OFFSET
0,3
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..13202
E. H. Moore, On Certain Crinkly Curves, Transactions of the American Mathematical Society, volume 1, number 1, 1900, pages 72-90. (And errata.) See section 7 (and in figure 3 rotate -90 degrees for the table here).
Giuseppe Peano, Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen, volume 36, number 1, 1890, pages 157-160. Also EUDML (link to GDZ).
Eric Weisstein's World of Mathematics, Hilbert curve (this curve called "Hilbert II").
Wikipedia, Self-avoiding walk
Wikipedia, Space-filling curve
EXAMPLE
The top left 9 X 9 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
0 1 2 15 16 17 18 19 20
5 4 3 14 13 12 23 22 21
6 7 8 9 10 11 24 25 26
47 46 45 44 43 42 29 28 27
48 49 50 39 40 41 30 31 32
53 52 51 38 37 36 35 34 33
54 55 56 69 70 71 72 73 74
59 58 57 68 67 66 77 76 75
60 61 62 63 64 65 78 79 80
MATHEMATICA
b[{n_, k_}, {m_}] := (A[k, n] = m - 1);
MapIndexed[b, List @@ PeanoCurve[4][[1]]];
Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)
CROSSREFS
AUTHOR
Antti Karttunen, Jul 29 2009
EXTENSIONS
Links to further derived sequences added by Antti Karttunen, Sep 21 2009
Name corrected by Kevin Ryde, Aug 22 2020
STATUS
approved