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Abstract

A system of numeration in which every k, with 0 < k ∈ Z, appears as a restricted

growth string, or RGS, has the k-th Catalan number as the RGS 10k. This induces a

canonical ordering of the vertices of the dihedral quotients of the middle-levels graphs.

1 Restricted Growth Strings

Let 0 ≤ m, k ∈ Z and let n = 2k + 1. In this paper, each such an m is represented [1, 8] as
a restricted growth string (or RGS) α = α(m), related to the Catalan numbers Ck = 1

n

(

n

k

)

([9] A000108) in that α(Ck) = 10 · · ·0 = 10k ([1] pg. 325). These RGS s α form a system of
numeration S ([9] A239903) that encodes the vertices of the quotient graph Rk of the middle-
levels graph Mk (Section 3) under action of the dihedral group D2n of order 2n. In fact, the
RGS s encode n-strings F (α) (via “castling”, Section 2) that become in Section 7 the vertices
of Rk (via “un-castling”, Section 5). Moreover, Rk has its vertices in 1-1 correspondence with
the first Ck RGS s. This arises from the 1-factorization of Rk given via the lexical matchings
of [5], as shown from Section 6 on, yielding a canonical setting for Rk and therefore for Mk.

Entering into details, the non-negative integers m in their natural order can be repre-
sented by the successive members of a sequence S of RGS s that starts with

0, 1, 10, 11, 12, 100, 101, 110, 111, 112, 120, 121, 122, 123, 1000, . . . (1)

and that has the RGS s 1, 10, 100 = 102, 1000 = 103, . . . , 10 · · ·0 = 10t (t ≥ 0) etc. cor-
responding respectively to the numbers C1 = 1, C2 = 2, C3 = 5, C4 = 14, . . . , Ct+1 =

1
2t+3

(

2t+3
t+1

)

, etc., where symbolic powers are used. To visualize the continuation of S in (1),
each RGS in S is transformed for adequate k > 1 into a k-string ak−1ak−2 · · · a2a1 by prefixing
to it enough zeros if necessary. Then, the following definition allows the said continuation
by excising all zero entries previous to the leftmost nonzero entry of such ak−1ak−2 · · · a2a1.
Letting 1 < k ∈ Z, a k-germ is a (k − 1)-string ak−1ak−2 · · · a2a1 satisfying: 1. The left-
most position in ak−1ak−2 · · ·a2a1, namely position k − 1, contains a digit ak−1 ∈ {0, 1}. 2.
Given a position i > 1 with i < k in ak−1ak−2 · · ·a2a1, then to the immediate right of the
corresponding digit ai, the digit ai−1 (meaning at position i− 1) satisfies 0 ≤ ai−1 ≤ ai + 1.
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The reader may compare these strings with the essentially similar Catalan RGS s of
Section 15.2 [1], or with the mixed radix systems [2], including the factorial number, or
factoradic, system [3], [4], [6] pg. 192, [7] pg. 12, or [9] A007623. We refer as well to Stanley’s
interpretation of Catalan numbers [10], Exercise (u), as mentioned in [9] A239903.

Every k-germ ak−1ak−2 · · · a2a1 yields a (k+ 1)-germ akak−1ak−2 · · · a2a1 = 0ak−1ak−2 · · ·
a2a1. A k-germ ak−1ak−2 · · · a2a1 6= 00 · · ·0 stripped of the null digits to the left of the
leftmost position containing digit 1 becomes a nonzero RGS. We also consider the RGS 0
corresponding to the null k-germs, where 0 < k ∈ Z.

The k-germs are ordered as follows: Given any two k-germs, say α = ak−1 · · ·a2a1 and
β = bk−1 · · · b2b1, where α 6= β, we say that α precedes β, written α < β, whenever either (i)
ak−1 < bk−1 or (ii) aj = bj , for k − 1 ≤ j ≤ i+ 1, and ai < bi, for some 1 ≤ i < k − 1.

The order defined this way on k-germs of RGS s α(m) (m ≤ Ck+1) is said to be their
stair-wise order, corresponding biunivocally (via the assignmentm→ α(m)) with the natural
order on m. Thus, there are exactly Ck+1 k-germs α = α(m) < 10k, for every k > 0.

To determine the RGS corresponding to a given decimal integer x0, or vice versa, we
employ Catalan’s triangle ∆, namely a triangular arrangement composed by positive integers
starting with the following rows ∆j , for j = 0, . . . , 8:

1
1 1
1
1

2
3

2
5 5

1
1

4
5

9
14

14
28

14
42 42

1
1

6
7

20
27

48
75

90
165

132
297

132
429 429

1 8 35 110 275 572 1001 1430 1430

with a linear reading as that of the sequence A009766 [9]. The numbers τ ji in ∆j (0 ≤ j ∈ Z),
given by τ ji = (j + i)!(j − i+ 1)/(i!(j + 1)!), are characterized as well by four items:
1. τ j0 = 1, for every j ≥ 0;
2. τ j1 = j and τ jj = τ jj−1, for every j ≥ 1;

3. τ ji = τ j−1
i + τ ji−1, for every j ≥ 2 and i = 1, . . . , j − 2;

4.
∑j

i=0 τ
j
i = τ j+1

j = τ j+1
j+1 = Cj, for every j ≥ 1.

The determination of the RGS corresponding to a decimal integer x0 proceeds as follows.
Let y0 = τk+1

k be the largest member of the second diagonal of ∆ with y0 ≤ x0. Let
x1 = x0 − y0. If x1 > 0, then let Y1 = {τ jk−1}

k+b1
j=k be the largest set of successive terms in the

(k − 1)-column of ∆ with y1 =
∑

(Y1) ≤ x1. Either Y1 = ∅, in which case we take b1 = −1,
or not, in which case b1 = |Y1| − 1. Let x2 = x1 − y1. If x2 > 0, then let Y2 = {τ jk−2}

k+b2
j=k be

the largest set of successive terms in the (k− 2)-column of ∆ with y2 =
∑

(Y2) ≤ x2. Either
Y2 = ∅, in which case we take b2 = −1, or not, in which case b2 = |Y3| − 1. Iteratively, we
arrive at a null xk. Then the RGS corresponding to x0 is ak−1ak−2 · · ·a1, where ak−1 = 1,
ak−2 = 1 + b1, . . ., and a1 = 1 + bk.

For example, if x0 = 38, then y0 = τ 43 = 14, x1 = x0 − y0 = 38 − 14 = 24, y1 =
τ 32 + τ 42 = 5 + 9 = 14, x2 = x1 − y1 = 24 − 14 = 10, y2 = τ 21 + τ 31 + τ 41 = 2 + 3 + 4 = 9,
x3 = x2 − y2 = 10 − 9 = 1, y3 = τ 10 = 1 and x4 = x3 − y3 = 1 − 1 = 0, so that b1 = 1,
b2 = 2, and b3 = 0, taking to a4 = 1, a3 = 1 + b1 = 2, a2 = 1 + b2 = 3 and a1 = 1 + b3 = 1,
determining the 5-germ of 38 to be a4a3a2a1 = 1231. If x0 = 20, then y0 = τ 43 = 14,
x1 = x0 − y0 = 20− 14 = 6, y1 = τ 32 = 5, x2 = x1− y1 = 1, y2 = 0 is an empty sum (since its
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possible summand τ 21 > 1 = x2), x3 = x2−y2 = 1, y3 = τ 10 = 1 and x4 = x3−x3 = 1−1 = 0,
determining the 5-germ of 20 to be a4a3a2a1 = 1101. Moreover, if x0 = 19, then y0 = τ 43 = 14,
x1 = x0 − y0 = 19− 14 = 5, y1 = τ 32 = 5, x2 = x1 − y1 = 5− 5 = 0, determining the 5-germ
a4a3a2a1 = 1100.

