(Translated by https://www.hiragana.jp/)
A078112 - OEIS
login
A078112
Coefficients a(n) in the unique expansion sin(1) = Sum[a(n)/n!, n>=1], where a(n) satisfies 0<=a(n)<n.
2
0, 1, 2, 0, 0, 5, 6, 0, 0, 9, 10, 0, 0, 13, 14, 0, 0, 17, 18, 0, 0, 21, 22, 0, 0, 25, 26, 0, 0, 29, 30, 0, 0, 33, 34, 0, 0, 37, 38, 0, 0, 41, 42, 0, 0, 45, 46, 0, 0, 49, 50, 0, 0, 53, 54, 0, 0, 57, 58, 0, 0, 61, 62, 0, 0, 65, 66, 0, 0, 69, 70, 0, 0, 73, 74, 0, 0, 77, 78, 0, 0, 81, 82, 0, 0, 85
OFFSET
1,3
FORMULA
a(n) = floor(n!*sin(1)) - n*floor((n-1)!*sin(1)). a(n)=0 if n==0 or 1 (mod 4); a(n)=n-1 if n==2 or 3 (mod 4). - Benoit Cloitre, Dec 07 2002
From Colin Barker, Feb 15 2016: (Start)
a(n) = 2*a(n-1)-3*a(n-2)+4*a(n-3)-3*a(n-4)+2*a(n-5)-a(n-6) for n>6.
G.f.: x^2*(1-x^2+2*x^3) / ((1-x)^2*(1+x^2)^2). (End)
EXAMPLE
sum(i=1,10,a(i)/i!)=0.84147073..., sin(1)=0.841470984...
PROG
(PARI) concat(0, Vec(x^2*(1-x^2+2*x^3)/((1-x)^2*(1+x^2)^2) + O(x^100))) \\ Colin Barker, Feb 15 2016
CROSSREFS
Cf. A077814.
Sequence in context: A285192 A278177 A095221 * A281190 A275619 A249132
KEYWORD
nonn,easy
AUTHOR
John W. Layman, Dec 04 2002
EXTENSIONS
More terms from Benoit Cloitre, Dec 07 2002
STATUS
approved