle flow. The incident acous- 
tic'energy which escapes from the nozzle is partitioned between 
two distinct disturbances in the exterior fluid. The first of 
these is the free space radiation, whose directivity is 
equivalent to that produced by monopole and dipole sources. 
Second, essentially incompressible vortex waves are excited by 
the shedding of vorticity from the nozzle lip, and may be 
associated with the large scale instabilities of the jet. Two 
linearized theoretical models are discussed. One of these is 
an exact linear theory in which the boundary of the jet is 
treated as an unstable vortex sheet. The second assumes that 
the finite width of the mean shear layer of the real jet can- 
not be neglected. The analytical results are shown to compare 
favorably with recent attenuation measurements. 
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INTRODUCTION 

This report examines the energy conversion mechanisms 
involved in the emission of sound from the interior of a jet 
pipe in the presence of a subsonic nozzle flow. This is par- 
ticularly relevant to the problem of "excess" or "core" noise 
produced by unsteady combustion and turbine blading in the 
jet pipe of an aeroengine. It is also of interest in connec- 
tion with the energy balance associated with the generation 
of resonant oscillations in the pipe and in musical instru- 
ments such as the flute. 

According to experiments of Crow (1972) and of Gerend, 
Kumasaki and Roundhill (1973), upstream generated sound is 
significantly amplified by passage through the jet at subsonic 
velocities, the additional radiation being attributed to the 
excitation of instability waves of the jet. This conclusion 
has been challenged by Moore (1977) and by Bechert, Michel and 
Pfizenmaier (1977) who pointed out that it was based on mea- 
surements of the acoustic intensity at a single far field 
location. In a series of carefully conducted experiments 
Moore demonstrated that over a wide frequency range and for 
jet Mach numbers lying between 0.1 - 0.9, there is no signifi- 
cant overall radiation from the instability mode at the 
excitation frequency. 

This question was investigated by Bechert, Michel and 
Pfizenmaier (1977) using an acoustic tone generated within 
the jet pipe by means of a system of matched loudspeakers. 
Although their experiment was confined to the case of a cold 
subsonic jet, which precluded a strict comparison with the 
earlier work, the absence of amplification at the tonal fre- 
quency was confirmed. Moreover, at sufficiently low acoustic 
frequencies, specifically for Helmholtz numbers ka less than 
unity - k being the acoustic wavenumber and a the nozzle 
exit radius - a considerable attenuation of the tone was 
observed during its emission through the nozzle flow into 
free space, an effect also reported by Moore (1977), and 
amounted to 15 dB or more for ka - 0.2. A high level of 
tonal excitation is known to bring about an overall increase 
in the broadband noise produced by the jet [Bechert and 
Pfizenmaier (1975a), Moore (1977)], but Bechert et aZ. (1977) 
were able to show that this additional radiation in no way 
compensates for the strong attenuation of the tone, the 
relationship between the broadband amplification and the 
excitation amplitude being essentially nonlinear. 
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Munt (1977) has described in detail a linearized analyti- 
cal theory of the radiation of sound from a circular cylindri- 
cal pipe in the presence of a subsonic nozzle flow. The jet 
shear layer was approximated by an infinitely thin cylindrical 
vortex sheet, and free space radiation directivities calcu- 
lated from this model were shown to be in excellent agreement 
with field shape data obtained by Pinker and Bryce (1976) 
using a jet pipe with a conical nozzle. This led Bechert, 
Michel and Pfizenmaier (1977) to suggest that the same theory 
could well account for the attenuation observed in their 
experiment at low frequencies. In this report we shall verify 
that this is indeed the case. No direct use will be made of 
Munt's formulae, however, since, although valid over a wide 
range of conditions, they offer no insight into the nature of 
the physical mechanisms which are called into play during the 
passage of an acoustic disturbance through the nozzle. 

The interaction of an acoustic tone with low Mach number 
nozzle flow has been studied in relation to laminar-turbulent 
transition in a separated boundary layer. Brown (1935) and 
the experiments of Freymuth (1966) indicate that the influence 
of the sound on the free shear layer of the jet is restricted 
to the region close to the nozzle lip. Bechert and Pfizen- 
maier (1975b) examined the nature of the flow near the lip, 
and concluded that at sufficiently small Strouhal numbers 
based on boundary layer width, the disturbed flow leaves the 
trailing edge tangentially, in accordance with the Kutta- 
Joukowski hypothesis. We shall argue below that an attenua- 
tion of the acoustic field is necessary in order to energize 
the essentially incompressible, unsteady flow associated with 
the vorticity that must be shed from the lip to satisfy the 
Kutta condition. This may involve the growth of spatial 
instabilities of the jet, and in this case the attenuation may 
be regarded as being necessary to maintain the corresponding 
large scale 'coherent structures'. Of course, shed vorticity 
and instability waves are known to produce sound by their 
subsequent interaction with the nozzle, but at low frequencies 
the radiated sound power is of order MJ(ka), relative to the 
power loss from the incident sound wave, MJ being the Mach 
number of the jet. This is accordingly a situation in which 
the production of aerodynamic quadrupole sources (Lighthill 
19521, in the form of initially organized vertical distur- 
bances, results in an overall reduction in the acoustic energy! 

All available theories of jet-acoustic interaction (e.g., 
Crighton 1972; Savkar 1975; Munt 1977) employ a vortex sheet 
representation of the free shear layer and impose the Kutta 
condition. The Strouhal numbers of interest in the present 
discussion are sufficiently small to justify the application 
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of this condition. However, the experiments of Pinker and 
Bryce (1976) and the results reported by Savkar (1975) indi- 
cate that there is no significant excitation of the instability 
mode for a cold jet operating at low subsonic Mach numbers. 
This suggests that it may be necessary to take account of the 
finite width of the mean shear layer, and indeed it may be 
argued that Pinker and Bryce's experimental results reveal 
that close to the nozzle lip, the radial length scale of the 
unsteady shed vorticity is much smaller than that of the 
shear layer. 