Given an RGS or a k-germ ak−1 · · · a1, the considerations above can easily be played
backwards to recover the corresponding decimal integer x0.

2 Castling

Theorem 1. Each k-germ α 6= 0k−1 determines a k-germ β(α) = bk−1 · · · b1 < α with
bi = ai − 1, where ai is the rightmost nonzero entry of α, and aj = bj for j 6= i. Now, the
k-germs form a tree Tk rooted at 0k−1 in which each k-germ α 6= 0k−1 is a child of β(α).

Proof. This is immediate, illustrated in the first three columns of Table I, (table which as a
whole is detailed below and serves as illustration to the proof of Theorem 2).

TABLE I

m α β F (β) i W i |X | Y |Z i W i | Y |X |Z i F (α) α

0 0 − − − − − 210∗∗ 0
1 1 0 210∗∗ 1 2 | 1 | 0∗ |∗ 2 | 0∗ | 1 |∗ 20∗1∗ 1

0 00 − − − − − 3210∗∗∗ 00
1 01 00 3210∗∗∗ 1 3 | 2 | 1 0∗ ∗|∗ 3 | 1 0 ∗ ∗| 2 |∗ 310∗∗2∗ 01
2 10 00 3210∗∗∗ 2 32 | 1 | 0∗ | ∗∗ 32 | 0 ∗ | 1 | ∗ ∗ 320∗1∗∗ 10
3 11 10 320∗1∗∗ 1 3 | 20∗ | 1∗ |∗ 3 | 1 ∗ | 2 0 ∗ |∗ 31∗20∗∗ 11
4 12 11 31∗20∗∗ 1 3 | 1∗2 | 0∗ |∗ 3 | 0 ∗ | 1 ∗ 2 |∗ 30∗1∗2∗ 12

0 000 − − − − − 43210 ∗ ∗ ∗ ∗ 000
1 001 000 43210 ∗ ∗ ∗ ∗ 1 4|3|210 ∗ ∗ ∗ | ∗ 4|210 ∗ ∗ ∗ |3|∗ 4210 ∗ ∗ ∗ 3 ∗ 001
2 010 000 43210 ∗ ∗ ∗ ∗ 2 43|2|10 ∗ ∗| ∗ ∗ 43|10 ∗ ∗|2| ∗ ∗ 4310 ∗ ∗ 2 ∗ ∗ 010
3 011 010 4310 ∗ ∗2 ∗ ∗ 1 4|310 ∗ ∗|2 ∗ | ∗ 4|2 ∗ |310 ∗ ∗| ∗ 42 ∗ 310 ∗ ∗ ∗ 011
4 012 011 42 ∗ 310 ∗ ∗∗ 1 4|2 ∗ 3|10 ∗ ∗| ∗ 4|10 ∗ ∗|2 ∗ 3| ∗ 410 ∗ ∗2 ∗ 3 ∗ 012
5 100 000 43210 ∗ ∗ ∗ ∗ 3 432|1|0 ∗ | ∗ ∗ ∗ 432|0 ∗ |1| ∗ ∗ ∗ 4320 ∗ 1 ∗ ∗ ∗ 100
6 101 100 4320 ∗ 1 ∗ ∗∗ 1 4|3|20 ∗ 1 ∗ ∗| ∗ 4|20 ∗ 1 ∗ ∗|3 | ∗ 420 ∗ 1 ∗ ∗ 3 ∗ 101
7 110 100 4320 ∗ 1 ∗ ∗∗ 2 43|20 ∗ |1 ∗ | ∗ ∗ 43|1 ∗ |20 ∗ | ∗ ∗ 431 ∗ 20 ∗ ∗ ∗ 110
8 111 110 431 ∗ 20 ∗ ∗∗ 1 4|31 ∗ |20 ∗ ∗|∗ 4|20 ∗ ∗| 31 ∗ | ∗ 420 ∗ ∗ 31 ∗ ∗ 111
9 112 111 420 ∗ ∗31 ∗ ∗ 1 4|20 ∗ ∗3|1 ∗ |∗ 4|1 ∗ |20 ∗ ∗ 3| ∗ 41 ∗ 20 ∗ ∗ 3 ∗ 112
10 120 110 431 ∗ 20 ∗ ∗∗ 2 43|1 ∗ 2|0 ∗ | ∗ ∗ 43|0 ∗ |1 ∗ 2| ∗ ∗ 430 ∗ 1 ∗ 2 ∗ ∗ 120
11 121 120 430 ∗ 1 ∗ 2 ∗ ∗ 1 4|30 ∗ 1 ∗ |2 ∗ |∗ 4|2 ∗ |30 ∗ 1 ∗ |∗ 42 ∗ 30 ∗ 1 ∗ ∗ 121
12 122 121 42 ∗ 30 ∗ 1 ∗ ∗ 1 4|2 ∗ 30 ∗ |1 ∗ |∗ 4|1 ∗ |2 ∗ 30 ∗ |∗ 41 ∗ 2 ∗ 30 ∗ ∗ 122
13 123 122 41 ∗ 2 ∗ 30 ∗ ∗ 1 4|1 ∗ 2 ∗ 3|0 ∗ |∗ 4|0 ∗ |1 ∗ 2 ∗ 3|∗ 40 ∗ 1 ∗ 2 ∗ 3∗ 123

By representing Tk with each k-germ β having its children α enclosed between parentheses
after β, and separating siblings with commas, we can write
T4 = 000(001, 010(011(012)), 100(101, 110(111(121)), 120(121(122(123))))).

The procedure of three steps in Theorem 2 below will be called castling procedure.

3



Theorem 2. To each k-germ α = ak−1 · · ·a1 corresponds an n-string F (α) = f0f1 · · · f2k
whose entries are k asterisks (∗) and the numbers 0, 1, . . . , k (once each), and such that
F (0k−1) = k(k − 1)(k− 2) · · ·210 ∗ · · · ∗. If α 6= 0k−1, then F (α) is obtained from the parent
F (β) = F (β(α)) = h0h1 · · ·h2k of α in Tk by means of the following castling procedure steps:

1. let W i = h0h1 · · ·hi−1 = f0f1 · · · fi−1 and Z i = h2k−i+1 · · ·h2k−1h2k = f2k−i+1 · · · f2k−1f2k
be respectively the initial and terminal substrings of length i in F (β);

2. let Ω > 0 be the leftmost entry of the substring U = F (β) \ (W i ∪ Z i) and consider the
concatenation U = X|Y , with Y starting at entry Ω− 1;

3. by noticing that F (β) = W i|X|Y |Z i, set F (α) = W i|Y |X|Z i.

