(Translated by https://www.hiragana.jp/)
A207493 - OEIS
login
A207493
E.g.f. A(x) is the series reversion of 2*x-1/2*x^2-exp(x)+1.
0
1, 2, 13, 141, 2141, 41798, 997340, 28124253, 915095222, 33744966795, 1390772973547, 63353273661835, 3160751396077900, 171405094563763674, 10038777321831260503, 631498191927510881178, 42464602911622645539047, 3039724643022777390236243
OFFSET
1,2
FORMULA
a(n) = (sum(k=0..n-1, (n+k-1)!*sum(j=0..k, 1/(k-j)!*sum(l=0..j, 1/l!*sum(i=0..l, ((-1)^(i+l)*2^(l-2*i)* C(l,i)*stirling2(n+j-i-l-1,j-l))/(n+j-i-l-1)!))))).
a(n) ~ n^(n-1) / (sqrt(1+c) * exp(n) * (3-c*(2+c)/2)^(n-1/2)), where c = LambertW(exp(2)) = 1.5571455989976... (see A226571). - Vaclav Kotesovec, Jan 22 2014
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[2*x-1/2*x^2-E^x+1, {x, 0, 20}], x], x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 22 2014 *)
PROG
(Maxima) a(n):=(sum((n+k-1)!*sum(1/(k-j)!*sum(1/l!*sum(((-1)^(i+l)*2^(l-2*i) *binomial(l, i)*stirling2(n+j-i-l-1, j-l))/(n+j-i-l-1)!, i, 0, l), l, 0, j), j, 0, k), k, 0, n-1));
CROSSREFS
Cf. A226571.
Sequence in context: A143137 A003414 A003326 * A003581 A129256 A046245
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 18 2012
STATUS
approved