In this report the attenuation of the sound will be dis- 
cussed in terms of Lighthill's (1952) acoustic analogy theory 
of aerodynamic sound by means of the formulation proposed by 
the author (Howe 1975). It will be assumed that the acoustic 
wavelength is large compared with the radius of the jet pipe, 
and this will enable the analysis to take account of an arbi- 
trary contraction in the cross-sectional area of the pipe at 
the nozzle. The general problem is formulated in Sec. 2 and 
the characteristics of the free space radiation field are 
deduced. The mechanism of energy transfer to the essentially 
incompressible vortex motions of the jet is described in 
Sec. 3; specific details are given for an exterior shear flow 
modelled by a vortex sheet, and also for an approximate 
treatment of the case of finite shear layer width (Sec. 4). 
The predictions of the analysis are discussed in relation to 
the experiments of Pinker & Bryce (1976) and Bechert, Michel 
& Pfizenmaier (1977). Various analytical results are 
collected together in an appendix. 
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THE RADIATION OF INTERNALLY GENERATED SOUND 

FROM A LOW MACH NUMBER NOZZLE FLOW 

Formulation of the Problem 

An axi-symmetric air-jet of density p1 and sound speed c1 
exhausts from a jet pipe of cross-sectional area A through 
a nozzle of area A into a stationary ambient medium of density 
and sound speed respectively equal to p (Fig. 1). The 
Mach number of the flow is taken to be &fi!ciently small that 
variations in p,, cl, may be neglected. This will be the case 
if the steady upstream flow velocity U and the nozzle exit 
velocity UJ satisfy M2, MJ2 C-C 1, where Mach numbers M, MJ are 
defined by 

M = U/c. , M J = UJ,/C1 (2.1) 
1 

Dissipation processes will also be neglected, so that for 
uniform upstream conditions the flow is homentropic, although 
there may be a variation in the specific entropy s across 
the mean shear layer of the jet. 

A plane harmonic sound wave is incident on the nozzle 
exit from within the jet pipe. It is required to determine 
the relation between the flux WT, say, of acoustic energy 
through the nozzle, i.e., through the control surface C 
located just upstream of the contraction, and the total 
acoustic power WF radiated into the ambient medium. Let PI 
denote the amplitude of the incident wave, such that in 
the upstream region the incident pressure perturbation is 
given by the real part of 

' i P = PI e1 
klxl 
1 + M - wt > 

(2.2) 

In this expression w is the radian frequency, k, =-w/cl, t is 
the time, and the positive direction of the xl-axis of a 
rectangular coordinate system (x1, x2, x3) is parallel to the 
mean flow, the origin being located in the center of the 
nozzle-exit plane. 

The velocity u of the mean flow is a function of posi- 
tion both within the nozzle and in the exterior fluid, and 
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FIG. 1. SCHEMATIC ILLUSTRATION OF THE CONFIGURATION CONSIDERED IN THE ANALYSIS 
OF THE EMISSION OF LOW FREQUENCY SOUND FROM A JET PIPE IN THE PRESENCE 
OF A MEAN NOZZLE FLOW. 



in this case the Lighthill (1952) acoustic analogy theory of 
aerodynamic sound assumes a convenient form when the stagna- 
tion enthalpy B, rather than the pressure, is taken as the 
fundamental acoustic variable. The stagnation enthalpy is 
given in terms of the velocity y and the specific enthalpy 
h by 

B =h+$v2 . (2.3) 

In the absence of dissipative processes the inhomogeneous 
wave equation of the acoustic analogy theory becomes 

{&(-j!&)+ $2. V-V2} B=div~--$:.x (2.4) 

where 

x = :JJ - TVs 3 (2.5) 

D/Dt = a/at + y-a/a?, g = curl y is the vorticity, and T is 
the temperature (Howe 1975). 

The terms on the right of (2.4) vanish identically except 
in the shear layer of the jet. The fluid is hornentropic in 
the ambient medium and within and upstream of the potential 
core of the jet. In those regions the pressure is a function 
of the density alone, and the specific enthalpy h may be 

identifed with 
I 

dp/p. Similarly, Crocco's form of the momen- 
tum equation 

av 
$+ VB = -x (2.6) 

(Liepmann & Roshko 1957, p. 193) reduces to the statement 
that the flow is irrotational outside of the jet mixing 
region, with 

B =Bn-$$ (n = 0, 1) l (2.7) 
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Here 4 is the perturbation velocity potential, and Bn takes 
respectively constant values B,, B,, say, in the ambient 
medium and in the potential region of the jet. In free space 
the acoustic pressure p is given by 

PC B’ 
% (2.8) 

where B' = B - B,. 

It follows from these remarks that when the mean flow 
is disturbed by the incident wave (2.2), a linearized de- 
scription of the subsequent motion in the potential regions 
is obtained by setting the variable coefficients of the wave 
operator on the left of (2.4) equal to their local undisturbed 
mean values. When terms of O(MJ2) relative to unity are also 
discarded the propagation of small disturbances may be taken 
to be described by the convected wave equation 

i ( 
1 a + U.2 2 - a2 1 

Cl 

at 7 axj ) I 
axjZ B=O 

j 

in the potential region of the jet, and by 

1 a? a2 ---- B=O , 
co2 at2 axs2 7 

(2.9) 

(2.10) 

in the ambient medium. 

Energy Flux Within the Jet Pipe 

The flux of acoustic energy through the control surface 
C (Fig. 1) into the nozzle may be calculated from the general 
formula 

WT = A Pl<uB'> + U<p'B'> (2.11) 



- 

given by Landau and Lifshitz (1959, §§6, 64). The angle 
brackets denote an average over a wave period 2r/w, u is the 
perturbation velocity which at C is parallel to the x,-axis, 
and p' is the perturbation density. 

Equation (2.3) may be used to express the incident wave 
(2.2) in the form 

klxl - wt 
BI' = I B e i l+M ( 

BI 
PI 

= (l+M) K 
! 

(2.12) 

Let R be a reflection coefficient such that upstream of the 
nozzle contraction the total perturbation stagnation enthalpy 
is given by the real part of 

ik,x, 
e(l+M) + Re 

-iot 
B' = B I 

(2.13) 

Equations (2.6), (2.13) and the adiabatic relatisn between 
density and pressure may now be used to express the energy 
flux (2.11) in the form 

w = 
T wo(l - /RI') (2.14) 

where W, E 9 lBI1 2/2c is the power flux of the incident 
wave (2.2). This result can be shown to coincide with 
Blokhintsev's (1946) formula 

(2.15) 

where pR is the amplitude of the reflected pressure perturba- 
tion. The reflection coefficient R is determined by the 
exterior flow properties of the jet contained within the 
aerodynamic source vector x, and will be discussed in Sec. 3. 
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The Free Space Radiation 

The characteristic acoustic wavelength is assumed to be 
large compared with the length scale of the nozzle and this, 
together with the low Mach number restriction, enables the 
effect of fluid compressibility in the nozzle to be neglected 
in a first approximation. Broadband fluctuations in the flow 
produced by nonlinear fluctuations in the aerodynamic source 
vector Y of Eq. (2.4) are also ignored. This is justified 
by the experiments of Bechert, Michel and Pfizenmaier (1977), 
which reveal negligible amplification of the broadband radia- 
tion for moderate amplitude tonal excitation. Thus only that 
component of x which is directly proportional to the incident 
wave need be retained. 