As a result: (a) the leftmost entry of each F (α) is k; (b) each number to the immediate
right of a number b ∈ {1, . . . , k} in such F (α) is less than b; (c) 0∗ is a substring of F (α),
but ∗0 is not; (d) W i is a number i-substring; (e) Z i is formed by i of the k asterisks.

Proof. Let α be a k-germ α = ak−1 · · ·a1 6= 0k−1. In the sequence of applications of items
1-3 along the path in Tk from its root 0k−1 to α, unit augmentation of ai for larger values
of i, (0 < i < k), must occur earlier, and then in strictly descending order of the entries
i of the intermediate k-germs. Thus, the length of the inner substring X|Y is maintained
non-decreasing after each application. This is illustrated in Table I above, where the order
of the appearing substrings X and Y , that have their first elements being respectively Ω
and Ω − 1, is reversed in successively decreasing steps. In the process, items (a)-(e) in the
statement are seen to be satisfied.

In Table I, the k-germs α are presented in stair-wise order (see first column) for k = 2, 3, 4,
both on the second and ninth columns; their corresponding images under F are shown on the
eighth column. The three successive listings in the table have Ck rows each, where C2 = 2,
C3 = 5 and C4 = 14; the remaining columns in the table are filled, from the third row on, as
follows: (i) β as arising in item (c) of Theorem 2; (ii) F (β), taken from the eighth column
in the previous row; (iii) the length i (k− 1 ≥ i ≥ 1) of W i and Z i; (iv) the decomposition
W i|Y |X|Z i of F (β); (vi) the decomposition W i|X|Y |Z i of F (α), re-concatenated in the
following, or eighth column as F (α), with α = F−1(α) in the ninth column.

To each F (α) corresponds a binary n-string φ(α) of weight k obtained by replacing each
number by 0 and each asterisk ∗ by 1. By attaching the entries of F (α) as subscripts to the
corresponding entries of φ(α), a subscripted binary n-string φ̄(α) is obtained, as on the left
of Table II. Let ℵ(φ(α)) be given by the reverse complement of φ(α), that is

if φ(α) = a0a1 · · · a2k, then ℵ(φ(α)) = ā2k · · · ā1ā0, (2)

where 0̄ = 1 and 1̄ = 0. A subscripted version ℵ̄ of ℵ is immediately obtained for φ̄(α). Each
image under ℵ is an n-string of weight k+1 and has the 1 s with number subscripts and the
0 s with asterisk subscripts. The number subscripts reappear from Section 6 to Section 8 as
lexical colors [5]. Table II illustrates the notions just presented, for k = 2, 3.

Not all the n-strings satisfying items (a)-(e) in Theorem 2 happen along a descending
rooted path of Tk via successive application of the castling procedure steps (1)-(3), (but those
that do end up representing in Section 7 the vertices of the graph Rk cited in Section 1). For
example, F (01) yields, with i = 1, the 7-tuple F ′ = 30 ∗ ∗21∗. However, φ(F ′) = 0011001 is
already represented cyclically in Table I by φ(F (11)) = 1100100, as needed in what follows.
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TABLE II

m α φ(α) φ̄(α) ℵ̄(φ(α)) = ℵ(φ̄(α)) ℵ(φ(α))

0 0 00011 0201001∗1∗ 0∗0∗101112 00111
1 1 00101 02001∗011∗ 0∗110∗1012 01011

0 00 0000111 030201001∗1∗1∗ 0∗0∗0∗10111213 0001111
1 01 0001101 0301001∗1∗021∗ 0∗120∗0∗101113 0100111
2 10 0001011 0302001∗011∗1∗ 0∗0∗110∗101213 0010111
3 11 0010011 03011∗02001∗1∗ 0∗0∗10120∗1113 0011011
4 12 0010101 03001∗011∗021∗ 0∗120∗110∗1013 0101011

3 The Middle-Levels Graphs

Let 1 < n ∈ Z. The n-cube graph Hn is the Hasse diagram of the Boolean lattice Bn on the
coordinate set [n] = {0, . . . , n− 1}. Each vertex of Hn is referred in three different ways, as:
(a) the subset A = {a0, a1, . . . , aj−1} = a0a1 · · · aj−1 of [n] it represents, for 0 < j ≤ n;
(b) the characteristic n-vector BA = (b0, b1, . . . , bn−1) over the field F2 that the subset A

in (a) represents, meaning it is given by bi = 1 if and only if i ∈ A, (i ∈ [n]), and
represented for short by BA = b0b1 · · · bn−1;

(c) the polynomial ǫA(x) = b0 + b1x+ · · ·+ bn−1x
n−1 associated with the vector BA in (b).

A subset A as in (a) is said to be the support of the vector BA in (b). For each j ∈ [n],
the j-level Lj is the vertex subset in Hn formed by those A ⊆ [n] with |A| = j.

For 1 ≤ k ∈ Z, the middle-levels graph Mk is defined as the subgraph of Hn induced
by Lk ∪ Lk+1 = V (Mk). This is the set of vertices of Mk. By viewing these vertices as
polynomials as in item (c) above, an equivalence relation π on V (Mk) is given by:

ǫA(x)πǫA′(x) ⇐⇒ ∃ i ∈ Z such that ǫA′(x) ≡ xiǫA(x) (mod 1 + xn),

where A,A′ ∈ V (Mk). There exists a quotient graph Mk/π induced by the following regular
(i.e., free and transitive) action Υ′ of Zn on V (Mk):

Υ′ : Zn × V (Mk) → V (Mk) such that Υ′(i, v) = v(x)xi (mod 1 + xn) (3)

to be used in the proof of Theorem 4 and presented again in polynomial terms, where
v ∈ V (Mk) and i ∈ Zn. Now, Mk/π is the graph whose vertices are the equivalence classes
under π of those of Mk and whose edges are the equivalence classes that π induces on the
edge set E(Mk) of Mk.

4 Reflection-Symmetry Bijections

The definition of ℵ in display (2) is extended to a bijection ℵ : Lk → Lk+1. The image of
each element v ∈ Lk through this bijection ℵ is said to be the reverse complement of v.

Let ρi : Li → Li/π be the canonical projection given by assigning b0b1 · · · bn−1 ∈ Li

to the class (b0b1 · · · bn−1) of b0b1 · · · bn−1 in ∈ Li/π, for i = k, k + 1. Let ℵπ : Lk/π →
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Lk+1/π be given by ℵπ((b0b1 · · · bn−1)) = (b̄n−1 · · · b̄1b̄0). Then, ℵπ is a bijection and there are
commutative identities ρk+1ℵ = ℵπρk and ρkℵ

−1 = ℵ−1
π ρk+1.

