(Translated by https://www.hiragana.jp/)
A102364 - OEIS
login
A102364
Number of terms in Fibonacci sequence less than n not used in Zeckendorf representation of n (the Zeckendorf representation of n is a sum of non-consecutive distinct Fibonacci numbers).
10
0, 0, 1, 2, 1, 3, 2, 2, 4, 3, 3, 3, 2, 5, 4, 4, 4, 3, 4, 3, 3, 6, 5, 5, 5, 4, 5, 4, 4, 5, 4, 4, 4, 3, 7, 6, 6, 6, 5, 6, 5, 5, 6, 5, 5, 5, 4, 6, 5, 5, 5, 4, 5, 4, 4, 8, 7, 7, 7, 6, 7, 6, 6, 7, 6, 6, 6, 5, 7, 6, 6, 6, 5, 6, 5, 5, 7, 6, 6, 6, 5, 6, 5, 5, 6, 5, 5
OFFSET
0,4
COMMENTS
Number of 0's in Zeckendorf-binary representation of n. For example, the Zeckendorf representation of 12 is 8+3+1, which is 10101 in binary notation.
For n > 0: number of zeros in n-th row of A213676, or, number of zeros in n-th row of A189920. - Reinhard Zumkeller, Mar 10 2013
REFERENCES
E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.
MAPLE
F:= combinat[fibonacci]:
b:= proc(n) option remember; local j;
if n=0 then 0
else for j from 2 while F(j+1)<=n do od;
b(n-F(j))+2^(j-2)
fi
end:
a:= proc(n) local c, m;
c, m:= 0, b(n);
while m>0 do c:= c +1 -irem(m, 2, 'm');
od; c
end:
seq(a(n), n=0..150); # Alois P. Heinz, May 18 2012
MATHEMATICA
F = Fibonacci; b[n_] := b[n] = Module[{j}, If[n==0, 0, For[j=2, F[j+1] <= n, j++]; b[n-F[j]]+2^(j-2)]]; a[n_] := Module[{c, m}, {c, m} = {0, b[n]}; While[m>0, c = c + 1 - Mod[m, 2]; m = Floor[m/2]]; c]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)
PROG
(Haskell)
a102364 0 = 0
a102364 n = length $ filter (== 0) $ a213676_row n
-- Reinhard Zumkeller, Mar 10 2013
CROSSREFS
Sequence in context: A097367 A130211 A317207 * A342774 A132923 A144329
KEYWORD
nonn
AUTHOR
Casey Mongoven, Feb 22 2005
STATUS
approved