These approximations permit the replacement of the propa- 
gation operator in the acoustic analogy Eq. (2.4) by its 
standard convected far field form (2.9) [reducing to (2.10) 
in free space], and also allow the second aerodynamic source 
term on the right hand side to be discarded, yielding 

2 
(2.16) 

(c.f. Howe 1975). 

A formal representation of the solution of this equation 
in free space may be obtained by making use of the "advanced 
potential" Green's function G(x,y,t,T) which satisfies 

i a2 G=~(x 
ayj- 

1 

1 
_ - yU(t - T) , (2.17) 

the condition of vanishing normal derivative on the rigid 
surface of the nozzle, and corresponds to an implosive sink 
at (z,t) which vanishes for T > t. In the absence of mean 
flow the form of G(x,y,t,T) has been given by Ffowcs Williams 
and Howe (1975) in ehe compact approximation in which the 
acoustic wavelength is large compared to the length scale of 
the nozzle; the modifications required in the present dis- 
cussion are outlined in the Appendix. 
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Equation (2.16) is solved by applying Kirchoff's proce- 
dure to (2.16), (2.17) (see, e.g., Stratton 1941, Chapter 8), 
and for an observer located in free space we find 

P/PO = B(+t) 

= - 
s 

aG zmau d3ydr aB 
_ - GK dy,dy,d-r 

(2.18) 

where the surface integral is taken over the control surface 
C of Fig. 1 and D/D-c = a/aT + uaiay,. In obtaining this 
result the momentum equation (2.6) has been used to eliminate 
contributions from surface integrals over the rigid nozzle. 
The volume integral is restricted to the shear layer of the 
jet where x is non-zero, and accounts for the sound produced 
by vorticity and entropy fluctuations induced by the incident 
sound wave (2.2). 

The contribution BC, say, from the surface integral in 
(2.18) is evaluated by noting that the radiation condition 
ensures that only the component of B corresponding to the 
incident wave (2.2) need be considered. This contribution 
may be deduced from the representation (A.3) of G(x,y,t,T) 
given in the Appendix, and is found to be - .-. - 

-iw[tl 
-ik;ABI e (2.19) 

BC(x,t) = 
ST-- 

where 0 is the angle between the positive x,-axis and the 
observer direction, and [ ] denotes evaluation at the re- 
tarded time t - IXI/Co* 

Similarly, using (A.3) and noting that x must be an 
axi-symmetric function of position, the vol?ime integral B 
of (2.18) becomes x 

=l A 
BX (x,t) = 

ik,(l-c a case) ik (c')cosB 
47rlxl d% + +-$ jixJ+ 

(2.20) 
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where the function FA(y) is the potential of incompressible, 
ideal flow from the nozzle which has unit velocity in the 
positive x1 -direction upstream of the nozzle contraction. 
Actually we have neglected a term in (2.20) which is O(M) 
smaller, M being the Mach number of the upstream flow. This 
is a valid approximation for large values of the area ratio 
A/A, and in discussing experiments of Bechert, Michel and 
Pfizenmaier (1977) we shall be concerned principally with a 
case in which the nozzle exit Mach number M = 0.3 and 
M = 0.04. J 

Combining (2.19), (2.20) it follows that in the ambient 
medium 

-iklA 

i 

= -m BIe 

ic lCOSe 
d3y - zc 

0 

(2.21) 
A complete specification of the radiation depends on the dis- 
tribution x_ of the aerodynamic sources, which is the subject 
of the next section, although it may be anticipated from the 
definition (2.5) that the contribution from the second term 
in the brace brackets of (2.21) is O(M,)Bl, where M = UJ/C . 
The expansion of (2.21) in powers of M,cose and the'rejectign 
of terms 'L O(Mo2> relative to unity, shows that in the leading 
approximation the radiation pattern is equivalent to that pro- 
duced by a monopole-dipole combination, the axis of the dipole 
being perpendicular to the nozzle exit plant. 
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THE FLUX OF ENERGY THROUGH THE NOZZLE 

The Reflection Coefficient 

Consider the fluctuating flow at a point just upstream 
of the nozzle contraction, which by hypothesis lies well 
within an acoustic wavelength of the nozzle exit (k,x,<<l). 
Expand the right hand side of (2.13) in powers of k,x, to 
obtain 

I -iwt 
B = 

BI (1 + R) + ik,x, (1 - R) + . . . I (3.1) 

in which terms - O(k,x,M) relative to unity have been dis- 
carded - M being the upstream Mach number of the flow. 

In the incompressible approximation it follows from (2.7) 
that in the potential region of the jet within the nozzle 

I 1 -iwt 
B = BI 

1 
~1 + B(F,(x) + FJ(x)) e 

-I ' (3.2) 

where a,B are constant, FA(x) is the potential function in- 
troduced in Sec. 2 which dezcribes axi-symmetric flow from 
the nozzle in the absence of the jet, and FJ(X) represents 
the correction function required to account for the "back- 
reaction" of the exterior jet flow. This back-reaction is 
given by the causal solution of (2.16) in the incompressible 
limit: 

a2BJ 
-ax.2- 

=gi 

3 j 

where 

BJ = BBIFJ(x) eeiwt 

I (3.3) 

(3.4) 

The behavior of BJ upstream of the nozzle contraction is 
required in order to match the incompressible representation 
(3.2) with the near field approximation (3.1). This can be 
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determined by making use of the corresponding limiting form 
of the Green's function G(x,y) which satisfies .-a .-d 

_ a2G 
- = 6(x - y) a.,.2 _ _ 

y7 

, 
(3.5) 

and the condition of vanishing normal derivative on the rigid 
surface of the nozzle. When the source point k is within or 
downstream of the nozzle and the observer location x is in 
the flow upstream of the contraction, it follows frGm a 
simple application of the reciprocal theorm (Rayleigh 1945, 
Sec. 294) that we may take 

G(X, Y) = -$ - s FA(y) . (3.6) 

Hence forming the convolution product of G and axj/axj we 
have in the upstream region 

(3.7) 

an expression which is independent of the upstream location x. 

