(Translated by https://www.hiragana.jp/)
(* Mathematica program for A005635,
Jean-Francois Alcover, Jul 23 2022,
translated and adapted from N. J. A. Sloane's Maple code *)
e[n_]:=Module[{k},If[Mod[n, 2]==0, k=n/2;If[Mod[k, 2]==0,
Return[(k!*(k+2)/2)^2], Return[((k-1)!*(k+1)^2/2)^2]],
k=(n-1)/2;If[Mod[k, 2]==0, Return[((k!)^2/12)*(3*k^3+16*k^2+18*k+8)],
Return[((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3)]]]];(* Gives A122749 *)
d[n_]:=d[n]=If[n<=1, 1, d[n-1]+(n-1)*d[n-2]];(* Gives A000085 *)
c[n_]:=Module[{k}, If[Mod[n, 2]==0, Return[0]];k=(n-1)/2;If[Mod[k, 2]==0,
Return[k*2^(k-1)*((k/2)!)^2], Return[2^k*
(((k+1)/2)!)^2]]](* Gives A122693 *)
Q[n_]:=Module[{m}, If[Mod[n, 8]!=1, Return[0]];
m=(n-1)/8;((2*m)!)^2/(m!)^2];(* Gives A122747 *)
M[n_]:=Module[{k}, If[Mod[n, 2]==0, k=n/2;If[Mod[k, 2]==0,
Return[k!*(k+2)/2], Return[(k-1)!*(k+1)^2/2]], k=(n-1)/2;
Return[d[k]*d[k+1]]]];(* Gives A122748 *)
a[n_]:=If[n<=1, Return[1], e[n]/8+c[n]/8+Q[n]/4+M[n]/4];(* Gives A005635 *)
(* The following additional programs produce
A123071, A005631, A123072, A005633, A005632, A005634 *)
B[n_]:=B[n]=Which[n==0||n==-2, 1, OddQ[n], B[n-1],
True, 2*B[n-2]+(n-2)*B[n-4]];
S[n_]:=S[n]=Module[{k}, If[Mod[n, 2]==0, 0, k=(n-1)/2;
B[k]*B[k+1]]];(* Gives A123071 *)
psi[n_]:=S[n]/2;(* Gives A005631 *)
zeta[n_]:=Q[n]/2;(* Gives A123072 *)
mu[n_]:=(M[n]-S[n])/2;(* Gives A005633 *)
chi[n_]:=(c[n]-S[n]-Q[n])/4;(* Gives A005632 *)
eps[n_]:=e[n]/8-c[n]/8+S[n]/4-M[n]/4;(* Gives A005634 *)
a[n_]:=If[ n<=1, 1, e[n]/8+c[n]/8+Q[n]/4+M[n]/4];
Table[a[n], {n, 0, 30}]