OFFSET
1,3
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (2,-3,4,-3,2,-1).
FORMULA
a(n) = floor(n!*sin(1)) - n*floor((n-1)!*sin(1)). a(n)=0 if n==0 or 1 (mod 4); a(n)=n-1 if n==2 or 3 (mod 4). - Benoit Cloitre, Dec 07 2002
From Colin Barker, Feb 15 2016: (Start)
a(n) = 2*a(n-1)-3*a(n-2)+4*a(n-3)-3*a(n-4)+2*a(n-5)-a(n-6) for n>6.
G.f.: x^2*(1-x^2+2*x^3) / ((1-x)^2*(1+x^2)^2). (End)
EXAMPLE
sum(i=1,10,a(i)/i!)=0.84147073..., sin(1)=0.841470984...
PROG
(PARI) concat(0, Vec(x^2*(1-x^2+2*x^3)/((1-x)^2*(1+x^2)^2) + O(x^100))) \\ Colin Barker, Feb 15 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John W. Layman, Dec 04 2002
EXTENSIONS
More terms from Benoit Cloitre, Dec 07 2002
STATUS
approved