This result shows that the reciprocating velocity of the 
fluid upstream of the nozzle exit is completely described by 
the potential FA(x) of (3.2). In the linearized approxima- 
tion x must be.proportional to this pulsational velocity, 
i.e., -to gBIe-iWt, and we may accordingly define a complex 
"hydrodynamic end-correction" 

ilH 
=y+i6 I (3.8) 

where y,6 are determined by incompressible properties of the 
exterior shear flow. Upstream of the contraction we then have 

-iwt 
B = J 

-BB*(Y + i6) e 
/ 

aFA 
x*ay d3y - ' (3.9) 

where real parts are to be taken. 
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The constant c1 in (3.2) accounts for the possibility of 
a periodic variation in the fluid pressure which is uniform 
throughout the whole of the incompressible nozzle flow region, 
and is associated with the monopole component of the radiation 
into the ambient medium given by (2.21). Let this monopole 
be represented by 

(3.10) 

for large 1x1. At distances 1x1 well within a wavelength of 
the nozzle cut large compared %ith the nozzle exit radius a, 
this expression may be expanded in powers of the retarded 
time: 

J&=$-e 
-iwt + ik,@m e -iot + . . . , 

(3.11) 

where k, = w/c,. The first term on the right describes a 
pulsation in fluid volume through a spherical control surface 
centered on the nozzle exit, and must equal that produced by 
the potential F (x) of (3.2). Noting that aFA/axl + 1 as 
X + -00 1 within t hG jet pipe, we therefore have 

BBIA = -4'@m . (3.12) 

The second term on the right of (3.11) generates a uni- 
form fluctuation in pressure which matches that within the 
nozzle provided that 

Eliminating Qrn from these relations we find: 

(3.13) 

a = -a 
( ) h k,A 

dT Pl . 

15 
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We are now ready to equate corresponding terms of the 
representations (3.11, (3.2) of the acoustic field, and there- 
by determine the reflection coefficient R in terms of the 
nozzle exit conditions. To do this first observe that upstream 
of the contraction FA(x) = x1 - X (see Appendix), where the 
added length x is real-and is proportional to the sum of the 
Helmholtz organ pipe end-correction (Rayleigh 1945, Chapter 16) 
and a component arising from the increased resistance to flow 
produced by the contraction. 

Thus letting x + -03 in (3.2) and identifying terms in 
the resulting expression with corresponding members of (3.1), 
we obtain: 

B = ik,(l - R) 

= -(I + R) 
(3.15a,b) 

use having been made of (3.9), (3.14), and where we have set 

A = x+Y (3.16) 

Hence solving for R we find 

(3.17) 

and using this expression in Eq. (2.14) it follows that the 
flux of energy from the nozzle can be expressed in the form: 

wo I 
t 
4kA6A + (fe)(koa)'I 

w = 
T 

4ki6A+(e)(koa)2 '+(k,h12 I) 
(3.18) 
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This result shows that the flux of energy into the 
nozzle from the incident sound wave (2.2) is determined by 
two factors, corresponding to each of the terms in the brace 
brackets of the numerator. The first depends on the imaginary 
part of the hydrodynamic end-correction RH, and is entirely 
a feature of incompressible properties of the exterior jet 
flow. The second, proportional to (k a)2, arises from the 
monopole component of the sound radiated into the ambient 
medium. There is no explicit contribution from the dipole 
component of (2.21) because it is automatically contained 
within the hydrodynamic term of (3.18). 

The Mechanism of Hydrodynamic Attenuation 

An appreciation of the mechanism by which the exterior 
jet flow extracts energy from the acoustic field may be 
obtained from a consideration of the contribution of the 
back-reaction BJ of the shear flow to the general energy 
flux formula (2.11), and we shall do this before proceeding 
to applications of the above results to specific modelings 
of the shear flow. 

In the present approximation only the first 
('incompressible') term in the parentheses of (2.11) need 
be retained. When the pulsatile nozzle flow is normalized 
with respect to the coefficient B of (3.2) it follows from 
our earlier discussion that the axial perturbation velocity 
u depends only on the geometrical configuration of the 
nozzle [i.e., 
exterior flow. 

on FA(z)] and not on the properties of the 
Hence (2.11) implies that the exterior shear 

flow induces an additional energy flux WJ, say, through the 
nozzle, where 

W 
J = Ap l<uBJ> (3.19) 

NOW aFA/aX1 = 1 upstream of the nozzle contraction, so 
that the local fluctuating velocity YA that would be produced 
by the acoustic field in the exterior fluid in the absence 
of the jet is just 

VA 
= uVF A 

(3.20) 
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Equations (3.9), (3.19) therefore show that 

w = J / 
yA- ~1 x d3y 

= 
-/ 

yA’ (P 1y - p,TVs) d3y , (3.21) 

which states that the power flux through the nozzle induced by 
the essentially incompressible properties of the exterior flow 
is proportional to the rate of working of the aerodynamic di- 
pole z in the acoustic component yA of the fluctuating velocity 
field. Note that the "lift" experienced by a vortex element 
is equal to -w,,v per unit mass, and the specific "inertia" 
force TVs is equal to -pV(l/p) in the absence of dissipation, 
and represents the reaction of a fluid particle when accel- 
erated in an environment of different density. 

A particularly illuminating form of (3.21) emerges in 
the case of uniform mean density. The "inertia" force 
vanishes identically, and in the incompressible limit 

(w~v)i = -% 
aXj 

ViVj) - & (4v2) . 
_ w i 

Integrate (3.21) by parts, and observe that there is no 
contribution from the resulting integral over the surface 
of the nozzle, to obtain 

'J = - / Eij P oviVjd3Y I 

where 

E.. = 
13 

(3.23) 

(3.24) 

is the tensor rate of strain produced by the acoustic com- 
ponent of the fluctuating nozzle flow. The velocity Vi in 
(3.22), (3.23) may be regarded as the total velocity minus 
the aCOUStiC component VA, Since curl xA G 0 and the con- 
tribution -gAyA to the lift involves the pesformance of no 
work. Thus the rate at which energy exhausts from the nozzle 
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due to the excitation of incompressible disturbances in the 
exterior jet flow is just equal to the rate at which work is 
performed on the exterior fluid by the Reynolds stress 
system-p,viv. of 

i 
the vertical flow in the rate of strain field 

of the acous ic disturbance. The energy provided in this way 
is used to generate vorticity at the lip of the nozzle and 
may thereby maintain a steady system of spatial instability 
waves on the jet. The latter may be identified with the 
incipient form of the "coherent structures" observed by 
Moore (1977) and others. 

