(Translated by https://www.hiragana.jp/)
A049114 - OEIS
login
A049114
2-ranks of difference sets constructed from Glynn type II hyperovals.
3
1, 1, 5, 7, 21, 37, 89, 173, 383, 777, 1665, 3441, 7277, 15159, 31885, 66645, 139865, 292757, 613823, 1285585, 2694433, 5644609, 11828501, 24782311, 51928773, 108802597, 227978105, 477674813, 1000877759, 2097121497, 4394101857
OFFSET
1,3
LINKS
R. Evans, H. Hollmann, C. Krattenthaler and Q. Xiang, Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, J. Combin. Theory Ser. A, 87.1 (1999), 74-119.
Ronald Evans, Henk Hollmann, Christian Krattenthaler, and Qing Xiang, Supplement to "Gauss Sums, Jacobi Sums and p-ranks ..."
Q. Xiang, On Balanced Binary Sequences with Two-Level Autocorrelation Functions, IEEE Trans. Inform. Theory 44 (1998), 3153-3156.
FORMULA
G.f.: (1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5).
a(n+1) = a(n) + 3*a(n-1) - a(n-2) - a(n-3) + 1.
MAPLE
L := 1, 1, 5, 7: for i from 5 to 100 do l := nops([ L ]): L := L, op(l, [ L ])+3*op(l-1, [ L ])-op(l-2, [ L ])-op(l-3, [ L ])+1: od: [ L ];
MATHEMATICA
Join[{1, 1, 5, 7}, Table[a[1]=1; a[2]=1; a[3]=5; a[4]=7; a[i]=a[i-1]+ 3*a[i-2]-a[i-3]-a[i-4] +1, {i, 5, 40}]]
CoefficientList[Series[(1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5), {x, 0, 40}], x] (* G. C. Greubel, Jul 10 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5)) \\ G. C. Greubel, Jul 10 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5) )); // G. C. Greubel, Jul 10 2019
(Sage) ((1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 10 2019
(GAP) a:=[1, 5, 7, 21];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2]-a[n-3] -a[n-4] +1; od; Concatenation([1], a); # G. C. Greubel, Jul 10 2019
CROSSREFS
Sequence in context: A002596 A098597 A097038 * A179189 A030735 A303189
KEYWORD
nonn,easy
AUTHOR
Christian Krattenthaler (kratt(AT)ap.univie.ac.at)
STATUS
approved