We list vertically the vertex parts Lk and Lk+1 of Mk (resp., Lk/π and Lk+1/π ofMk/π),
displaying a splitting of V (Mk) = Lk ∪ Lk+1 (resp., V (Mk)/π = Lk/π ∪ Lk+1/π) into pairs,
each pair contained in a corresponding horizontal line, its two composing vertices equidistant
from a vertical line ℓ (resp., ℓ/π) like the dashed line ℓ/π in Figure 1, Section 5 below, for
M2/π. Each resulting horizontal vertex pair in Mk (resp., Mk/π) must be of the form
(BA,ℵ(BA)) (resp., ((BA), (ℵ(BA)) = ℵπ((BA)))), disposed from left to right, at both sides
of ℓ. A non-horizontal edge of Mk/π is said to be a skew edge.

Theorem 3. To each skew edge e = (BA)(BA′) of Mk/π corresponds another skew edge
ℵπ((BA))ℵ

−1
π ((BA′)) obtained from e by reflection on the line ℓ/π. Then: (i) the skew edges

of Mk/π appear in pairs, with the endpoints in each pair forming two pairs of horizontal
vertices equidistant from ℓ/π; (ii) the horizontal edges of Mk/π have multiplicity ≤ 2.

Proof. The skew edges BABA′ and ℵ−1(BA′)ℵ(BA) of Mk are reflection of each other about
ℓ. They have the pairs (BA,ℵ(BA′)) and (ℵ−1(BA), BA′) of endpoints lying on horizontal
lines. Now, ρk and ρk+1 extend together to a covering graph map ρ :Mk →Mk/π, since the
edges accompany the projections correspondingly, as for k = 2:

ℵ((00011))= ℵ({00011,10001,11000,01100,00110})={00111,01110,11100,11001,10011}=(00111),

ℵ−1((01011))=ℵ−1({01011,10110,10110,11010,10101})={00101,10010,01001,10100,01010}=(00101),

showing the order of the elements in the images of the classes mod π under ℵ and ℵ−1,
(presented backwards, i.e. from right to left, cyclically between braces, and continuing on
the right once one reaches a leftmost brace). This behavior holds for every k > 2:

ℵ((b0···b2k))= ℵ({b0···b2k , b2k...b2k−1, ..., b1···b0})={b̄2k ···̄b0, b̄2k−1···̄b2k , ..., b̄1···̄b0}=(b̄2k ···̄b0),

ℵ−1((b̄′
2k

···̄b′
0
))=ℵ−1({b̄′

2k
···b̄′

0
, b̄′

2k−1
···b̄′

2k
, ..., b̄′

1
···̄b′

0
})={b′

0
···b′

2k
, b′

2k
···b′

2k−1
, ..., b′

1
···b′

0
}=(b′

0
···b′

2k
),

where (b0 · · · b2k) ∈ Lk/π and (b′0 · · · b
′
2k) ∈ Lk+1/π. This establishes item (i) of the statement.

Every horizontal edge vℵπ(v) of Mk/π has v ∈ Lk/π represented by b̄k · · · b̄10b1 · · · bk in
Lk, (so v = (b̄k · · · b̄10b1 · · · bk)). Thus, there are 2k such vertices in Lk and at most 2k corre-
sponding vertices of Lk/π. For example, (0k+11k) and (0(01)k) are endpoints in Lk/π of two
horizontal edges inMk/π, each. To prove that this implies item (ii), we have to see that there
cannot be more than two representatives b̄k · · · b̄1b0b1 · · · bk and c̄k · · · c̄1c0c1 · · · ck of a vertex
v ∈ Lk/π, with b0 = c0 = 0. Such a v would be written as v = (d0 · · · b0di+1 · · · dj−1c0 · · · d2k),
with b0 = di, c0 = dj and 0 < j − i ≤ k. A substring σ = di+1 · · · dj−1 with 0 < j − i ≤ k is
said to be (j − i)-feasible if v fulfills (ii) with multiplicity at least 2. Let us see that every
(j−i)-feasible substring σ forces in Lk/π only vertices ω ∈ Lk leading to two different (paral-
lel) horizontal edges in Mk/π incident to v. In fact, periodic continuation mod n of d0 · · ·d2k
both to the right of dj = c0 with minimal cyclic substring d̄j−1 · · · d̄i+11di+1 · · · dj−10 = Pr

and to the left of di = b0 with minimal cyclic substring 0di+1 · · · dj−11d̄j−1 · · · d̄i+1 = Pℓ yields
a two-way infinite string that winds up onto a class (d0 · · · d2k) containing such an ω. For
example, some pairs of feasible substrings σ and resulting vertices ω are:

(∅,(oo1)), (0,(o0o11)), (1,(o1o)), (02,(o00o111)), (01,(o01o011)), (12, o11o0)),
(03,o000o1111)), (010,(o010o101101)), (012,(o011o)), (101,(o101o)), (13,(o111o00)),

6



with ‘o’ indicating the positions b0 = 0 and c0 = 0, and where k has successive values
n = 1, 2, 1, 3, 3, 2, 4, 5, 2, 2, 3. (However, the substrings 021 and 102 are non-feasible). If σ
is a feasible substring and σ̄ is its reverse complement via ℵ, then the possible symmetrical
substrings about oσo = 0σ0 in a vertex v of Lk/π are in order of ascending length:

0σ0,
σ̄0σ0σ̄,
1σ̄0σ0σ̄1,

σ1σ̄0σ0σ̄1σ,
0σ1σ̄0σ0σ̄1σ0,

σ̄0σ1σ̄0σ0σ̄1σ0σ̄,
1σ̄0σ1σ̄0σ0σ̄1σ0σ̄1,
······························ ,

where we use again ‘0’ instead of ‘o’ for the entries immediately preceding and following the
shown central copy of σ. Due to this, the finite lateral periods of the resulting Pr and Pℓ do
not allow a third horizontal edge (at v inMk/π) up to returning to b0 or c0 since no entry e0 =
0 of (d0 · · ·d2k) other than b0 or c0 happens such that (d0 · · · d2k) has a third representative
ēk · · · ē10e1 · · · ek (besides b̄k · · · b̄10b1 · · · bk and c̄k · · · c̄10c1 · · · ck). Thus, those two horizontal
edges are produced solely from the feasible substrings di+1 · · · dj−1 characterized above.

To illustrate Theorem 3, let 1 < h < n in Z be such that gcd(h, n) = 1 and let λh :
Lk/π → Lk/π be given by λ((a0a1 · · ·an)) → (a0aha2h · · ·an−2han−h). For each h with 1 <
h ≤ k, there is at least one h-feasible substring σ and a resulting associated vertex v ∈ Lk/π
as in the proof of the theorem. For example, applying λh repeatedly by starting at v =
(0k+11k) ∈ Lk/π produces a number of such vertices v ∈ Lk/π. If we assume h = 2h′ with
h′ ∈ Z, then an h-feasible substring σ has the form σ = ā1 · · · āh′ah′ · · · a1, so there are at
least 2h

′

= 2
h

2 such h-feasible substrings.

5 Dihedral Actions and Quotients

Let G be a graph. An involution of G is a graph map ℵ : G→ G such that ℵ2 is the identity.
Given a graph G with an involution ℵ : G → G, an ℵ-folding of G is a graph H whose
vertices and edges are respectively the pairs {v,ℵ(v)} and {e,ℵ(e)}, where v ∈ V (G), and
e ∈ E(G). Here, e has end-vertices v and ℵ(v) if and only if {e,ℵ(e)} is a loop.