A preliminary quantitative estimate of the magnitude of 
the hydrodynamic attenuation is readily obtained in the limit 
of small Strouhal number wa/U 

s 
. Let uA denote the amplitude 

of the mean axial component o the fluctuating jet velocity 
in the nozzle exit plane. Reference to (3.2) and use of the 
momentum equation (2.6) (with x Z 0), indicates that 

A 8B1 
UA = -l= I (3.25) 

the factor A/A arising from the continuity of flow in the 
nozzle. The nozzle fluctuations produce a periodic train of 
axi-symmetric vortex rings whose circulation per unit length 
in the x1 -direction iS equal to UJ + uAe-iwt at the nozzle 
exit, and which convect downstream at velocity (UJ + uAeWiWt)/2 
(cf. Saffman 1975). If the mean shear layer close to the 
nozzle exit is not too thick, it follows in a linearized 
approximation that 

-iw(t - 2x1 - 
w,v = uAUJc6(r - a) e uJ ) I w w (3.26) 

, II 

where the radial coordinate r = /x22 + x32 and r is the 
corresponding unit vector. 

In the case of a cold jet, for which p g p (3.26) is 
the only contribution to the aerodynamic so&ce $Gctor x of 
(2.5) and its substitution into equation (3.9) shows that: 

2iwy, 
VFA'dS e 'J I (3.27) 
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where the surface integral is taken over the nominal boundary 
r= a of the jet. At sufficiently small Strouhal numbers the 
variation of the exponential in the integrand may be neglected 
over that portion of the boundary where VF 

AF 
is significant, 

and it then follows from the definition of A that 

AUJ = y 0:6=x I (3.28) 

a result which illustrates the dependence of the end-correction 
RH on the hydrodynamic length scale Uj/w of the fluctuating 
nozzle flow. 

Inserting these values of y,6 in equation (3.17) we find 
that the reflection coefficient R has the explicit form 

1-k MJ+ 
i 

(koa12 
4 

+ ik,X 
R=- I 

1+$ (koa) 2 (3.29) 
MJ+ 4 - ik,X 

in which k, = k, for a cold jet. Similarly the energy flux 
WT becomes: 

+ (koU2 
(3.30) 

These approximate expressions, which are nonetheless 
characteristic of the general case, show that in the presence 
of the mean nozzle flow, the limit of long wavelength 
(k,a, k,h + 0) does not reproduce the classical results 
R= -1, wT = 0 for reflection at an open end. Indeed for 
sufficiently large area ratio A/A, it is clear that R = +l 
and WT = 4W, A/AMj. 
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Exterior Flow Models 

A precise determination of the complex hydrodynamic end- 
correction !$ = y + i6, 
involves the analysis 

and thence of the energy flux WT, 
of a specific modeling of the exterior 

shear flow. This is facilitated by the assumption that the 
nozzle possesses a circular cylindrical neck which extends a 
distance of at least one nozzle exit radius downstream of the 
contraction as in Fig. 1. It may then be asserted that local 
details of the exterior incompressible flow do not depend 
critically on upstream variations in nozzle geometry, an 
hypothesis which is justified by the observation that the 
back-reaction BJ produces no additional velocity fluctuations 
in the upstream region. We shall therefore examine shear 
flows calculated on the basis of pulsatile incompressible 
flow from a semi-infinite, circular cylindrical duct. 

Two cases I, II will be discussed. In case I the bound- 
ary of the jet is represented by a linearly disturbed vortex 
sheet. A thorough discussion of this problem for compressible 
flow has been given by Munt (1977), and a statement of the 
relevant results obtaining in the incompressible limit is 
therefore sufficient for our purposes. Additional details 
are outlined in the Appendix. 

In Munt's theory the Kutta condition of finiteness is 
imposed at the nozzle lip. This is presumably appropriate 
at the relatively low Strouhal numbers of interest in the 
present discussion (c.f., Bechert and Pfizenmaier 1975 b); 
at higher frequencies and correspondingly smaller length 
scales, sound emerges from the duct without "feeling" the 
lip, and propagates along energy conserving ray paths through 
the mean shear layer. The shear layer is unstable, however, 
the instabilities being associated with eigenmodes of oscil- 
lation of the jet, and Munt obtains a strictly causal solution 
in which these modes are triggered and sustained by the flucu- 
ating nozzle flow. 

Taking the incompressible limit in Munt's theory (see 
Appendix) the hydrodynamic end-correction RH = y + i6 can be 
expressed in the following form in 

Case I: 

AUJ 
Y = Aw (c - l-l) I (3.31a,b) 
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The dimensionless quantities S, 11, v are real functions of the 
Strouhal number wa/UJ and the density ratio p,,/p,, and are 
defined by means of the dispersion function 

UJk. 
yp ka, 2 

given in equation (A.7) of the Appendix, whose zeros determine 
those axi-symmetric incompressible eigenmodes of a circular 
cylindrical jet which are proportional to exp(i(kx, - wt)}. 
When w is real and positive, say, the zero k = kl of Z cor- 
responding to the spatially growing instability mode of the 
jet lies in the fourth quadrant of the k-plane, and defines 
1-I, v by 

v+ip=+ 
JI (3.32) 

The imaginary part p tends to zero as wa/UJ -f 0. The real 
part v determines the attenuation of the incident sound due 
to the excitation of the instability wave on the jet, and 

v +-1 as ma/U * 0 J 
(3.33) 

P, 
+ Pl+Po 

as wa/U + O3 J i 

and varies monotonically between these limits for intermediate 
values of the Strouhal number. 

The remaining function < is given in terms of Z by 

I (3.34) 

and tends to zero with the Strouhal number wa/UJ. 

Pinker and Bryce (1976) and Savkar (1975) suggest that 
in practice instability waves are not excited at low subsonic 
Mach numbers. This would be expected to be the case if the 
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width of- the shear layer were sufficiently large with respect 
to the hydrodynamic length scale of the fluctuating flow. We 
shall therefore examine the opposite extreme to that discussed 
by Munt (19771, and assume in Case II that the effect of the 
finite width of the shear layer cannot be neglected. 

