%I #17 Sep 08 2022 08:45:34
%S 31,59,199,251,311,419,619,691,719,839,859,971,1039,1259,1279,1291,
%T 1511,1571,1699,1879,1951,2099,2399,2539,2579,2819,2971,3191,3331,
%U 3359,3391,3491,3499,3631,3919,4051,4079,4339,4591,4651,4679,4871
%N Primes of the form 14x^2+14xy+31y^2.
%C Discriminant=-1540. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A139954/b139954.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {31, 59, 111, 159, 199, 251, 279, 311, 339, 411, 419, 531, 551, 559, 619, 691, 719, 731, 839, 859, 951, 971, 999, 1039, 1259, 1279, 1291, 1391, 1431, 1511} (mod 1540).
%t QuadPrimes2[14, -14, 31, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(6000) | p mod 1540 in [31, 59, 111, 159, 199, 251, 279, 311, 339, 411, 419, 531, 551, 559, 619, 691, 719, 731, 839, 859, 951, 971, 999, 1039, 1259, 1279, 1291, 1391, 1431, 1511]]; // _Vincenzo Librandi_, Aug 02 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008