(Translated by https://www.hiragana.jp/)
A283784 - OEIS
login
A283784
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than two of its horizontal, diagonal and antidiagonal neighbors, with the exception of exactly two elements.
12
0, 0, 0, 0, 0, 0, 0, 5, 1, 0, 0, 14, 60, 6, 0, 0, 113, 625, 745, 49, 0, 0, 564, 5432, 10910, 7298, 272, 0, 0, 2410, 43793, 169426, 174447, 62303, 1376, 0, 0, 10648, 336614, 2343698, 4588054, 2510456, 496884, 6620, 0, 0, 45070, 2456405, 30330979
OFFSET
1,8
COMMENTS
Table starts
.0.....0........0..........0.............0...............0.................0
.0.....0........5.........14...........113.............564..............2410
.0.....1.......60........625..........5432...........43793............336614
.0.....6......745......10910........169426.........2343698..........30330979
.0....49.....7298.....174447.......4588054.......109281786........2393467823
.0...272....62303....2510456.....112397437......4572654404......169720104148
.0..1376...496884...33933330....2592339953....179632502674....11308125156356
.0..6620..3767599..439118692...57256730323...6737192690688...719819137224851
.0.30552.27544383.5498459845.1224525471560.244126676935480.44286142978155009
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 15]
k=3: [order 30]
k=4: [order 42]
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: [order 15]
n=3: [order 33]
n=4: [order 69]
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..1. .0..1..1..1. .1..0..0..0. .1..1..0..1. .0..1..1..0
..0..1..1..1. .1..1..0..0. .1..0..1..1. .0..1..1..1. .0..1..0..1
..0..0..0..0. .0..1..0..1. .0..1..0..0. .0..1..0..0. .0..1..1..1
..0..0..1..1. .1..0..0..0. .1..1..1..1. .1..1..1..0. .0..0..1..0
CROSSREFS
Column 2 is A283226.
Sequence in context: A204619 A228077 A204170 * A361353 A281563 A293087
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 16 2017
STATUS
approved