(Translated by https://www.hiragana.jp/)
A024411 - OEIS
login
A024411
Short leg of more than one primitive Pythagorean triangle.
3
20, 28, 33, 36, 39, 44, 48, 51, 52, 57, 60, 65, 68, 69, 75, 76, 84, 85, 87, 88, 92, 93, 95, 96, 100, 104, 105, 108, 111, 115, 116, 119, 120, 123, 124, 129, 132, 133, 135, 136, 140, 141, 145, 147, 148, 152, 155, 156, 159, 160, 161, 164, 165, 168, 172, 175, 177, 180, 183, 184
OFFSET
1,1
COMMENTS
Every term is composite. - Clark Kimberling, Feb 04 2024
Proof by contradiction: let p prime be the short leg. Then p^2 + b^2 = c^2 i.e., p^2 = (c - b) * (c + b). Then (c - b, c + b) in {(1, p^2), (p, p)}. If (c - b, c + b) = (p, p) then c = p and b = 0 which is impossible. Hence there is at most one solution for (c - b, c + b). A contradiction. - David A. Corneth, Feb 04 2024
MATHEMATICA
aa=1; s=""; For[a=1, a<=10^2, For[b=a+1, ((b+1)^2-b^2)<=a^2, c=(a^2+b^2)^0.5; If[c==Round[c]&&GCD[a, b]==1, If[a==aa, s=s<>ToString[a]<>", "]; If[a!=aa, aa=a, aa=1]]; b++ ]; a++ ]; s (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
PROG
(PARI)
is(n) = {
my(d = divisors(n^2), q = 0, b, c);
for(i = 1, #d\2,
if(!bitand(d[#d + 1 - i] - d[i], 1),
c = (d[i] + d[#d + 1 - i])/2;
b = d[#d + 1 - i] - c;
if(gcd(n, b) == 1 && n < b,
q++;
if(q >= 2,
return(1)
)
)
)
); 0
} \\ David A. Corneth, Feb 04 2024
CROSSREFS
Sequence in context: A059617 A122146 A032482 * A269986 A139805 A141823
KEYWORD
nonn
STATUS
approved