An approximate analytical treatment of this case may be 
given by noting that in the experiments of Pinker and Bryce 
(1976), the width of the shear layer at the nozzle exit is 
substantailly greater than the anticipated viscous controlled 
width _ /x of vorticity shed from the nozzle lip (VA being 
the kinema ic viscosity - 1.5 x lo5 m2/s for air at 300OK) ft. 
even at the lowest frequency of interest. Thus if attention 
be confined to a cold jet, in the linearized approximation the 
aerodynamic source dipole becomes 

(3.35) 

where vr, w'respectively denote the perturbation velocity and 
vortic>ty-, and Q, go are the corresponding mean flow quan- 
tities. The back-reaction BJ therefore satisfies the following 
approximate form of (3.3): 

-v'B, = div (w',,U) (3.36) 

provided that the length scale of the shed vorticity is small 
compared with the width of the shear layer. In this case the 
shed vorticity is located within the shear layer in a region 
of effectively uniform mean velocity and convects downstream 
at this velocity which is well approximated by one half of 
the nominal center-line jet velocity UJ (Davies, Fisher and 
Barrat 1963). The vorticity w' is assumed to convect along 
the mean boundary r = a of thg jet and its strength is deter- 
mined via the Kutta condition. The procedure is outlined in 
the Appendix, and leads to the following determination of the 
hydrodynamic end-correction in Case II: 

AUtJ = y 0; 6== (3.37) 

Return now to the general energy flux formula (3.18). 
Using the above results for the hydrodynamic end-correction 
we obtain the following predictions for the total perturbation 
energy flux from the nozzle: 
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Case I: Vortex Sheet Model: 

A / Wo(&4MJ"+ f$f (koa12 

4MJv+ F (koa)' 
I) ( 

'+ k,X+$MJ(5-d 2 (3.38) 

Case II: Finite Width Shear Layer (CoZd Jet): 

(3.39) 

Observe that the formula (3.38) for Case I reduces to the 
approximation (3.30) in the limit of small Strouhal number 
(when v + 1, c, v + 0) for a cold jet. Interestingly enough, 
we also see that, again for a cold jet, the limiting value 
V - 0.5 as wa/U + 03 implies that the vortex sheet model 
(3.38) reduces go the finite width shear layer model (3.39). 
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THE RADIATED SOUND POWER: COMPARISON WITH EXPERIMENT 

The substitution of (3.9) and the explicit linearized form 
of x, into equation (2.21) enables the sound field to be ex- 
pressed in the following form: 

CIA -iw[t] c 00sa 
(y+iS) (1 - coA Ie 

+&-- 
J 

b,vr:d"y 1 

-j 

(4.1) 

where vr is the radial component of the perturbation velocity. 
In the case of the vortex sheet model the mean vorticity w. 
forms a singular distribution on r = a, and the integration in 
(4.1) reduces to the determination of the volume flux through 
the nominal boundary of the jet. Since compressible effects 
are unimportant in the nozzle region this flux is equal to the 
volume flux from the nozzle, and in the approximation of ( .l) 
the integrated term of (4.1) becomes $BI(l-R)M,cosB e-l"Ct 7 s 
This result would also be expected to be valid to a good 
approximation for a shear layer of finite width, because the 
principal contribution to the integral is from the region close 
to the nozzle where the shear layer is relatively thin. Hence 
using this, and equations (3.15a), (3.17) to calculate 6, it 
follows that in the approximation of long wavelength the in- 
tensity of the free space radiation becomes: 

Case I: 

2 

<p f W, CA:) (*I (k,al ' j (~+(~+v)Mocos~) ‘+Mo* (5-1~) '~0~~9 1 
poc 0 4rrlx( 2 (l+$lJ") *+(jzA) *MJ2 (i-u) * 

Case II: (cold jet) 
2 

I++ case 
<pz> - w, ($1 (k,a) ' 
-- 9OCO 4alxl 2 l+AIYJ 

A2 

(4.2) 

(4.3) 

When A = A (no nozzle contraction) the vortex sheet Case I 
agrees with the corresponding limiting form of Munt's (1977) 
exact analysis. 
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The directivities predicted by these formulae are illus- 
trated in Fig. 2 and compared with the field shape data of 
Pinker and Bryce (1976). That data is for a cold jet with 
M, Z MJ = 0.3, and the curve in Case I has been calculated 
for a Strouhal number wa/UJ = 0.8 which corresponds to the 
experiment at the Helmholtz number k,a = 0.24. Actually the 
comparison with experiment is probably relevant only for 8 
in the range 60~ - 120°, say, where cos29 is not particularly 
significant, since our analysis has systematically neglected 
terms ,0(Mo2> relative to unity. The data has been matched 
with the theory at 0 = 90°, and for the above range in 0 both 
models exhibit a tolerable representation of the experimental 
results, although the overall agreement is better for the 
vortex sheet model of Case I. Note however, that there exists 
an absolute difference in the levels predicted by the two 
models at go", caused principally by the presence of the area 
ratio A/A in the denominator of each of (4.21, (4.3). In the 
Pinker and Bryce experiment A/A = 3.7, and this implies that 
Case II exceeds Case I by about 2.5 dB at 8 = 90". This is 
the only way in which the area ratio A/A influences the 
radiated sound field, and presumably accounts for the good 
agreement with experiment of Munt's (1977) field shape pre- 
dictions based on a circular cylindrical nozzle. 

Integration of (4.2), (4.3) over the surface of a large 
sphere of radius 1x1 centered on the nozzle exit yields the 
total radiated sousd power W . The contribution from the 
dipole component of the fiel i!i 
of the monopole, 

is now O(Mo2) relative to that 
and this must be rejected in order to be 

consistent with our previous approximations. In the limit 
of long wavelength we then find by comparison with the 
equations (3.8), (3.9) giving the energy flux WT through the 
nozzle: 

Case I: 

wF (m)(koa)2 
-= PIG, 

wT 4MJv+(-E$-f) (koa)' 1 

(4.4) 

26 



I I I I I 20 40 . 
60 80 100 120 140 

8” 

FIG. 2. PREDICTED FIELD SHAPE CHARACTERISTICS FOR ka = 0.24 
AND MJ = 0.3: CASE I , VORTEX SHEET MODEL; 

CASE II ------, FINITE WIDTH SHEAR LAYER MODEL. THE 
ANGLE 8 IS MEASURED FROM THE DOWNSTREAM DIRECTION OF 
THE JET AXIS, AND THE EXPERIMENTAL POINTS ARE TAKEN FROM 
PINKER AND BRYCE (1976): A - ka = 0.24; 0 - ka = 0.6 AT 

MJ = 0.3. 
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Case II (coZd jet): 

wF -= (k,a) 2 

wT 2MJ+ (k,dL 
(4.5) 

These results are independent of the area ratio A/i-!. 

