(Translated by https://www.hiragana.jp/)
A036778 - OEIS
login
A036778
Number of labeled rooted trees on 2n+1 nodes each node having an even number of children.
5
1, 3, 65, 3787, 427905, 79549811, 22036379521, 8513206310715, 4374455745966593, 2885264091484122979, 2376040584184726335681, 2389484304129542889498923, 2881763610489447544905661825, 4105338427962827177938910410707, 6820519958449287654130653696838145
OFFSET
0,2
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.82).
LINKS
Yiyang Jia and Jacobus J. M. Verbaarschot, Large N expansion of the moments and free energy of Sachdev-Ye-Kitaev model, and the enumeration of intersection graphs, J. High Energ. Phys. (2018) 2018: 31.
L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (16).
FORMULA
G.f.: REVERT(x/cosh(x)) = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!. - Paul D. Hanna, Oct 15 2003
a(n) = (1/2^(2*n+1)) * Sum_{k=0..2*n+1} binomial(2*n+1, k)*(2*k-2*n-1)^(2*n).
MAPLE
[ seq((1/2^(2*n+1))*add( binomial(2*n+1, j)*(2*j-(2*n+1))^(2*n), j=0..(2*n+1)), n=1..30) ];
MATHEMATICA
Table[1/2^(2n+1) Sum[Binomial[2n+1, k](2k-2n-1)^(2n), {k, 0, 2n+1}], {n, 0, 20}] (* Harvey P. Dale, Mar 06 2012 *)
PROG
(PARI) a(n)=local(X); if(n<0, 0, X=x+O(x^(2*n+1)); (2*n+1)!*polcoeff(serreverse(x/cosh(x)), 2*n+1)) \\ Paul D. Hanna, Oct 15 2003
CROSSREFS
Sequence in context: A012804 A348084 A012837 * A295169 A065400 A306410
KEYWORD
nonn,eigen
EXTENSIONS
Edited by Christian G. Bower, Jan 13 2004
STATUS
approved