OFFSET
-1,5
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 13 sequence [1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 + v + u*v^3 - u^3*v^2 + 2*u*v * (1 + u - v + u*v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (v^3 - u) * (u^3 - v) - 3*u*v * (1 + u + v) * (u*v - u - v).
G.f.: (1/x) * Product_{k>0} (1 - x^k)^-Kronecker(13, k).
Convolution inverse of A092876.
EXAMPLE
G.f. = 1/x + 1 + x^2 + 2*x^3 - x^5 - x^7 - x^8 - 2*x^10 + 4*x^12 + x^13 - 2*x^14 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/x Product[ (1 - x^k) ^ -KroneckerSymbol[ 13, k], {k, n+1}], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<-1, 0, n++; polcoeff( prod( k=1, n, (1 - x^k)^-kronecker( 13, k), 1 + x * O(x^n)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 05 2012
STATUS
approved