(Translated by https://www.hiragana.jp/)
A163334 - OEIS
login
A163334
Peano curve in an n X n grid, starting rightwards from the top left corner, listed antidiagonally as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... .
37
0, 1, 5, 2, 4, 6, 15, 3, 7, 47, 16, 14, 8, 46, 48, 17, 13, 9, 45, 49, 53, 18, 12, 10, 44, 50, 52, 54, 19, 23, 11, 43, 39, 51, 55, 59, 20, 22, 24, 42, 40, 38, 56, 58, 60, 141, 21, 25, 29, 41, 37, 69, 57, 61, 425, 142, 140, 26, 28, 30, 36, 70, 68, 62, 424, 426, 143, 139
OFFSET
0,3
LINKS
E. H. Moore, On Certain Crinkly Curves, Transactions of the American Mathematical Society, volume 1, number 1, 1900, pages 72-90. (And errata.) See section 7 (and in figure 3 rotate -90 degrees for the table here).
Giuseppe Peano, Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen, volume 36, number 1, 1890, pages 157-160. Also EUDML (link to GDZ).
Eric Weisstein's World of Mathematics, Hilbert curve (this curve called "Hilbert II").
FORMULA
a(n) = A163332(A163328(n)).
EXAMPLE
The top left 9 X 9 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
0 1 2 15 16 17 18 19 20
5 4 3 14 13 12 23 22 21
6 7 8 9 10 11 24 25 26
47 46 45 44 43 42 29 28 27
48 49 50 39 40 41 30 31 32
53 52 51 38 37 36 35 34 33
54 55 56 69 70 71 72 73 74
59 58 57 68 67 66 77 76 75
60 61 62 63 64 65 78 79 80
MATHEMATICA
b[{n_, k_}, {m_}] := (A[k, n] = m - 1);
MapIndexed[b, List @@ PeanoCurve[4][[1]]];
Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)
CROSSREFS
Transpose: A163336. Inverse: A163335. One-based version: A163338. Row sums: A163342. Row 0: A163480. Column 0: A163481. Central diagonal: A163343.
See A163357 and A163359 for the Hilbert curve.
Sequence in context: A334206 A006666 A267830 * A029683 A063567 A072223
KEYWORD
nonn,tabl,look
AUTHOR
Antti Karttunen, Jul 29 2009
EXTENSIONS
Links to further derived sequences added by Antti Karttunen, Sep 21 2009
Name corrected by Kevin Ryde, Aug 22 2020
STATUS
approved