Note that both maps ℵ :Mk →Mk and ℵπ :Mk/π → Mk/π in Section 4 are involutions.
Let us denote each pair ((BA),ℵπ((BA))) ofMk/π, horizontally represented in Section 4, via
the notation [BA], where |A| = k. An ℵ-folding Rk of Mk/π is obtained whose vertices are
the pairs [BA] and having:
(1) an edge [BA][BA′] per skew-edge pair {(BA)ℵπ((BA′)), (BA′)ℵπ((BA))};
(2) a loop at [BA] per horizontal edge (BA)ℵπ((BA)). Because of Theorem 3, there

may be up to two loops at each vertex of Rk.

Theorem 4. Rk is a quotient graph of Mk under an action Υ : D2n ×Mk → Mk.

Proof. To define Υ, recall that D2n is the semidirect product Zn ⋊̺ Z2 via the group ho-
momorphism ̺ : Z2 → Aut(Zn) such that ̺(1) is the automorphism assigning i ∈ Zn to
(n− i) ∈ Zn and such that ̺(0) as the identity. If ∗ : D2n×D2n → D2n indicates group mul-
tiplication and i1, i2 ∈ Zn, then (i1, 0)∗(i2, j) = (i1+ i2, j) and (i1, 1)∗(i2, j) = (i1−i2, 1+j),
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for j ∈ Z2. Set Υ((i, j), v) = Υ′(i,ℵj(v)), for i ∈ Zn and j ∈ Z2, where Υ′ was defined in
display (3). It is easy to see that Υ is a well-defined action of D2n on Mk. By writing
(i, j) · v = Υ((i, j), v) and v = a0 · · ·a2k, we have (i, 0) · v = an−i+1 · · · a2ka0 · · · an−i = v′ and
(0, 1) · v′ = āi−1 · · · ā0ā2k · · · āi = (n− i, 1) · v = ((0, 1) ∗ (i, 0)) · v, leading to the compatibility
condition ((i, j) ∗ (i′, j′)) · v = (i, j) · ((i′, j′) · v) that a group action must satisfy, (together
with the identity condition).

Figure 1: Reflection symmetry of M2/π about a line ℓ/π and resulting graph map γ2

Let the graph map γk : Mk/π → Rk be the projection corresponding to the action Υ as
represented for k = 2 in Figure 1. This map is associated with reflection symmetry of M2/π
about the dashed vertical line ℓ/π acting as symmetry axis. In the figure, R2 is represented
as the image of γ2 and contains two vertices and just one (vertical) edge between them, with
each vertex incident to two loops. Both the representations of M2/π and R2 in the figure
have their edges indicated with colors 0,1,2, as arising from Section 6.

6 Lexical Procedure (or LP)

Let us see now how each vertex v of Lk/π has its incident edges enumerated via the lexical
colors 0, 1, . . . , k arising from the treatment of [5].

Figure 2: Representing the color assignment for k = 2

Let Pk+1 be the subgraph of the unit-distance graph of the real line R induced by the set
[k+1] ⊂ Z ⊂ R. We represent the grid Γ = Pk+1�Pk+1 in the plane with a diagonal ∆ traced
from the lower-left vertex placed at (0, 0) to the upper-right vertex placed at (k, k). For each
v ∈ Lk/π there are k + 1 n-tuples of the form b0b1 · · · bn−1 = 0b1 · · · bn−1 that represent v
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with b0 = 0. For each such representative n-tuple, we construct a 2k-path D in Γ from (0, 0)
to (k, k) in 2k steps indexed from i = 0 to i = 2k−1 as follows. (See Figure 2 with examples
of D in dark trace, further commented in Section 7). Initially, let i = 0, w = (0, 0) and D
contain solely w and no edges. Repeat the following sequence of steps (1)-(3) 2k times, and
then perform the subsequent steps (4)-(5):
(1) If bi = 0 (resp., bi = 1), then set w′ := w + (1, 0) (resp., w′ := w + (0, 1)).
(2) Reset V (D) := v(D) ∪ {w′}, E(D) := E(D) ∪ {ww′}, i := i+ 1 and w := w′.
(3) If w 6= (k, k), or equivalently, if i < 2k, then go back to step (1).
(4) Set v̄ ∈ Lk+1/π as a vertex of Mk/π adjacent to v and obtained from the representative

n-tuple b0b1 · · · bn−1 = 0b1 · · · bn−1 of v by replacing the entry b0 by b̄0 = 1 in v̄, keeping
the entries bi unchanged in v̄, where i > 0.

(5) Set the color of the edge vv̄ to be the number c of horizontal (alternatively, vertical) arcs
of D below the diagonal ∆ of Γ.

A proof of the original version of this in [5] uses the numbers k + 1 − c with c ∈ [k + 1].
In fact, if addition and subtraction in [n] are taken modulo n, then by writing [y, x) =
{y, y + 1, y + 2, . . . , x − 1}, for x, y ∈ [n], and Sc = [n] \ S, for S = {i ∈ [n] : bi = 1} ⊆ [n],
the cardinalities of the sets {y ∈ Sc \ x : |[y, x) ∩ S| < |[y, x) ∩ Sc|} yield all the numbers
k + 1− c in 1-1 correspondence with our colors c, where x ∈ Sc varies.

The lexical procedure (or LP) just presented yields 1-factorizations not only ofMk/π but
also of Rk and Mk, clarified by the end of the next section.

7 Un-Castling

In this section, a color notation δ(v) is attached to each vertex v of Rk (i.e., in Lk/π), so
that there is a unique k-germ α = α(v) with [F (α)] = δ(v). We start by representing the
lexical color assignment suggested for k = 2 in Figure 2, with the LP (indicated by arrows
“⇒”) departing from v = [00011] (top) and v = [00101] (bottom), then passing to working
sketches of Γ (separated by plus signs, “+”), one sketch per representative of v of the form
b0b1 · · · bn−1 = 0b1 · · · bn−1 (shown under the sketch, with the entry b0 = 0 underscored, and
pointing via an arrow “→” to its color c ∈ [k+1], acquired as in step (5) of the LP) in which
to trace the edges of D ⊂ Γ, (where c is the number of horizontal arcs of D below ∆).

In each of the two cases in Figure 2, to the right of the three shown sketches, a second
arrow “⇒” points to a modification v∗ of b0b1 · · · bn−1 = 0b1 · · · bn−1 obtained by setting as a
subindex of each entry 0 the color c obtained from its corresponding sketch, and an asterisk
“∗” to each entry 1. Further to the right, a third arrow “⇒” points to the n-tuple δ(v)
formed by the string of subindexes of entries of v∗ in the order they appear from left to right.
The following procedure will be called un-castling procedure.

