OFFSET
1,1
COMMENTS
Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives perimeters A+B+C.
For the corresponding primitive Pythagorean triples see A103606. - Wolfdieter Lang, Oct 06 2014
Any term in this sequence can be generated by f(m,k) = 2*m*(m+k), where m and k are positive coprime integers and m > 1, k < m, and m and k are not both odd. For example: f(2,1) = 2*2*(2+1) = 12. - Agola Kisira Odero, Apr 29 2016
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (duplicates removed by Sean A. Irvine)
Leon Bernstein, On primitive Pythagorean triangles with equal perimeters, The Fibonacci Quarterly 27.1 (1989) 2-6 (and the earlier Bernstein paper 20.3 (1982) 227-241, see A024408).
Ron Knott, Pythagorean Triples and Online Calculators
FORMULA
a(n) = 2*A020886(n).
MAPLE
isA024364 := proc(an) local r::integer, s::integer ; for r from floor((an/4)^(1/2)) to floor((an/2)^(1/2)) do for s from r-1 to 1 by -2 do if 2*r*(r+s) = an and gcd(r, s) < 2 then RETURN(true) ; fi ; if 2*r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : for n from 2 to 400 do if isA024364(n) then printf("%d, ", n) ; fi ; od ; # R. J. Mathar, Jun 08 2006
MATHEMATICA
isA024364[an_] := Module[{r, s}, For[r = Floor[(an/4)^(1/2)], r <= Floor[(an/2)^(1/2)], r++, For[s = r - 1, s >= 1, s -= 2, If[2r(r + s) == an && GCD[r, s] < 2, Return[True]]; If[2r(r + s) < an, Break[]]]]; Return[False]];
Select[Range[2, 1000], isA024364] (* Jean-François Alcover, May 24 2024, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved