(Translated by https://www.hiragana.jp/)
A271276 - OEIS
login
A271276
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 329", based on the 5-celled von Neumann neighborhood.
1
3, 1, 35, -31, 91, -95, 195, -183, 303, -283, 435, -455, 659, -615, 795, -807, 1099, -1071, 1295, -1303, 1615, -1583, 1915, -1891, 2231, -2215, 2575, -2547, 2951, -2927, 3375, -3367, 3931, -3931, 4423, -4391, 4919, -4895, 5471, -5447, 6047, -6055, 6711
OFFSET
0,1
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=329; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
CROSSREFS
Cf. A265689.
Sequence in context: A109842 A270101 A271288 * A270090 A293940 A103242
KEYWORD
sign,easy
AUTHOR
Robert Price, Apr 03 2016
STATUS
approved