Formula for the number of covers of an unlabeled n-set such that every point of the set is covered by exactly m subsets of the cover and that intersection of every \boldsymbol{m} subsets of the cover contains at most one point

Vladeta Jovović

Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P.O. Box 494, 11001 Belgrade, Yugoslavia. Email: vladeta@Eunet.yu

December 2000.

Let $Z\left(S_{m}^{(n)} ; x_{1}, x_{2}, \ldots\right)$ be the cycle index of (restricted disordered) n-ary symmetric group S_{m} of degree m (i.e. the group of permutations of all n-subsets of an m-set, induced by S_{m}), which can be calculated in the following way:
$Z\left(S_{m}^{(n)} ; x_{1}, x_{2}, \ldots\right)=\frac{1}{m!} \sum_{\pi(m)} \frac{m!}{k_{1}!1^{k_{1}} k_{2}!2^{k_{2}} \ldots k_{m}!m^{k_{m}}} \cdot \prod_{i \mid k} x_{i}^{e_{i}}$,
where $\pi(m)$ runs through all partitions of m (i.e. nonnegative solutions of
$\left.k_{1}+2 k_{2}+\ldots+m k_{m}=m\right) ;$
$k=\operatorname{lcm}\left\{i \mid k_{i} \neq 0\right\} ;$
$e_{i}=e_{i}(\pi, n)=\frac{1}{i} \sum_{d \mid i} \mu\left(\frac{i}{d}\right) \cdot \sum \prod_{l=1}^{n}\binom{(l, d) k_{l}}{t_{l}}$,
where μ is Mobius function and the last sum is taken over all nonnegative solutions of $t_{1} \frac{1}{(1, d)}+t_{2} \frac{2}{(2, d)}+\ldots+t_{n} \frac{n}{(n, d)}=n$.
Let $Z\left(S_{m}^{(n)} ; 1+x\right)=Z\left(S_{m}^{(n)} ; 1+x, 1+x^{2}, 1+x^{3}, \ldots\right)$, i. e. $Z\left(S_{m}^{(n)} ; 1+x\right)$ is obtained if we replace x_{i} by $1+x^{i}, i=1,2, \ldots$, in the cycle index $Z\left(S_{m}^{(n)} ; x_{1}, x_{2}, \ldots\right)$.
Then the number of covers of an unlabeled n-set such that every point of the set is covered by exactly m subsets of the cover and that intersection of every m subsets of the cover contains at most one point is the coefficient of x^{n} in $Z\left(S_{n m}^{(m)} ; 1+x\right)$.

