(Translated by https://www.hiragana.jp/)
A094049 - OEIS
login
A094049
Let p(n) be the n-th prime congruent to 1 mod 4. Then a(n) = the least k for which m^2+1=p(n)*k^2 has a solution.
6
1, 5, 1, 13, 1, 5, 25, 3805, 125, 53, 569, 1, 851525, 73, 149, 9305, 385645, 85, 82596761, 126985, 1, 113, 1517, 4574225, 1, 5, 535979945, 63445, 145, 7170685, 19805, 55335641, 493, 3793, 265, 65, 1027776565, 1
OFFSET
1,2
MATHEMATICA
f[n_] := Block[{y = 1}, While[ !IntegerQ[ Sqrt[n*y^2 - 1]], y++]; y]; lst = {}; Do[p = Prime@n; If[Mod[p, 4] == 1, AppendTo[lst, f@p]; Print[{n, f@p}]], {n, 66}]; lst
CROSSREFS
Sequence in context: A327797 A062264 A276738 * A286254 A322664 A286457
KEYWORD
nonn
AUTHOR
Matthijs Coster, Apr 29 2004
EXTENSIONS
Edited by Don Reble, Apr 30 2004
STATUS
approved