OFFSET
1,2
COMMENTS
The next terms: a(3) has 126 digits, a(4) has 743 digits, a(5) has 2927 digits.
In general, product_{k=1..n} k^(k^m) ~ A(m) * n^(B(m+1)/(m+1) + sum_{j=1..n} j^m) * exp(-n^(m+1)/(m+1)^2 + sum_{j=1..m-1} (1/(j+1) * B(j+1) * binomial(m,j) * n^(m-j) * sum_{i=0..j-1} 1/(m-i) )), where A(m) is the generalized Glaisher-Kinkelin constant (see A074962, A243262, A243263, A243264, A243265), and B(n) is the Bernoulli number A027641(n) / A027642(n).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..4
FORMULA
a(n) ~ A243265 * n^(n^2*(n+1)^2*(2*n^2+2*n-1)/12 + 1/252) / exp(47*n^2/720 - n^4/12 + n^6/36).
MATHEMATICA
Table[Product[k^(k^5), {k, 1, n}], {n, 1, 5}]
PROG
(PARI) a(n)=prod(k=2, n, k^k^5) \\ Charles R Greathouse IV, Sep 08 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 21 2015
STATUS
approved