Bechert, Michel and Pfizenmaier (1977) have measured the 
attenuation 10 log,, (WF/WT) dB in the case of a cold jet over 
a range of subsonic nozzle exit Mach number MJ, the area ratio 
A/A being equal to 7.6. Their results are shown in Fig. 3. 
Figure 4 illustrates the comparison of the predictions (4.4), 
(4.5) of Cases I, II with the particular low Mach number case 
MJ E M, = 0.3. Both of the theoretical curves predict iden- 
tical overestimates of the attenuation at the higher values 
of ka, for which v - 0.5, but of course the compact approxima- 
tion used in deriving our results would be expected to fail 
in this region. At lower values of ka the finite shear layer 
model produces a marginally better agreement with experiment. 
In any event the agreement with experiment is sufficiently 
good to give confidence in the validity of the hydrodynamic 
attenuation mechanism, and indicates that at low frequencies 
the details of both the attenuation levels and the radiation 
directivities are relatively insensitive to the precise 
modeling of the exterior nozzle flow. 
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FIG. 3. MEASURED RATIO OF THE FAR FIELD SOUND POWER WF TO 
THE NOZZLE POWER FLUX WT AS A FUNCTION OF THE 
NOZZLE EXIT HELMHOLTZ NUMBER ka FOR VARIOUS VALUES 
0F JET MACH NUMBER MJ (BECHERT, ET AL. 1977). 
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FIG. 4. COMPARISON OF PREDICTED AND MEASURED RATIO WF/WT AS 

A FUNCTION OF ka FOR MJ = 0.3. EXPERIMENT: 0 0 0 

(BECHERT ET ~~~977); THEORY: CASE I, VORTEX 

SHEET MODEL, ------ CASE II, FINITE WIDTH SHEAR LAYER 

MODEL. 
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CONCLUSION 

The emission of low frequency sound from a jet pipe in 
the presence of a subsonic nozzle flow involves a transfer 
of energy from the acoustic wave to essentially incompresible 
vortex waves on the jet. This produces a net attenuation in 
the transmitted sound which is not compensated by the coherent 
and/or broadband aerodynamic sound subsequently radiated by 
the vortex motions. At low Mach number and Helmholtz number 
ka the predicted attenuation and the field shape of the ra- 
diated sound do not depend critically on the details of the 
theoretical modeling of the exterior flow, although a vortex 
sheet model tends to predict a slightly lower overall level 
of radiation than one which incorporates the effects of the 
finite width of the shear layer. This supports the view 
that, as far as the interaction with the nozzle is concerned, 
the question of whether or not the exterior flow is stable is 
quite irrelevant, because the principal interaction occurs 
within one hydrodynamic length scale from the lip of the 
nozzle. The Kutta condition plays a much more significant 
role in as much as shed vorticity provides both the vehicle 
by which hydrodynamic energy is conveyed downstream, and also, 
through its interaction with the nozzle, is responsible for 
the production of the aerodynamic component of the radiated 
sound. 

The presence of hydrodynamic attenuation at low fre- 
quencies implies that the flow of energy through the nozzle 
attains a minimum over a fairly well-defined range of fre- 
quencies, since power transmission is high also at high 
frequencies due to direct radiation. This could be a signifi- 
cant aspect governing the excitation of duct resonances. The 
existence of such a minimum was noted by Mechel, Merlins and 
Schilz (1967), who mistakenly attributed the increased energy 
flux at low frequencies to a greater radiation efficiency. 
In this connection a rough estimate of the practical impor- 
tance of hydrodynamic attenuation at low frequencies may be 
obtained from a consideration of Howe's (1975) treatment of 
the aerodynamic generation of standing waves in a pipe of 
length R and cross-section A which is open at both ends. An 
air jet of cross-section AE and Mach number MF impinges on a 
sharp edge of the opening at one end of the pipe, and standing 
waves of frequency w = nnc/R are excited, where n is the 
largest integer satisfying 

44A 

93’ 
+ c Am(n), 

m (5.1) 
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C denoting a sum over frequency dependent terms arising from 
the various dissipative mechanisms involved. These include 
radiation from the two open ends, irreversible processes in 
the boundary layer at the walls of the tube, and, in the 
present instance, hydrodynamic attenuation produced by the 
mean flow from the remote end of the pipe. The latter may 
be shown to correspond to A = w6/c, where 6 is the imaginary 
part of the hydrodynamic end correction. Using the finite 
shear layer model of Sec. 3, and assuming that half of the air 
from the incident jet passes down the pipe [so that 
MJ = ME(~E/~~)], it follows from (5.1) that 

M > 
E 

44A E 
A C’ m 

Am(n) 

7 (5.2) 

where c1 denotes the summation excluding the hydrodynamic 
term. The demoninator in this result would be replaced by 
unity in the absence of hydrodynamic attenuation. Thus, 
using the value AE/A = 0.25 (appropriate for a descant re- 
corder with all finger holes closed), we see that hydrodynamic 
attenuation increases by more than a factor of 3 the Mach 
number ME required to excite the nth mode. 

In the case of the jet pipe of an aeroengine, Bechert, 
Michel and Pfizenmaier (1977) point out that the large hydro- 
dynamic attenuation observed in their experiment at low fre- 
quencies would correspond to the lower end of the audible 
range (50 - 100 Hz). Effective attenuation could be achieved 
at higher frequencies, however, by making use of multitube 
nozzles. Dean and Tester (1975) have already exploited this 
silencing mechanism by means of a bias air flow through an 
acoustic wall liner, an expedient originally proposed for 
this purpose by Barthel (1958). 

The author gratefully acknowledges the benefit of dis- 
cussions of the material of this report with Dr. -1ng. D. Bechert 
of Deutsche Forschungs- und Versuchsanstalt fiir Luft- und 
Raumfahrt, Berlin, and Dr. R.M. Munt of the University of 
Dundee. 
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APPENDIX 

Compact Green's Function for an Axi-Symmetric Nozzle 

In the absence of a mean flow Ffowcs Williams and Howe 
(1975) hav e given the following expression for the compact 
approximation to the Green's function for an axi-symmetric 
nozzle of the type shown in Fig. 1: 

G(s,y,t,d = 
(15 - K(Y) 1 - $ F&‘> 

(A-1) 

This is suitable for treating aerodynamic noise problems in 
which the characteristic wavelength of the sound is large 
compared with the nozzle radius. The observer is located in 
free space at the far field point 5, c0 is the sound speed 
in the ambient medium and c1 that upstream of the nozzle exit. 

