(Translated by https://www.hiragana.jp/)
A238778 - OEIS
login
A238778
Sum of all primes p such that 2n - p is also a prime.
4
2, 3, 8, 15, 12, 21, 32, 36, 40, 55, 72, 65, 56, 90, 64, 119, 144, 57, 120, 168, 132, 161, 240, 200, 156, 270, 168, 203, 360, 155, 320, 396, 136, 350, 432, 333, 380, 546, 320, 369, 672, 387, 352, 810, 368, 423, 672, 294, 600, 816, 520, 583, 864, 660, 784
OFFSET
2,1
COMMENTS
Sum of n-th row in triangle A171637.
LINKS
FORMULA
a(n) = A008472(A238711(n)).
a(n) mod 2 = A010051(n).
a(n) = n*A035026(n). - Robert G. Wilson v, Apr 28 2018
PROG
(Haskell)
a238778 n = sum $ filter ((== 1) . a010051') $
map (2 * n -) $ takeWhile (<= 2 * n) a000040_list
(PARI) a(n) = my(s=0); forprime(p=2, 2*n, if(isprime(2*n-p), s+=p)); s; \\ Michel Marcus, Jan 24 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 06 2014
STATUS
approved