Theorem 5. To each δ(v) as above corresponds a unique k-germ α = α(v) with [F (α)] = δ(v)
obtained as follows. Given v ∈ Lk/π, let W

i = k(k − 1) · · · (k − i) be the maximal initial
number (i + 1)-substring of δ(v), where 0 ≤ i ≤ k. Let α(v0) = ak−1 · · ·α1 = 00 · · ·0. If
i = k, then let α(v) = α(v0); else, set m = 0 and proceed as follows:
1. set δ(vm) = [W i|X|Y |Z i], where Z i is the terminal jm-substring of δ(v

m), with jm = i+1,
and X, Y (in that order) start at contiguous numbers Ω and Ω + 1 ≤ k − i;
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2. set δ(vm+1) = [W i|Y |X|Z i];
3. let α(vm+1) be obtained from α(vm) just by increasing its entry ajm by 1;
4. if δ(vm+1) = [k(k − 1) · · ·210 ∗ · · · ∗], then stop; else, increase m by 1 and go to step 1.

Proof. This is a procedure inverse to that of castling (Section 2).

This un-castling procedure leads to a finite sequence δ(v0), δ(v1), . . . , δ(vs) of n-strings
in Lk/π with parameters j0 ≥ j1 ≥ · · · ≥ js and k-germs α(v0), α(v1), . . . , α(vs). It also
leads from α(v0) to α(v) = α(vs) by unit incrementation of aji, for i = 0, . . . , s, with each
incrementation yielding the corresponding α(vi). Observe that F is a bijection between the
set V (Tk) of k-germs and the set Lk/π, both being of cardinality Ck. Thus, to deal with
V (Rk) it is enough to deal with V (Tk, a fact useful in interpreting Theorem 6 below. For
example δ(v) = δ(v0) = δ[40 ∗ 1 ∗ 2 ∗ 3 ∗] = [ 4 | 0 ∗ | 1 ∗ 2 ∗ 3 | ∗] = [W 0|X|Y |Z0] with i = 0
and α(v0) = 000, to be continued in Table III with δ(v1) = [W 0|Y |X|Z0] to finally arrive at
α(v) = α(vs) = α(v6) = 123.

TABLE III

j0=0
j1=0

δ(v1)
δ(v2)

=
=

[4|1∗2∗3|0∗|∗]
[4|2∗30∗|1∗|∗]

=
=

[41∗2∗30∗∗]
[42∗30∗1∗∗]

=
=

[4|1∗|2∗30∗|∗]
[4|2∗|30∗1∗|∗]

α(v1)=001
α(v2)=011

[F (001)]=δ(v1)
[F (011)]=δ(v2)

j2=0
j3=1

δ(v3)

δ(v4)
=
=

[4|30∗1∗|2∗|∗]
[43|1∗2|0∗|∗∗]

=
=

[430∗1∗2∗∗]
[431∗20∗∗∗]

=
=

[43|0∗|1∗2|∗∗]
[43|1∗|20∗|∗∗]

α(v3)=012

α(v4)=112

[F (012)]=δ(v3)

[F (112)]=δ(v4)
j4=1
j5=2

δ(v5)

δ(v6)
=
=

[43|20∗|1∗|∗∗]
[432|1|0∗|∗∗∗]

=
=

[4320∗1∗∗∗]
[43210∗∗∗∗]

= [432 | 0 ∗|1|∗∗] α(v5)=122

α(v6)=123

[F (122)]=δ(v5)

[F (123)]=δ(v6)

A pair of skew edges (BA)ℵπ((BA′)) and (BA′)ℵ((BA)) in Mk/π is said to be a skew
reflection edge pair, (or SREP). This provides a color notation for any v ∈ Lk+1/π such that
in each particular edge class mod π:
(I) each edge receives a common color regardless of the endpoint on which the LP (or its

modification, see below) for v ∈ Lk+1/π is applied;
(II) the two edges in each SREP in Mk/π are assigned a common color in [k + 1].

The modification in step (I) consists in replacing in Figure 2 each v by ℵπ(v) so that on the
left we have now instead (00111) (top) and (01011) (bottom) with respective sketch subtitles

00111→2,
01011→2,

10011→1,
10101→0,

11001→0,
01101→1,

resulting in similar sketches when the steps (1)-(5) of the LP are taken with right-to-left
reading-and-processing of the entries on the left side of the subtitles (before the arrows
“→”), where now the values of each bi must be taken complemented.

Since an SREP inMk determines a unique edge ǫ of Rk (and vice versa), the color received
by this pair can be attributed to ǫ, too. Clearly, each vertex of either Mk or Mk/π or Rk

defines a bijection from its incident edges onto the color set [k + 1]. The edges obtained via
ℵ or ℵπ from these edges have the same corresponding colors because of the LP.

Theorem 6. A 1-factorization of Mk/π by the edge colors 0, 1, . . . , k is obtained via the
LP that can be lifted to a covering 1-factorization of Mk and collapsed onto a folding 1-
factorization of Rk inducing the color notation δ(v) on each of its vertices v. Moreover, for
each v ∈ V (Rk) and notation δ(v), there is a unique k-germ α = α(v) such that [F (α)] =
δ(v).
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Proof. As pointed out in item (II) above in this section, each SREP in Mk/π has its edges
with a common color of [k + 1]. Thus, the [k + 1]-coloring of Mk/π induces a well-defined
[k + 1]-coloring of Rk. This yields the claimed collapsing to a folding 1-factorization of
Rk. The lifting to a covering 1-factorization in Mk is immediate. The arguments above
determine that the collapsing 1-factorization in Rk induces the k-germs α(v) claimed in the
statement.

8 Color-Adjacency Tables

From now on, the vertices v = [F (α)] ofRk are presented in stair-wise order via their notation
α, with no parenthetical or bracketed enclosures, and further denoted δ(v) as in Section 7.
Thus, we view Rk as the graph whose vertices are the k-germs α and whose adjacency is
inherited from that of their δ-notation in Rk via pullback by F−1 (namely, via un-castling).

In Table IV, examples of such disposition are shown for k = 2 and 3, where m, α = α(m)
and F (α) are shown in the first three columns, for 0 ≤ m < Ck. The neighbors of F (α)
in the central columns are presented as F 0(α), F 1(α), . . ., F k(α) respectively for the colors
0, 1, . . . , k of the edges incident to them, where the notation is given via the effect of the
function ℵ. The last four columns yield the k-germs α0, α1, . . ., αk associated via F−1

respectively with the listed neighbor vertices F 0(α), F 1(α) , . . ., F k(α) of F (α) in Rk.

TABLE IV

m α F (α) F 0(α) F 1(α) F 2(α) F 3(α) α0 α1 α2 α3

0 0 210 ∗ ∗ 210 ∗ ∗ 20 ∗ 1∗ 1 0 ∗∗2 − 0 1 0 −
1 1 20 ∗ 1∗ 1 ∗ 20∗ 210 ∗ ∗ 0∗1∗ 2 − 1 0 1 −

0 00 3210∗∗∗ 3210∗∗∗ 320∗1∗∗ 310∗∗2∗ 210∗∗∗ 3 00 10 01 00
1 01 310∗∗2∗ 2∗310∗∗ 2∗30∗1∗ 3210∗∗∗ 1∗20∗∗ 3 01 12 00 11
2 10 320∗1∗∗ 31∗20∗∗ 3210∗∗∗ 30∗1∗ 2∗ 20∗1∗∗ 3 11 00 12 10
3 11 31∗20∗∗ 320∗1∗∗ 20∗∗31∗ 31 ∗20∗∗ 10∗∗2∗ 3 10 11 11 01
4 12 30∗1 ∗2∗ 1∗2∗30∗ 2∗310∗∗ 320∗1∗∗ 0∗1∗2∗ 3 12 01 10 12

For k = 4, observe in Table V a similar resulting stair-wise adjacency disposition. Gen-
eralizing this Color-Adjacency Table (or CAT(k), with k = 4), the following statement of
Theorem 7 is observed, as indicated in the doubly aggregated row under the table, citing the
sole (non-asterisk) number column order from right to left that is equal in columns α and αi

(i = 0, 2, . . . , k) and other properties, including that the columns α0 in all CAT(k) s (k > 1)
integrate into an integer sequence not present as of now in [9].

