%I M2220 #74 Jul 04 2024 20:10:17
%S 1,3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,2,1,3,4,1,1,2,14,3,12,1,
%T 15,3,1,4,534,1,1,5,1,1,121,1,2,2,4,10,3,2,2,41,1,1,1,3,7,2,2,9,4,1,3,
%U 7,6,1,1,2,2,9,3,1,1,69,4,4,5,12,1,1,5,15,1,4
%N Continued fraction for cube root of 2.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Harry J. Smith, <a href="/A002945/b002945.txt">Table of n, a(n) for n = 0..19999</a>
%H BCMATH, <a href="http://www.numbertheory.org/php/cfrac_nthroot.html">Continued fraction expansion of the n-th root of a positive rational</a>.
%H E. Bombieri and A. J. van der Poorten, <a href="https://doi.org/10.1007/978-94-017-1108-1_10">Continued fractions of algebraic numbers</a>, In: W. Bosma, A. van der Poorten (eds), Computational Algebra and Number Theory. Mathematics and Its Applications, vol. 325.
%H Ashok Kumar Gupta and Ashok Kumar Mittal, <a href="http://arxiv.org/abs/math/0002227">Bifurcating continued fractions</a>, arXiv:math/0002227 [math.GM] (2000).
%H S. Lang and H. Trotter, <a href="http://dx.doi.org/10.1515/crll.1972.255.112">Continued fractions for some algebraic numbers</a>, J. Reine Angew. Math. 255 (1972), 112-134.
%H S. Lang and H. Trotter, <a href="/A002945/a002945.pdf">Continued fractions for some algebraic numbers</a>, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]
%H Herman P. Robinson, <a href="/A003116/a003116.pdf">Letter to N. J. A. Sloane, Nov 13 1973</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DelianConstant.html">Delian Constant</a>.
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%F From _Robert Israel_, Jul 30 2014: (Start)
%F Bombieri/van der Poorten give a complicated formula:
%F a(n) = floor((-1)^(n+1)*3*p(n)^2/(q(n)*(p(n)^3-2*q(n)^3)) - q(n-1)/q(n)),
%F p(n+1) = a(n)*p(n) + p(n-1),
%F q(n+1) = a(n)*q(n) + q(n-1),
%F with a(1) = 1, p(1) = 1, q(1) = 0, p(2) = 1, q(2) = 1. (End)
%e 2^(1/3) = 1.25992104989487316... = 1 + 1/(3 + 1/(1 + 1/(5 + 1/(1 + ...)))).
%p N:= 100: # to get a(1) to a(N)
%p a[1] := 1: p[1] := 1: q[1] := 0: p[2] := 1: q[2] := 1:
%p for n from 2 to N do
%p a[n] := floor((-1)^(n+1)*3*p[n]^2/(q[n]*(p[n]^3-2*q[n]^3)) - q[n-1]/q[n]);
%p p[n+1] := a[n]*p[n] + p[n-1];
%p q[n+1] := a[n]*q[n] + q[n-1];
%p od:
%p seq(a[i],i=1..N); # _Robert Israel_, Jul 30 2014
%t ContinuedFraction[Power[2, (3)^-1],70] (* _Harvey P. Dale_, Sep 29 2011 *)
%o (PARI) allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/3)); for (n=1, 20000, write("b002945.txt", n-1, " ", x[n])); \\ _Harry J. Smith_, May 08 2009
%o (Magma) ContinuedFraction(2^(1/3)); // _Vincenzo Librandi_, Oct 08 2017
%Y Cf. A002946, A002947, A002948, A002949, A002580 (decimal expansion).
%Y Cf. A002351, A002352 (convergents).
%K cofr,nonn
%O 0,2
%A _N. J. A. Sloane_
%E BCMATH link from Keith R Matthews (keithmatt(AT)gmail.com), Jun 04 2006
%E Offset changed by _Andrew Howroyd_, Jul 04 2024