OFFSET
1,2
COMMENTS
Decimal expansion of the length/width ratio of a (4/3)-extension rectangle.
See A188640 for definitions of shape and r-extension rectangle.
A (4/3)-extension rectangle matches the continued fraction [1,1,6,1,1,1,1,6,1,1,1,1,6,...] for the shape L/W= (2+sqrt(13))/3. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,...]. Specifically, for the (4/3)-extension rectangle, 1 square is removed first, then 1 square, then 6 squares, then 1 square, then 1 square,..., so that the original rectangle is partitioned into an infinite collection of squares.
LINKS
Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Clark Kimberling, A Visual Euclidean Algorithm, The Mathematics Teacher 76 (1983) 108-109.
EXAMPLE
length/width = 1.868517091821329764373....
MATHEMATICA
r = 4/3; t = (r + (4 + r^2)^(1/2))/2; RealDigits[ N[ FullSimplify@ t, 111]][[1]]
RealDigits[(2 + Sqrt@ 13)/3, 10, 111][[1]] (* Or *)
RealDigits[Exp@ ArcSinh[2/3], 10, 111][[1]] (* Robert G. Wilson v, Aug 17 2011 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Apr 09 2011
EXTENSIONS
a(130) corrected by Georg Fischer, Apr 01 2020
STATUS
approved