TABLE V

m
−

α
−−

α0

−−
α1

−−
α2

−−
α3

−−
α4

−−
m
−

α
−−

α0

−−
α1

−−
α2

−−
α3

−−
α4

−−
0
1

000
001

000
001

100
101

010
012

001
000

000
011

7
8

110
111

100
111

111
110

110
122

012
011

010
111

2
3

010
011

011
010

121
120

000
011

112
111

110
001

9
10

112
120

101
122

122
011

112
100

010
123

112
120

4
5

012
100

012
110

123
000

001
120

110
101

122
100

11
12

121
122

121
120

010
112

121
111

122
121

101
012

6 101 112 001 123 100 121 13 123 123 012 101 120 123

− −− −−
3∗∗

−−
∗∗∗

−−
3∗∗

−−
∗2∗

−−
∗∗1

− −− −−
3∗∗

−−
∗∗∗

−−
3∗∗

−−
∗2∗

−−
∗∗1
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Theorem 7. Let k > 1. Then each column αi in CAT(k), for i = 2, 3 . . . , k, preserves the
respective j(αi)-th entry, where j(αi) = k − 1, . . . , 2, 1 respectively for i = 2, 3 . . . , k − 1, k.
In other words, j(α2) = k − 1, j(α3) = k − 2, . . . , j(αk−1) = 2, j(αk) = 1. Such an
entry-invariance rule does not exist for column α1. However, j(α0) = k−1. Also, the germs
αi (0 < i < k) in each row of CAT(k) for k > 1 equal the terminal (k−2)-substrings of αi+1

in the corresponding row in CAT(k + 1). Moreover, all columns α0 in the tables CAT(k) ,
for every k > 1, form an RGS sequence and thus a corresponding integer sequence, too.

Proof. Let α = ak−1 · · ·a2a1 be a k-germ. Then α shares with α0 all the entries to the left
of its leftmost entry 1. This guarantees the last assertion of the theorem. The rest of the
proof is developed in Subsection 8.1. The cited integer sequence is not yet in [9].

8.1 Adjacency via Specific Colors

Given a k-germ α = ak−1 · · · a1 and a substring α′ = ak−j · · ·ak−i of α, where 0 < j ≤ i < k,
let ψ(α′) = ak−i · · · ak−j be the reverse string of α′. We consider two special substrings of α,
namely: (a) the straight ascent α1 = ak−1 · · · ak−i1 of α is maximal ascending substring; (b)
the landing ascent α′

1 = ak−1 · · · ak−i1 of α is maximal non-descending substring with at most
two equal terms, unless ak−1 = 0 in which case α′

1 equals α1 in (a). In any case, 0 < i1 < k.
To get α0, let A1 = ||α1|| be the length of the straight ascent α1 = ak−1 · · · ak−i1 of

α. Let B1 = A1 + ak−1. Set β = bk−1 · · · b1 = α0. Then β has straight ascent β1 =
bk−1 · · · bk−i1 = α1 and α1 + ψ(β1) = B1 · · ·B1. If α 6= α1, then let A2 = ||α2|| be the length
of the largest continuation substring α2 of α1 in α for which α2 + ψ(β2) = B2 · · ·B2 with
B2 = A1+A2+ak−1−2. If possible, let A3 = ||α3|| be the length of the largest continuation
substring α3 of the concatenated substring α1|α2 in α for which α3+ψ(β3) = B3 · · ·B3 with
B3 = A2 + A3 − 2. If possible, let A4 = ||α4|| be the length of the largest continuation
substring α4 of α1|α2|α3 in α for which α4 + ψ(β4) = B4 · · ·B4 with B4 = A3 + A4 − 2.
And so on inductively: if possible, let Ar = ||αr|| be the length of the largest continuation
substring αr of α1| · · · |αr−1 in α for which αr + ψ(βr) = Br · · ·Br with Br = Ar−1 +Ar − 2.
This procedure yields α0 from α, for any k-germ α.

Top get α1, let A′
1 = ||α′

1|| be the length of the landing ascent α′
1 = a′k−1 · · · a

′
k−i1

of
α. Set β = bk−1 · · · b1 = α1. Then β has landing ascent β1 = bk−1 · · · bk−i1 such that
α′
1 + ψ(β1) = B1 · · ·B1 with B1 = i1. If α 6= α′

1, then let A′
2 = ||α′

2|| be the length of
the largest continuation substring α′

2 of α′
1 in α for which α′

2 + ψ(β2) = B2 · · ·B2 with
B2 = A′

1 + A′
2 − 2. If possible, let A′

3 = ||α′
3|| be the length of the largest continuation

substring α′
3 of α′

1|α
′
2 in α for which α′

3 + ψ(β3) = B3 · · ·B3 with B3 = A′
2 + A′

3 − 2. If
possible, let A′

4 = ||α′
4|| be the length of the largest continuation substring α′

4 of α′
1|α

′
2|α

′
3

in α for which α′
4 + ψ(β4) = B4 · · ·B4 with B4 = A′

3 + A′
4 − 2. And so on inductively: if

possible, let A′
r = ||α′

r|| be the length of the largest continuation substring α′
r of α

′
1| · · · |α

′
r−1

in α for which α′
r + ψ(βr) = Br · · ·Br with Br = A′

r−1 + A′
r − 2. This procedure yields α1

from α, for any k-germ α.
To get α2, let β = bk−1 · · · b1 = α2 and note bk−1 = ak−1. Let α′ = α \ {ak−1}. Let

A′
1 = ||α′

1|| be the length of the landing ascent α′
1 = ak−2 · · · ak−i1 of α

′. Then β ′ = β \{bk−1}
has landing ascent β ′

1 = bk−2 · · · bk−i1 such that α′
1+ψ(β

′
1) = B′

1 · · ·B
′
1 with B

′
1 = i1−1+ak−1.