The functions FA(J'), K(x) are harmonic, and satisfy the 
normal velocity condition GaV(FA, 5) = 0 on the walls of the 
rigid nozzle, g being the unit normal. In particular, 
FA(y) is the potential of an axi-symmetric incompressible 
nozzle flow, and, taking the coordinate origin in the center 
of the nozzle exit plane, as in the main text, is normalized 
such that: 

(i> for ]y]>>a in free space 

(ii) within the nozzle in the vicinity of the point N of 
Fig. 1, 

2 = 0.6133a being the "end-correction" of a semi-infinite 
c rcular cylindrical pipe (Noble, 1958, page 138); 
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(iii) upstream of the nozzle contraction 

F*(Y) 2 Y, - Z+ J 

where X is the effective, geometric nozzle end correction 
given approximately by 

(A.21 

A being the length of the neck of the nozzle, and L the axial 
distance over which the contraction occurs (Rayleigh 1945, 
Sec. 308). 

The vector valued function K(y) has the following 
properties: 

(i> for IyI >> a in free space 

K(Y) N- y, ; w . 

(ii) for IYll >> a in the nozzle 

K(y) = constant ; w 5 

(iii) in the vicinity of the nozzle exit 

K(y) = Yl - ; F&l, F&)’ F&l : v s 

the precise forms of the potential functions FB, FG are not 
required in applications to axi-symmetric source distributions. 

In the presence of a low Mach number mean flow from the 
nozzle, the representation (A.l) of the Green's function must 
be modified to read: 

G(x,y,t,T) F .h 6 t - T - - w 

i 
(A.31 
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In this expression the additional factor (l+M), where 
M = U/c,, accounts for the convection of the "imploding" 
wave by the mean flow upstream of the nozzle contraction. 

Incompressible Pulsatile Nozzle Flow 

The potential Y(x)eeiwt E [F (x) + FJ(x)]eeiWt which 
describes incompressible pulsatili Flow in the downstream 
portion of the nozzle in the presence of a mean flow may be 
estimated from the corresponding solution for a semi-infinite, 
circular cylindrical duct. In the case in which the shear 
layer of the exterior jet flow is modeled by a linearly dis- 
turbed vortex sheet, the Wiener-Hopf procedure described by 
Munt (1977) for the compressible problem yields for the 
solution in which the Kutta condition is imposed: 

7 
Y (xl = lim 

E++o 2 
I ‘EXl 

--2 + 
1 

& 
o-iEUJ)F(k,r)K+(iE)K_(k) 

/ I 

ikxl 
e dk I 

-03 
kl (w-UJk)Z+(is)Z_(k) 

(A.4) 

where 

F (k,r 1 = I,(lklr)/I,(lkla) (r < a) 
(A.51 

= - UK, (I+)/( w-UJk)K1(lk\a) (r > a) 

and the first term in the brace brackets of (A.4) is omitted 
when r > a. Here and elsewhere lkl = Jk' + ez and I 
are modified Bessel Functions of order n (Abramowitz &d 

Kn 

Stegun, 1964, p. 374). 

The various quantities appearing in these formulae are 
defined as follows. A function f(k) which is regular and 
non-zero on the real k-axis defines func.zions f? (k) re- 
spectively regular and non-zero in Im k < 0 by means of 

f,(k) = exp In f(5) 
6-k '5 

-co 

(A.61 
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provided that the integral exists in an appropriate sense 
(Noble, 1958, page 13). 

The functions K, Z are given by 

K(k) = 21,(Ikja)K,(lk la 1 I 

I,(lk]a)K,(lkla) 

il - '3' 

+ I,(lkla)K, (Ikla) 

(A.'la,b) 

As x1 -t -a within the circular cylindrical duct the 
principal contribution to the integral in (A.4) is from a 
simple pole at k = -is. This yields the approximate form of 
Y close to the point N of the nozzle of Fig. 1, viz: 

Now as E + 0 

K+(iE)K-(GE) = 1 - 2&R, , (A.91 

where R = 0.6133a is the end correction of a circular cylindri- 
cal pip: (Noble 1958, p. 138). 

The solution (A-4) will satisfy the causality condition, 
i.e., the condition that the fluctuations in the exterior 
flow are a consequence of the pulsating nozzle flow, provided 
that it is regular in an upper complex w-plane (Lighthill, 
1960). For Imw w +m the dispersion function Z(k) + l/2 
as k + f 03 on the real axis and 

Z+(iE)Z-(-is) = exp In Z(k)*dkl 
kL + E'- I 

(A.lO) 
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The result for real w is obtained by analytic continuation, 
and as w approaches the positive real axis, say, the zero 
k= k of the dispersion function Z(k) which corresponds to 
the i&stability mode of the semi-infinite jet crosses the 
real k-axis from the first quadrant into the fourth quadrant. 
Deforming the contour in (A.lO) to take account of this, and 
comparing the result with the integral along the real k-axis, 
we find that for real, positive w 

I& Z+(iE)Z-(-ie) = exp Y 
I 

Zn Z(k)dk + 
k2 -00 

(A.ll) 

The integral here is split into real and imaginary parts 
by noting that as Imw + +0 the argument of Z(k) decreases 
discontinuously by 2?'r as k increases through k = w/UJ, and in 
this way we find that for small E 

m 

Z+(iE)z- (-iE) = exp 5 I 

J 1 

2ieUJ + 2iE 1 
w 

w 
(A.121 

Substitution of (A.9), (A.12) into (A.8) gives the limiting 
value 

Y AI 
= ^I x 

I- Lo - uJ u ) .T 
T(<-p) - i"v ( , w f 

(A.13) 

where T, FC, v are defined in (3.32), (3.34). Reference to 
the defining properties of FA(x) given above then shows that 

FJ(x) + - + 2 (r-1-I) + iv , 

upstream of the nozzle contraction, which immediately leads 
to (3.31a,b). 
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The Case of a Finite Width Shear Layer 

To solve (3.36) first set in the linearized approximation 

w’,U = s - +iU,o$ e I 
(A.151 

and solve (3.36) by the Wiener-Hopf procedure to give 

BJ = (k-i&N-(k) I,(( k/r) ikx, 

-co klIl(Ikla) (k-2w/UJ) e dk 
(A.16) 

for r -<_ a. - 

Write BA = BBIFA(~) - The circulation density CJ of the. 
shed vorticity is chosen to ensure that BA + BJ satisfies the 
Kutta condition at the nozzle lip. An integral expression 
for BA is obtained by setting U 

i! 
E 0 in (A.4>, and by con- 

sidering the behavior of the in egrands in (A.4), (A.16) 
as k -f 03 it follows in the usual way (Jones 1972) that 

-iAgBI 
u = (A.17) 

This may be used in (A.6) to determine the upstream limiting 
form of BJ and thence to give (3.37). 
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