OFFSET
1,7
COMMENTS
Row sums = A001333 starting (1, 3, 7, 17, 41, 99, 239,...).
Can also be seen as a triangle where each entry is the sum of two terms above it in previous row (as in Pascal's triangle) plus one term above it two rows back, see also A059317. - Reinhard Zumkeller, Jun 30 2012
LINKS
Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
S. Samieinia, The number of continuous curves in digital geometry, Port. Math. 67 (1) (2010) 75-89
EXAMPLE
First few rows of the triangle are:
1;
1, 1, 1;
1, 1, 3, 1, 1;
1, 1, 5, 3, 5, 1, 1;
1, 1, 7, 5, 13, 5, 7, 1, 1;
1, 1, 9, 7, 25, 13, 25, 7, 9, 1, 1;
1, 1, 11, 9, 41, 25, 63, 25, 41, 9, 11, 1, 1;
1, 1, 13, 11, 61, 41, 129, 63, 129, 41, 61, 11, 13, 1, 1;
...
PROG
(Haskell)
a140750 n k = a140750_tabf !! (n-1) !! (k-1)
a140750_row n = a140750_tabf !! (n-1)
a140750_tabf = [1] : [1, 1, 1] : f [1] [1, 1, 1] where
f ws vs = vs' : f vs vs' where
vs' = zipWith3 (\r s x -> r + s + x)
(vs ++ [0, 0]) ([0, 0] ++ ws ++ [0, 0]) ([0, 0] ++ vs)
-- Reinhard Zumkeller, Jun 30 2012
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson & Roger L. Bagula, May 26 2008
STATUS
approved