OFFSET
0,2
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..200, flattened
FORMULA
G.f.: (1-z+tz)/(1-3z+2z^2-2tz^2). G.f. of column k: 2^(k-1)*z^(2k-1)*/ [(1-z)^k*(1-2z)^(k+1)] (k>=1). Recurrence relation: T(n,k) = 3T(n-1,k) -2T(n-2,k) +2T(n-2,k-1) for n>=2.
EXAMPLE
T(2,1) = 5 because we have 00, 01, 02, 10 and 20.
Triangle starts:
1;
2,1;
4,5;
8,17,2;
16,49,16;
32,129,78,4;
MAPLE
G:=(1-z+t*z)/(1-3*z+2*z^2-2*t*z^2): Gser:=simplify(series(G, z=0, 15)): P[0]:=1: for n from 1 to 12 do P[n]:=sort(coeff(Gser, z^n)) od: for n from 0 to 12 do seq(coeff(P[n], t, j), j=0..ceil(n/2)) od; # yields sequence in triangular form
MATHEMATICA
nn=15; f[list_]:=Select[list, #>0&]; a = y x/(1-x) +1; Map[f, CoefficientList[ Series[a/(1-2x a), {x, 0, nn}], {x, y}]]//Grid (* Geoffrey Critzer, Nov 19 2012 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 25 2006
STATUS
approved