(Translated by https://www.hiragana.jp/)
A101786 - OEIS
The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101786 G.f. satisfies: A(x) = 1 + x*A(x)/(1 - 2*x^2*A(x)^2). 1

%I #16 Jan 10 2019 22:54:16

%S 1,1,1,3,9,25,77,247,801,2657,8969,30635,105785,368745,1295493,

%T 4582767,16309953,58357313,209798289,757461011,2745281705,9984464761,

%U 36428252541,133293594343,489028250465,1798543861537,6629635284505

%N G.f. satisfies: A(x) = 1 + x*A(x)/(1 - 2*x^2*A(x)^2).

%C Formula may be derived using the Lagrange Inversion theorem (cf. A049124).

%H Vincenzo Librandi, <a href="/A101786/b101786.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = Sum_{k=0..[(n-1)/2]} C(n-k-1, k)*C(n, 2*k)*2^k/(2*k+1) for n>0, with a(0)=1.

%F G.f.: A(x) = (1/x)*Series_Reversion( x*(1 - 2*x^2)/(1+x - 2*x^2) ).

%F Recurrence: 2*n*(n+1)*(31*n^2 - 127*n + 120)*a(n) = 3*n*(62*n^3 - 285*n^2 + 359*n - 88)*a(n-1) + (62*n^4 - 378*n^3 + 1009*n^2 - 1425*n + 792)*a(n-2) + (n-3)*(682*n^3 - 3135*n^2 + 4133*n - 1272)*a(n-3) - 9*(n-4)*(n-3)*(31*n^2 - 65*n + 24)*a(n-4). - _Vaclav Kotesovec_, Sep 17 2013

%F a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 3/4 + 1/(4*sqrt(3/(35 - (176*2^(2/3))/(9959 + 465*sqrt(465))^(1/3) + 2*(19918 + 930*sqrt(465))^(1/3)))) + 1/2*sqrt(35/6 + (44*2^(2/3))/(3*(9959 + 465*sqrt(465))^(1/3)) - (9959 + 465*sqrt(465))^(1/3)/(3*2^(2/3)) + 127/2*sqrt(3/(35 - (176*2^(2/3))/ (9959 + 465*sqrt(465))^(1/3) + 2*(19918 + 930*sqrt(465))^(1/3)))) = 3.9027270552404829297969 = ... is the root of the equation 9 - 22*d - 2*d^2 - 6*d^3 + 2*d^4 = 0 and c = 0.68546565145612597016100560323891887595749... - _Vaclav Kotesovec_, Sep 17 2013

%e Generated from Fibonacci polynomials (A011973) and coefficients of odd powers of 1/(1-x):

%e a(1) = 1*1/1

%e a(2) = 1*1/1 + 0*1*2/3

%e a(3) = 1*1/1 + 1*3*2/3

%e a(4) = 1*1/1 + 2*6*2/3 + 0*1*2^2/5

%e a(5) = 1*1/1 + 3*10*2/3 + 1*5*2^2/5

%e a(6) = 1*1/1 + 4*15*2/3 + 3*15*2^2/5 + 0*1*2^3/7

%e a(7) = 1*1/1 + 5*21*2/3 + 6*35*2^2/5 + 1*7*2^3/7

%e a(8) = 1*1/1 + 6*28*2/3 + 10*70*2^2/5 + 4*28*2^3/7 + 0*1*2^4/9

%e This process is equivalent to the formula:

%e a(n) = Sum_{k=0..[(n-1)/2]} C(n-k-1,k)*C(n,2*k)*2^k/(2*k+1).

%t Flatten[{1,Table[Sum[Binomial[n-k-1,k]*Binomial[n,2*k]*2^k/(2*k+1),{k,0,Floor[(n-1)/2]}],{n,1,20}]}] (* _Vaclav Kotesovec_, Sep 17 2013 *)

%t ShiftedReversion[ser_, n_, sgn_] := CoefficientList[(sgn/x)InverseSeries[Series[x sgn ser, {x, 0, n}]],x];

%t Jacobsthal := (2x^2 - 1)/((x + 1)(2x - 1)); (* with A001045(0) = 1 *)

%t ShiftedReversion[Jacobsthal, 27, -1] (* _Peter Luschny_, Jan 10 2019 *)

%o (PARI) {a(n)=if(n==0,1,sum(k=0,(n-1)\2, binomial(n-k-1,k)*binomial(n,2*k)*2^k/ (2*k+1)))}

%Y Cf. A011973, A001045, A049124, A101785.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Dec 16 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 21:47 EDT 2024. Contains 372806 sequences. (Running on oeis4.)