(Translated by https://www.hiragana.jp/)
A171729 - OEIS
login
A171729
Triangle of differences of Fibonacci numbers.
2
1, 1, 2, 1, 2, 3, 2, 3, 4, 5, 3, 5, 6, 7, 8, 5, 8, 10, 11, 12, 13, 8, 13, 16, 18, 19, 20, 21, 13, 21, 26, 29, 31, 32, 33, 34, 21, 34, 42, 47, 50, 52, 53, 54, 55, 34, 55, 68, 76, 81, 84, 86, 87, 88, 89, 55, 89, 110, 123, 131, 136, 139, 141, 142, 143, 144, 89, 144, 178, 199, 212, 220, 225, 228, 230, 231, 232, 233
OFFSET
1,3
COMMENTS
The numbers missing from this triangle form A050939.
Row n of this triangle has one more term than row n of A143061.
Reversing the rows gives A171730.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows n = 1..150, flattened)
FORMULA
Counting the top row as the first row, the n-th row is
F(n+1)-F(n), F(n+1)-F(n-1), ..., F(n+1)-F(2), F(n+1)-F(0).
EXAMPLE
First rows:
1
1 2
1 2 3
2 3 4 5
3 5 6 7 8
5 8 10 11 12 13
...
MAPLE
F:= combinat[fibonacci]:
T:= (n, k)-> F(n+1)-`if`(k=n, 0, F(n-k+1)):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Feb 06 2023
MATHEMATICA
Table[Fibonacci[n + 1] - If[k < n, Fibonacci[n - k + 1], 0], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Feb 06 2023 *)
PROG
(PARI) row(n) = vector(n, k, fibonacci(n+1) - if (k<n, fibonacci(n-k+1), 0)); \\ Michel Marcus, Feb 06 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 16 2009
STATUS
approved