OFFSET
1,36
COMMENTS
See A054895 for the partial sums. - Hieronymus Fischer, Jun 08 2012
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
From Hieronymus Fischer, Jun 03 2012: (Start)
With m = floor(log_6(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/6^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/6^j))).
G.f.: Sum_{j>0} x^6^j/(1-x^6^j). (End)
6^a(n) = A234959(n), n >= 1. - Wolfdieter Lang, Jun 30 2014
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/5. - Amiram Eldar, Jan 17 2022
MATHEMATICA
Table[IntegerExponent[n, 6], {n, 1, 100}] (* Amiram Eldar, Sep 14 2020 *)
PROG
(Haskell)
a122841 = f 0 where
f y x = if r > 0 then y else f (y + 1) x'
where (x', r) = divMod x 6
-- Reinhard Zumkeller, Nov 10 2013
(PARI) a(n) = valuation(n, 6); \\ Michel Marcus, Jan 17 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 13 2006
STATUS
approved