(Translated by https://www.hiragana.jp/)
A276516 - OEIS
login
A276516
Expansion of Product_{k>=1} (1-x^(k^2)).
24
1, -1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 1, -1, 0, -1, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, -2, 1, 1, 1, 0, 0, -1, -1, 1, 1, -1, 0, 0, -1, 1, -1, 2, -1, 0, 1, -2, 0, 1, 0, 1, 0, -1, 0, -2, 2, 0
OFFSET
0,50
COMMENTS
The difference between the number of partitions of n into an even number of distinct squares and the number of partitions of n into an odd number of distinct squares. - Ilya Gutkovskiy, Jan 15 2018
FORMULA
a(n) = Sum_{k>=0} (-1)^k * A341040(n,k). - Alois P. Heinz, Feb 03 2021
MATHEMATICA
nn = 15; CoefficientList[Series[Product[(1-x^(k^2)), {k, nn}], {x, 0, nn^2}], x]
nmax = 200; nn = Floor[Sqrt[nmax]]+1; poly = ConstantArray[0, nn^2 + 1]; poly[[1]] = 1; poly[[2]] = -1; poly[[3]] = 0; Do[Do[poly[[j + 1]] -= poly[[j - k^2 + 1]], {j, nn^2, k^2, -1}]; , {k, 2, nn}]; Take[poly, nmax+1]
CROSSREFS
KEYWORD
sign,look
AUTHOR
Vaclav Kotesovec, Dec 12 2016
STATUS
approved