(Translated by https://www.hiragana.jp/)
A267121 - OEIS
login
A267121
Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x*y*z*(x+9*y+11*z+10*w) a square, where x is a positive integer and y,z,w are nonnegative integers.
23
1, 3, 2, 1, 6, 7, 1, 3, 7, 7, 6, 2, 6, 12, 1, 1, 12, 10, 7, 6, 13, 7, 2, 7, 8, 19, 8, 1, 18, 12, 2, 3, 14, 15, 13, 7, 7, 18, 1, 7, 25, 14, 6, 6, 19, 13, 2, 2, 14, 22, 12, 6, 18, 27, 4, 12, 13, 9, 19, 1, 18, 25, 5, 1, 24, 26, 6, 12, 26, 14, 2, 10, 16, 31, 16, 7, 24, 13, 4, 6
OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m (k = 0,1,2,... and m = 1, 7, 15, 39, 119, 127, 159, 239, 359, 391, 527, 543, 863, 5791).
(ii) Any positive integer can be written as x^2 + y^2 + z^2 + w^2 with 2*x*y*(x+2y+z+2w) (or 2*x*y*(x+6y+z+2w), or x*y*(x+11y+z+2w)) a square, where x,y,z,w are nonnegative integers with z > 0 (or w > 0).
(iii) Any natural number can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers such that w*(a*w+b*x+c*y+d*z) is a square, provided that (a,b,c,d) is among the following quadruples (1,1,2,3), (1,1,4,5), (1,1,6,9), (1,2,6,34), (1,3,6,m) (m = 12, 21, 27, 36), (1,3,9,18), (1,3,9,36), (1,3,18,27), (1,3,24,117), (1,3,90,99), (1,6,6,18), (1,6,6,30), (1,8,16,24).
For more refinements of Lagrange's four-square theorem, see arXiv:1604.06723.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Zhi-Wei Sun, Refine Lagrange's four-square theorem, a message to Number Theory List, April 26, 2016.
EXAMPLE
a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with 2 > 0 and 2*0*0*(2+9*0+11*0+10*0) = 0^2.
a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2 > 0 and 2*1*1*(2+9*1+11*1+10*1) = 8^2.
a(15) = 1 since 15 = 2^2 + 1^2 + 3^2 + 1^2 with 2 > 0 and 2*1*3*(2+9*1+11*3+10*1) = 18^2.
a(39) = 1 since 39 = 1^2 + 1^2 + 1^2 + 6^2 with 1 > 0 and 1*1*1*(1+9*1+11*1+10*6) = 9^2.
a(119) = 1 since 119 = 1^2 + 1^2 + 9^2 + 6^2 with 1 > 0 and 1*1*9*(1+9*1+11*9+10*6) = 39^2.
a(127) = 1 since 127 = 5^2 + 1^2 + 1^2 + 10^2 with 5 > 0 and 5*1*1*(5+9*1+11*1+10*10) = 25^2.
a(159) = 1 since 159 = 3^2 + 1^2 + 7^2 + 10^2 with 3 > 0 and 3*1*7*(3+9*1+11*7+10*10) = 63^2.
a(239) = 1 since 239 = 3^2 + 3^2 + 10^2 + 11^2 with 3 > 0 and 3*3*10*(3+9*3+11*10+10*11) = 150^2.
a(359) = 1 since 359 = 9^2 + 11^2 + 11^2 + 6^2 with 9 > 0 and 9*11*11*(9+9*11+11*11+10*6) = 561^2.
a(391) = 1 since 391 = 19^2 + 5^2 + 1^2 + 2^2 with 19 > 0 and 19*5*1*(19+9*5+11*1+10*2) = 95^2.
a(527) = 1 since 527 = 21^2 + 6^2 + 7^2 + 1^2 with 21 > 0 and 21*6*7*(21+9*6+11*7+10*1) = 378^2.
a(543) = 1 since 543 = 15^2 + 13^2 + 10^2 + 7^2 with 15 > 0 and 15*13*10*(15+9*13+11*10+10*7) = 780^2.
a(863) = 1 since 863 = 9^2 + 9^2 + 5^2 + 26^2 with 9 > 0 and 9*9*5*(9+9*9+11*5+10*26) = 405^2.
a(5791) = 1 since 5791 = 57^2 + 38^2 + 33^2 + 3^2 with 57 > 0 and 57*38*33*(57+9*38+11*33+10*3) = 7524^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[x*y*z(x+9y+11z+10*Sqrt[n-x^2-y^2-z^2])], r=r+1], {x, 1, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {z, 0, Sqrt[n-x^2-y^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 01 2016
STATUS
approved