(Translated by https://www.hiragana.jp/)
A014549 - OEIS
login
A014549
Decimal expansion of 1 / M(1,sqrt(2)) (Gauss's constant).
17
8, 3, 4, 6, 2, 6, 8, 4, 1, 6, 7, 4, 0, 7, 3, 1, 8, 6, 2, 8, 1, 4, 2, 9, 7, 3, 2, 7, 9, 9, 0, 4, 6, 8, 0, 8, 9, 9, 3, 9, 9, 3, 0, 1, 3, 4, 9, 0, 3, 4, 7, 0, 0, 2, 4, 4, 9, 8, 2, 7, 3, 7, 0, 1, 0, 3, 6, 8, 1, 9, 9, 2, 7, 0, 9, 5, 2, 6, 4, 1, 1, 8, 6, 9, 6, 9, 1, 1, 6, 0, 3, 5, 1, 2, 7, 5, 3, 2, 4, 1, 2, 9, 0, 6, 7, 8, 5
OFFSET
0,1
COMMENTS
On May 30, 1799, Gauss discovered that this number is also equal to (2/Pi)*Integral_{t=0..1} 1/sqrt(1-t^4).
M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0 = a, b_0 = b, a_{n+1} = (a_n + b_n)/2, b_{n+1} = sqrt(a_n*b_n).
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, page 5.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.
J. R. Goldman, The Queen of Mathematics, 1998, p. 92.
LINKS
Markus Faulhuber, Anupam Gumber, and Irina Shafkulovska, The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators, arXiv:2209.04202 [math.CA], 2022, p. 2.
Alessandro Languasco and Pieter Moree, Euler constants from primes in arithmetic progression, arXiv:2406.16547 [math.NT], 2024. See p. 10.
Eric Weisstein's World of Mathematics, Gauss's Constant.
Eric Weisstein's World of Mathematics, Arithmetic-Geometric Mean.
FORMULA
Equals (lim_{k->oo} p(k))/(1+i) and (lim_{k->oo} q(k))/(1+i), where i is the imaginary unit, p(0) = 1, q(0) = i, p(k+1) = 2*p(k)*q(k)/(p(k)+q(k)) and q(k+1) = sqrt(p(k)*q(k)) for k >= 0. - A.H.M. Smeets, Jul 26 2018
Equals the infinite quotient product (3/4)*(6/5)*(7/8)*(10/9)*(11/12)*(14/13)*(15/16)*... . - James Maclachlan, Jul 28 2019
Equals (9/15)*hypergeom([1/2, 3/4], [9/4], 1). - Peter Bala, Mar 03 2022
Equals A062539 / Pi. - Amiram Eldar, May 04 2022
From Stefano Spezia, Sep 29 2022: (Start)
Equals theta4(exp(-Pi))^2.
Equals sqrt(2)*A093341/Pi. (End)
Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)^2/16^k. - Amiram Eldar, Jul 04 2023
From Gerry Martens, Jul 31 2023: (Start)
Equals 2*Gamma(5/4)/(sqrt(Pi)*Gamma(3/4)).
Equals hypergeom([1/4, -2/4], [1], 1). (End)
Equals A248557^2. - Hugo Pfoertner, Jun 28 2024
EXAMPLE
0.8346268416740731862814297327990468...
MAPLE
evalf(1/GaussAGM(1, sqrt(2)), 144); # Alois P. Heinz, Jul 05 2023
MATHEMATICA
RealDigits[Gamma[1/4]^2/(2*Pi^(3/2)*Sqrt[2]), 10, 105][[1]] (* or: *)
RealDigits[1/ArithmeticGeometricMean[1, Sqrt[2]], 10, 105][[1]] (* Jean-François Alcover, Dec 13 2011, updated Nov 11 2016, after Eric W. Weisstein *)
First[RealDigits[N[EllipticTheta[4, Exp[-Pi]]^2, 90]]] (* Stefano Spezia, Sep 29 2022 *)
PROG
(PARI) default(realprecision, 20080); x=10*agm(1, sqrt(2))^-1; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b014549.txt", n, " ", d)); \\ Harry J. Smith, Apr 20 2009
(PARI) 1/agm(sqrt(2), 1) \\ Charles R Greathouse IV, Feb 04 2015
(PARI) sqrt(Pi/2)/gamma(3/4)^2 \\ Charles R Greathouse IV, Feb 04 2015
(Python)
from mpmath import mp, agm, sqrt
mp.dps=105
print([int(z) for z in list(str(1/agm(sqrt(2)))[2:-1])]) # Indranil Ghosh, Jul 11 2017
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(Pi(R)/2)/Gamma(3/4)^2; // G. C. Greubel, Aug 17 2018
KEYWORD
nonn,cons,nice,changed
EXTENSIONS
Extended to 105 terms by Jean-François Alcover, Dec 13 2011
a(104) corrected by Andrew Howroyd, Feb 23 2018
STATUS
approved