OFFSET
1,2
COMMENTS
This sequence assumes nonstandard indexing of continued fraction terms as [a_1; a_2, a_3, ...]. If you use the actual offset from A001203, corresponding to [a_0; a_1, a_2, ...], you get instead 0, 1, 2, 4, 307, 431, 28421, ... Compare with A033092 versus A224849. - Jeppe Stig Nielsen, Dec 14 2019
LINKS
E. Fontich, C. Simó, and A. Vieiro, On the "hidden" harmonics associated to best approximants due to quasiperiodicity in splitting phenomena, Regular and Chaotic Dynamics (2018), Pleiades Publishing, Vol. 23, Issue 6, 638-653. Also PDF.
Eric Weisstein's World of Mathematics, Pi
Eric Weisstein's World of Mathematics, Pi Continued Fraction
MATHEMATICA
With[{s = ContinuedFraction[Pi, 2*10^7]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Jan 31 2020 *)
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
EXTENSIONS
a(12) from Eric W. Weisstein, Dec 08 2010
a(13) from Eric W. Weisstein, Sep 16 2011
a(14) from Eric W. Weisstein, Sep 17 2011
a(15) from Eric W. Weisstein, Jul 18 2013
a(16) from Syed Fahad, Apr 27 2021
STATUS
approved