(Translated by https://www.hiragana.jp/)
A260816 - OEIS
login
A260816
a(n) = floor(log(Catalan(n))).
1
0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 52, 53, 54, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80
OFFSET
0,5
COMMENTS
Largest integer m such that e^m < C(n), the n-th Catalan number, where e = exp(1) is the Euler number.
LINKS
FORMULA
a(n) = floor(log(C(n))).
For n >= 1, a(n) is either floor(2*log(2)*n - (3/2)*log(n)) or floor(2*log(2)*n - (3/2)*log(n)) - 1. - Robert Israel, Aug 19 2015
EXAMPLE
a(5) = 3 because e^3 < C(3) = 42 < e^4.
MAPLE
seq(floor(log(binomial(2*n, n)/(n+1))), n=0 .. 100); # Robert Israel, Aug 19 2015
MATHEMATICA
f[n_] := Floor@ Log@ CatalanNumber@ n; Array[f, 70, 0] (* Robert G. Wilson v, Aug 18 2015 *)
PROG
(PARI) a(n)=floor(log(binomial(2*n, n)/(n+1)))
\\ Use realprecision > number of digits of C(max n)
(Magma) [Floor(Log(Binomial(2*n, n)/(n+1))): n in [0.. 65]]; // Vincenzo Librandi, Aug 20 2015
CROSSREFS
Sequence in context: A039160 A175439 A048264 * A285598 A275804 A141825
KEYWORD
nonn,less
AUTHOR
Stanislav Sykora, Jul 31 2015
STATUS
approved