(Translated by https://www.hiragana.jp/)
A135298 - OEIS
login
a(n) = the total number of permutations (m(1),m(2),m(3)...m(j)) of (1,2,3,...,j) where n = 1*m(1) + 2*m(2) + 3*m(3) + ...+j*m(j), where j is over all positive integers.
3

%I #53 Nov 23 2023 15:54:52

%S 1,1,0,0,1,1,0,0,0,0,1,2,0,2,1,0,0,0,0,0,1,3,1,4,2,2,2,4,1,3,1,0,0,0,

%T 0,1,4,3,6,7,6,4,10,6,10,6,10,6,10,4,6,7,6,3,4,1,1,5,6,9,16,12,14,24,

%U 20,21,23,28,24,34,20,32,42,29,29,42,32,20,34,24,28,23,21,20,25,20,22,30,38

%N a(n) = the total number of permutations (m(1),m(2),m(3)...m(j)) of (1,2,3,...,j) where n = 1*m(1) + 2*m(2) + 3*m(3) + ...+j*m(j), where j is over all positive integers.

%C Does every integer greater than some positive integer N have at least one such representation?

%C a(n) > 0 for n > 34, a(n) > 1 for n > 56. - _Alois P. Heinz_, Aug 28 2014

%H Alois P. Heinz, <a href="/A135298/b135298.txt">Table of n, a(n) for n = 0..1770</a>

%H FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000055/">The rank of the permutation inside the alternating sign matrix lattice</a>

%H J. Sack and H. Úlfarsson, <a href="http://arxiv.org/abs/1106.1995">Refined inversion statistics on permutations</a>, arXiv preprint arXiv:1106.1995 [math.CO], 2011-2012.

%e 21 has a(21)=3 such representations: 21 = 1*4 + 2*3 + 3*1 + 4*2 = 1*4 + 2*2 + 3*3 + 4*1 = 1*3 + 2*4 + 3*2 + 4*1.

%e Not all representations of an integer n need to necessarily have the same j. For example, 91 = 1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6 (j=6). And 91 also equals 1*7 + 2*4 + 3*5 + 4*3 + 5*6 + 6*2 + 7*1 (j=7).

%e 1 = 1*1;

%e 4 = 1*2+2*1;

%e 5 = 1*1+2*2;

%e 10 = 1*3+2*2+3*1;

%e 11 = 1*2+2*3+3*1;

%e 11 = 1*3+2*1+3*2;

%e 13 = 1*1+2*3+3*2;

%e 13 = 1*2+2*1+3*3;

%e 14 = 1*1+2*2+3*3;

%e 20 = 1*4+2*3+3*2+4*1;

%e 21 = 1*3+2*4+3*2+4*1;

%e 21 = 1*4+2*2+3*3+4*1;

%e 21 = 1*4+2*3+3*1+4*2;

%e 22 = 1*3+2*4+3*1+4*2;

%e 23 = 1*2+2*4+3*3+4*1;

%e 23 = 1*3+2*2+3*4+4*1;

%e 23 = 1*4+2*1+3*3+4*2;

%e 23 = 1*4+2*2+3*1+4*3;

%e 24 = 1*2+2*3+3*4+4*1;

%e 24 = 1*4+2*1+3*2+4*3;

%e 25 = 1*2+2*4+3*1+4*3;

%e 25 = 1*3+2*1+3*4+4*2;

%e 26 = 1*1+2*4+3*3+4*2;

%e 26 = 1*3+2*2+3*1+4*4;

%e 27 = 1*1+2*3+3*4+4*2;

%e 27 = 1*1+2*4+3*2+4*3;

%e 27 = 1*2+2*3+3*1+4*4;

%e 27 = 1*3+2*1+3*2+4*4;

%e 28 = 1*2+2*1+3*4+4*3;

%e 29 = 1*1+2*2+3*4+4*3;

%e 29 = 1*1+2*3+3*2+4*4;

%e 29 = 1*2+2*1+3*3+4*4;

%e 30 = 1*1+2*2+3*3+4*4;

%p A135298rec := proc(j,n,notm) local a,m ; a := 0 ; if n = 0 then if max( seq(e,e=notm) ) >= j then RETURN(0) ; else RETURN(1) ; fi ; end: for m from 1 do if n-j*m < 0 then break ; elif not m in notm then a := a+A135298rec(j+1,n-j*m,[op(notm),m] ) ; fi ; od: RETURN(a) ; end: A135298 := proc(n) A135298rec(1,n,[]) ; end: for n from 1 to 140 do printf("%d, ",A135298(n)) ; od: # _R. J. Mathar_, Jan 30 2008

%p # second Maple program:

%p n:= 8 : # gives binomial(n+3, 3) terms

%p with(combinat):

%p (p-> seq(coeff(p, x, j), j=0..binomial(n+3, 3)-1))

%p (add(add(x^add(i*l[i], i=1..h), l=permute(h)), h=0..n));

%p # _Alois P. Heinz_, Aug 29 2014

%t n = 8; (* gives binomial(n+3, 3)-1 terms *) Function[p, Table[ Coefficient[p, x, j], {j, 1, Binomial[n+3, 3]-1}]] @ Sum[x^(l.Range[h]), {h, 1, n}, {l, Permutations @ Range[h]}] (* _Jean-François Alcover_, Jul 22 2017, after _Alois P. Heinz_ *)

%Y Cf. A000292, A126972, A175929.

%K nonn,look

%O 0,12

%A _Leroy Quet_, Dec 04 2007

%E More terms from _R. J. Mathar_, Jan 30 2008

%E a(0)=1 prepended by _Alois P. Heinz_, Nov 23 2023