If α′ 6= α′
1, then let A′

2 = ||α′
2|| be the length of the largest continuation substring α′

2 of α
′
1 in
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α′ for which α′
2+ψ(β

′
2) = B′

2 · · ·B
′
2 with B

′
2 = A′

1+A
′
2−2. If possible, let A′

3 = ||α′
3|| be the

length of the largest continuation substring α′
3 of α

′
1|α

′
2 in α

′ for which α′
3+ψ(β

′
3) = B′

3 · · ·B
′
3,

where B′
3 = A′

2+A′
3− 2. If possible, let A′

4 = ||α′
4|| be the length of the largest continuation

substring α′
4 of α′

1|α
′
2|α

′
3 in α′ for which α′

4 + ψ(β ′
4) = B′

4 · · ·B
′
4 with B′

4 = A′
3 + A′

4 − 2.
And so on inductively: if possible, let A′

r = ||α′
r|| be the length of the largest continuation

substring α′
r of α

′
1| · · · |α

′
r−1 in α

′ for which α′
r +ψ(β ′

r) = B′
r · · ·B

′
r with B

′
r = A′

r−1 +A′
r − 2.

This procedure yields α1 from α, for any k-germ α.
To get α3, let β = bk−1 · · · b1 = α3 and note bk−2 = ak−2. If ak−2 ∈ {0, 2} then bk−1 = ak−1.

If ak−2 = 1 then bk−1 = 1− ak−1. Let α
′ = α \ {ak−1, ak−2} and let A′

1 = ||α′
1|| be the length

of the landing ascent α′
1 = ak−3 · · · ak−i1 of α′. Then β ′ = β \ {bk−1, bk−2} has landing ascent

β ′
1 = bk−3 · · · bk−i1 such that α′

1+ψ(β ′
1) = B′

1 · · ·B
′
1 with B

′
1 = i1− 1+ ak−2. If α

′ 6= α′
1, then

let A′
2 = ||α′

2|| be the length of the largest continuation substring α′
2 of α′

1 in α′ for which
α′
2 + ψ(β ′

2) = B′
2 · · ·B

′
2 with B′

2 = A′
1 + A′

2 − 2. If possible, let A′
3 = ||α′

3|| be the length of
the largest continuation substring α′

3 of α′
1|α

′
2 in α′ for which α′

3 + ψ(β ′
3) = B′

3 · · ·B
′
3, where

B′
3 = A′

2 + A′
3 − 2. If possible, let A′

4 = ||α′
4|| be the length of the largest continuation

substring α′
4 of α′

1|α
′
2|α

′
3 in α′ for which α′

4 + ψ(β ′
4) = B′

4 · · ·B
′
4 with B′

4 = A′
3 + A′

4 − 2.
And so on inductively: if possible, let A′

r = ||α′
r|| be the length of the largest continuation

substring α′
r of α

′
1| · · · |α

′
r−1 in α

′ for which α′
r +ψ(β ′

r) = B′
r · · ·B

′
r with B

′
r = A′

r−1 +A′
r − 2.

This procedure yields α1 from α, for any k-germ α.
For β = α3, observe that the substrings α1,3 = ak−1ak−2ak−3 = 000, 010, 100, 110, 120

have respectively β1,3 = bk−1bk−2bk−3 = 001, 112, 101, 012, 123. For β = α4, the substrings
α1,4 = ak−1ak−2ak−3ak−4 have respectively β1,3 = bk−1bk−2bk−3bk−4 as follows:

α1,3 000 010 100 110 120
β1,3 001 112 101 012 123
α1,4 0000 0010 0100 0110 0120 1000 1010 1100 1110 1120 1200 1210 1220 1230
β1,4 0001 0112 1101 0012 1223 1001 1212 0101 1112 1123 1201 1012 0123 1234

To get αk (1 < k), let β = αk and note b1 = a1. If a1 = 0 then a2a1 = b2b1. If a1 = 1 then
a3a2a1+ψ(b3b2b1) is a constant string BBB and a3 = b3. If a1 = 2, then a4a3a2a1+ψ(b4b3b2b1)
is a constant string BBBB and a4 = b4. In general, aa1+2 · · · a1+ψ(bb1+2 · · · b1) is a constant
string and aa1+2 = bb1+2. We could express all numbers ai and bi above in this paragraph
as a0i and b0i , respectively, to keep an inductive approach. Let a11 = aa1+2 and if possible,
let a12 = aa1+3, etc. In this case, let b11 = bb1+2, b

1
2 = ba1+3, etc. Now, if a11 = 0, then

a12a
1
1 = b12b

1
1. If a11 = 1, then a13a

1
2a

1
2 + ψ(b13b

1
2b

1
1) is a constant string, and so on. In general,

a1
a1
1
+2

· · · a11 + ψ(b1
b1
1
+2

· · · b11) is a constant string and a1
a1
1
+2

= b1
b1
1
+2
. The continuation of this

procedure produces a subsequent string a21, etc., until what remains to reach the leftmost
entry of α is smaller than the needed space for the procedure itself, in which case, a remaining
initial (or leftmost) straight ascent is shared by both α and β.

To get αp, for p = 4, . . . , k − 1, a similar treatment is adapted to the left of the entry
ak−p+2 = bk−p+2, while to the right of that entry, the treatment previously considered is
adapted as well.
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9 Catalan Binary Tree

Figure 3: Restriction of T to its five initial levels

Even though the graphs Rk treated from Section 5 on were taken with k > 1, note
that for k = 1 the graph Rk is defined and has just one vertex 001 with δ(001) = 10∗
(as in Section 7) and two loops. Thus, the only vertex of such R1 is denoted 10∗ and the
correspondence F of Section 2 can be extended by declaring F (∅) = 10∗. This is the root
of a binary tree T that has ∪∞

k=1V (Rk) as its node set and is defined as follows, where ||X||
indicates the length of a string X : (A) the root of T is 10∗; (B) the left child of a node
δ(v) = k|X in T with ||X|| = 2k is always defined and equals (k + 1)|X|k|∗; (C) unless
δ(v) = k(k − 1) · · ·210 ∗ ∗ · · · ∗, it is always δ(v) = k|X|Y |∗, where X and Y are strings
respectively starting with j < k− 1 and j+1; only in that case there is a right child of δ(v),
namely k|Y |X|∗, by un-castling of Section 7.

Observe that T , with its nodes set in terms of k-germs, has each node ak−1ak−2 · · · a2a1
as a parent as follows: its left child is of the form bkbk−1 · · · b1 = ak−1ak−2 · · · a2a1(a1 + 1)
while its right child exists only if a1 > 0 and in that case is of the form ck−1ck−2 · · · c2c1 =
ak−1ak−2 · · · a2(a1 − 1). Figure 3 represents the first five levels of T with its nodes expressed
in terms of k-germs via the correspondence F , in black color. The figure also assigns to
each node a (dark gray colored) ordered pair of positive integers (i, j), where j ≤ Ci. The
root, expressed by the 3-string F (∅) = 10∗, is assigned (i, j) = (1, 1). The left child of a
node assigned (i, j) is assigned a pair (k, j′) = (i+1, j′), where j′ is the order of appearance
of the corresponding k-germ α (to (k, j′)) in its presentation via castling in Figure 1 and
continuation for fixed k, (α becomes the RGS corresponding to j′ in A239903 once the extra
zeros to the left of its leftmost nonzero entry are eliminated; note j′ = j′(j) arises from the
series associated to A076050, deducible from items 1-4 in Section 1). The right child of a
node assigned (i, j) is defined only if j > 1 and in that case is assigned the pair (i, j − 1).
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