(Translated by https://www.hiragana.jp/)
A004768 - OEIS
login
A004768
Binary expansion ends 001.
5
9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273, 281, 289, 297, 305, 313, 321, 329, 337, 345, 353, 361, 369, 377, 385, 393, 401, 409, 417, 425, 433, 441, 449, 457, 465, 473, 481, 489
OFFSET
0,1
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 28 ).
FORMULA
From Reinhard Zumkeller, Oct 30 2008: (Start)
a(n) = 8*n + 9.
For n > 0: a(n) = A017077(n-1). (End)
a(n) = 2*a(n-1) - a(n-2); a(0)=9, a(1)=17. - Harvey P. Dale, May 10 2015
G.f.: (9 - x) / (1 - x)^2. - Colin Barker, Jul 04 2019
E.g.f.: exp(x)*(9 + 8*x). - Stefano Spezia, May 13 2021
MATHEMATICA
Rest[FromDigits[#, 2]&/@(Join[#, {0, 0, 1}]&/@Tuples[{0, 1}, 7])] (* or *) LinearRecurrence[{2, -1}, {9, 17}, 100] (* Harvey P. Dale, May 10 2015 *)
PROG
(Magma) [8*n + 9: n in [0..60]]; // Vincenzo Librandi, Jul 11 2011
(PARI) a(n) = 8*n+9 \\ Charles R Greathouse IV, Sep 24 2012
(PARI) Vec((9 - x) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Jul 04 2019
(Python)
def a(n): return 8*n + 9
print([a(n) for n in range(61)]) # Michael S. Branicky, Sep 17 2021
CROSSREFS
Complement of A004774.
Cf. A017077.
Cf. A146302. - Reinhard Zumkeller, Oct 30 2008
Sequence in context: A346146 A143850 A017077 * A226323 A211432 A211422
KEYWORD
nonn,easy
STATUS
approved